1
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Millozzi F, Milán-Rois P, Sett A, Delli Carpini G, De Bardi M, Gisbert-Garzarán M, Sandonà M, Rodríguez-Díaz C, Martínez-Mingo M, Pardo I, Esposito F, Viscomi MT, Bouché M, Parolini O, Saccone V, Toulmé JJ, Somoza Á, Palacios D. Aptamer-conjugated gold nanoparticles enable oligonucleotide delivery into muscle stem cells to promote regeneration of dystrophic muscles. Nat Commun 2025; 16:577. [PMID: 39794309 PMCID: PMC11724063 DOI: 10.1038/s41467-024-55223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025] Open
Abstract
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy. We show here that this platform is biocompatible, non-toxic, and non-immunogenic, and it can be easily adapted for the release of a wide range of therapeutic oligonucleotides into diseased muscles.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | | | - Arghya Sett
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France
- ERIN Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Giovanni Delli Carpini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Martina Sandonà
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | - Federica Esposito
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Saccone
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jean-Jacques Toulmé
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France.
- Novaptech, Gradignan, France.
| | - Álvaro Somoza
- IMDEA Nanociencia, Madrid, Spain.
- Unidad Asociada de Nanobiomedicina, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniela Palacios
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
3
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
4
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
5
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
6
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
7
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Gargan S, Dowling P, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the Aged and Dystrophic Diaphragm. Life (Basel) 2022; 12:1679. [PMID: 36362832 PMCID: PMC9696191 DOI: 10.3390/life12111679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
9
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
10
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
11
|
Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH. Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet 2022; 31:718-732. [PMID: 34581784 PMCID: PMC8895749 DOI: 10.1093/hmg/ddab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), mutations in dystrophin result in a loss of the dystrophin-glycoprotein complex (DGC) at the myofiber membrane, which functions to connect the extracellular matrix with the intracellular actin cytoskeleton. The dystroglycan subcomplex interacts with dystrophin and spans the sarcolemma where its extensive carbohydrates (matriglycan and CT2 glycan) directly interact with the extracellular matrix. In the current manuscript, we show that sarcospan overexpression enhances the laminin-binding capacity of dystroglycan in DMD muscle by increasing matriglycan glycosylation of α-dystroglycan. Furthermore, we find that this modification is not affected by loss of Galgt2, a glycotransferase, which catalyzes the CT2 glycan. Our findings reveal that the matriglycan carbohydrates, and not the CT2 glycan, are necessary for sarcospan-mediated amelioration of DMD. Overexpression of Galgt2 in the DMD mdx murine model prevents muscle pathology by increasing CT2 modified α-dystroglycan. Galgt2 also increases expression of utrophin, which compensates for the loss of dystrophin in DMD muscle. We found that combined loss of Galgt2 and dystrophin reduced utrophin expression; however, it did not interfere with sarcospan rescue of disease. These data reveal a partial dependence of sarcospan on Galgt2 for utrophin upregulation. In addition, sarcospan alters the cross-talk between the adhesion complexes by decreasing the association of integrin β1D with dystroglycan complexes. In conclusion, sarcospan functions to re-wire the cell to matrix connections by strengthening the cellular adhesion and signaling, which, in turn, increases the resilience of the myofiber membrane.
Collapse
Affiliation(s)
- Hafsa Mamsa
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Rachelle L Stark
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Kara M Shin
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, New York 13902, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
- Broad Stem Cell Institute, University of California, Los Angeles 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| |
Collapse
|
12
|
Mavropalias G, Sim M, Taaffe DR, Galvão DA, Spry N, Kraemer WJ, Häkkinen K, Newton RU. Exercise medicine for cancer cachexia: targeted exercise to counteract mechanisms and treatment side effects. J Cancer Res Clin Oncol 2022; 148:1389-1406. [PMID: 35088134 PMCID: PMC9114058 DOI: 10.1007/s00432-022-03927-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022]
Abstract
Purpose Cancer-induced muscle wasting (i.e., cancer cachexia, CC) is a common and devastating syndrome that results in the death of more than 1 in 5 patients. Although primarily a result of elevated inflammation, there are multiple mechanisms that complement and amplify one another. Research on the use of exercise to manage CC is still limited, while exercise for CC management has been recently discouraged. Moreover, there is a lack of understanding that exercise is not a single medicine, but mode, type, dosage, and timing (exercise prescription) have distinct health outcomes. The purpose of this review was to examine the effects of these modes and subtypes to identify the most optimal form and dosage of exercise therapy specific to each underlying mechanism of CC. Methods The relevant literatures from MEDLINE and Scopus databases were examined. Results Exercise can counteract the most prominent mechanisms and signs of CC including muscle wasting, increased protein turnover, systemic inflammation, reduced appetite and anorexia, increased energy expenditure and fat wasting, insulin resistance, metabolic dysregulation, gut dysbiosis, hypogonadism, impaired oxidative capacity, mitochondrial dysfunction, and cancer treatments side-effects. There are different modes of exercise, and each mode has different sub-types that induce vastly diverse changes when performed over multiple sessions. Choosing suboptimal exercise modes, types, or dosages can be counterproductive and could further contribute to the mechanisms of CC without impacting muscle growth. Conclusion Available evidence shows that patients with CC can safely undertake higher-intensity resistance exercise programs, and benefit from increases in body mass and muscle mass.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Nigel Spry
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - William J Kraemer
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Department of Human Sciences, Ohio State University, Columbus, USA
| | - Keijo Häkkinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
13
|
Mavropalias G, Wu YF, Boppart MD, Blazevich AJ, Nosaka K. Increases in Integrin-ILK-RICTOR-Akt Proteins, Muscle Mass, and Strength after Eccentric Cycling Training. Med Sci Sports Exerc 2022; 54:89-97. [PMID: 34468415 PMCID: PMC8921492 DOI: 10.1249/mss.0000000000002778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Recently, it has been suggested that a cellular pathway composed of integrin, integrin-linked kinase (ILK), rapamycin-insensitive companion of mTOR (RICTOR), and Akt may facilitate long-term structural and functional adaptations associated with exercise, independent of the mTORC1 pathway. Therefore, we examined changes in integrin-ILK-RICTOR-Akt protein in vastus lateralis (VL) before and after 8 wk of eccentric cycling training (ECC), which was expected to increase muscle function and VL cross-sectional area (CSA). METHODS Eleven men (23 ± 4 yr) completed 24 sessions of ECC with progressive increases in intensity and duration, resulting in a twofold increase in work from the first three (75.4 ± 14.1 kJ) to the last three sessions (150.7 ± 28.4 kJ). Outcome measures included lower limb lean mass, VL CSA, static strength, and peak and average cycling power output. These measures and VL samples were taken before and 4-5 d after the last training session. RESULTS Significant (P < 0.05) increases in integrin-β1 (1.64-fold) and RICTOR (2.99-fold) protein as well as the phosphorylated-to-total ILK ratio (1.70-fold) were found, but integrin-α7 and Akt did not change. Increases in lower limb, thigh, and trunk lean mass (2.8%-5.3%, P < 0.05) and CSA (13.3% ± 9.0%, P < 0.001) were observed. Static strength (18.1% ± 10.8%) and both peak (8.6% ± 10.5%) and average power output (7.4% ± 8.3%) also increased (P < 0.05). However, no significant correlations were found between the magnitude of increases in protein and the magnitude of increases in CSA, static strength, or power output. CONCLUSIONS In addition to increased muscle mass, strength, and power, we demonstrate that ECC increases integrin-β1 and RICTOR total protein and p-ILK/t-ILK, which may play a role in protection against muscle damage as well as anabolic signaling to induce muscle adaptations.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Exercise Medicine Research Institute, Edith Cowan University, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Yu-Fu Wu
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, IL
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL
| | - Marni D. Boppart
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, IL
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL
| | | | - Kazunori Nosaka
- Exercise Medicine Research Institute, Edith Cowan University, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
| |
Collapse
|
14
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, Jacques E, Moyle LA, Nguyen T, Musgrave B, Chávez-Madero C, Bigot A, Chen C, Turner S, Stewart BA, Pegoraro E, Vitiello L, Gilbert PM. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater 2021; 132:227-244. [PMID: 34048976 DOI: 10.1016/j.actbio.2021.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Heta Lad
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Aurora Fusto
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Yekaterina Tiper
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Asiman Datye
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Thy Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Brennen Musgrave
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Carolina Chávez-Madero
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Anne Bigot
- Sorbonne Universite, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris UMRS974, France
| | - Chun Chen
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Scott Turner
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Padua 35131, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada.
| |
Collapse
|
16
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
17
|
Shu C, Parfenova L, Mokhonova E, Collado JR, Damoiseaux R, Campagna J, John V, Crosbie RH. High-throughput screening identifies modulators of sarcospan that stabilize muscle cells and exhibit activity in the mouse model of Duchenne muscular dystrophy. Skelet Muscle 2020; 10:26. [PMID: 32948250 PMCID: PMC7499884 DOI: 10.1186/s13395-020-00244-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by mutations in the dystrophin gene. Loss of dystrophin prevents the formation of a critical connection between the muscle cell membrane and the extracellular matrix. Overexpression of sarcospan (SSPN) in the mouse model of DMD restores the membrane connection and reduces disease severity, making SSPN a promising therapeutic target for pharmacological upregulation. METHODS Using a previously described cell-based promoter reporter assay of SSPN gene expression (hSSPN-EGFP), we conducted high-throughput screening on libraries of over 200,000 curated small molecules to identify SSPN modulators. The hits were validated in both hSSPN-EGFP and hSSPN-luciferase reporter cells. Hit selection was conducted on dystrophin-deficient mouse and human myotubes with assessments of (1) SSPN gene expression using quantitative PCR and (2) SSPN protein expression using immunoblotting and an ELISA. A membrane stability assay using osmotic shock was used to validate the functional effects of treatment followed by cell surface biotinylation to label cell surface proteins. Dystrophin-deficient mdx mice were treated with compound, and muscle was subjected to quantitative PCR to assess SSPN gene expression. RESULTS We identified and validated lead compounds that increased SSPN gene and protein expression in dystrophin-deficient mouse and human muscle cells. The lead compound OT-9 increased cell membrane localization of compensatory laminin-binding adhesion complexes and improved membrane stability in DMD myotubes. We demonstrated that the membrane stabilizing benefit is dependent on SSPN. Intramuscular injection of OT-9 in the mouse model of DMD increased SSPN gene expression. CONCLUSIONS This study identifies a pharmacological approach to treat DMD and sets the path for the development of SSPN-based therapies.
Collapse
Affiliation(s)
- Cynthia Shu
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, CA, USA
| | - Liubov Parfenova
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Ekaterina Mokhonova
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, CA, USA
| | - Judd R Collado
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesus Campagna
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Drug Discovery Lab, University of California Los Angeles, Los Angeles, CA, USA
| | - Varghese John
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
- Drug Discovery Lab, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
- Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Fontelonga TM, Jordan B, Nunes AM, Barraza-Flores P, Bolden N, Wuebbles RD, Griner LM, Hu X, Ferrer M, Marugan J, Southall N, Burkin DJ. Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2020; 28:2120-2132. [PMID: 30806670 DOI: 10.1093/hmg/ddz044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7β1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.
Collapse
Affiliation(s)
- Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Brennan Jordan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Nicholas Bolden
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Ryan D Wuebbles
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Lesley Mathews Griner
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Xin Hu
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Marc Ferrer
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Juan Marugan
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Noel Southall
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| |
Collapse
|
19
|
Shu C, Kaxon-Rupp AN, Collado JR, Damoiseaux R, Crosbie RH. Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skelet Muscle 2019; 9:32. [PMID: 31831063 PMCID: PMC6907331 DOI: 10.1186/s13395-019-0218-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by loss of sarcolemma connection to the extracellular matrix. Transgenic overexpression of the transmembrane protein sarcospan (SSPN) in the DMD mdx mouse model significantly reduces disease pathology by restoring membrane adhesion. Identifying SSPN-based therapies has the potential to benefit patients with DMD and other forms of muscular dystrophies caused by deficits in muscle cell adhesion. METHODS Standard cloning methods were used to generate C2C12 myoblasts stably transfected with a fluorescence reporter for human SSPN promoter activity. Assay development and screening were performed in a core facility using liquid handlers and imaging systems specialized for use with a 384-well microplate format. Drug-treated cells were analyzed for target gene expression using quantitative PCR and target protein expression using immunoblotting. RESULTS We investigated the gene expression profiles of SSPN and its associated proteins during myoblast differentiation into myotubes, revealing an increase in expression after 3 days of differentiation. We created C2C12 muscle cells expressing an EGFP reporter for SSPN promoter activity and observed a comparable increase in reporter levels during differentiation. Assay conditions for high-throughput screening were optimized for a 384-well microplate format and a high-content imager for the visualization of reporter levels. We conducted a screen of 3200 compounds and identified seven hits, which include an overrepresentation of L-type calcium channel antagonists, suggesting that SSPN gene activity is sensitive to calcium. Further validation of a select hit revealed that the calcium channel inhibitor felodipine increased SSPN transcript and protein levels in both wild-type and dystrophin-deficient myotubes, without increasing differentiation. CONCLUSIONS We developed a stable muscle cell line containing the promoter region of the human SSPN protein fused to a fluorescent reporter. Using the reporter cells, we created and validated a scalable, cell-based assay that is able to identify compounds that increase SSPN promoter reporter, transcript, and protein levels in wild-type and dystrophin-deficient muscle cells.
Collapse
Affiliation(s)
- Cynthia Shu
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA
| | - Ariana N Kaxon-Rupp
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Judd R Collado
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California Los Angeles, Los Angeles, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA. .,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA. .,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA. .,Department of Neurology David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C629-C641. [PMID: 31314586 DOI: 10.1152/ajpcell.00009.2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The α7β1-integrin is a transmembrane adhesion protein that connects laminin in the extracellular matrix (ECM) with actin in skeletal muscle fibers. The α7β1-integrin is highly expressed in skeletal muscle and is concentrated at costameres and myotendious junctions, providing the opportunity to transmit longitudinal and lateral forces across the membrane. Studies have demonstrated that α7-integrin subunit mRNA and protein are upregulated following eccentric contractions as a mechanism to reinforce load-bearing structures and resist injury with repeated bouts of exercise. It has been hypothesized for many years that the integrin can also promote protein turnover in a manner that can promote beneficial adaptations with resistance exercise training, including hypertrophy. This review provides basic information about integrin structure and activation and then explores its potential to serve as a critical mechanosensor and activator of muscle protein synthesis and growth. Overall, the hypothesis is proposed that the α7β1-integrin can contribute to mechanical-load induced skeletal muscle growth via an mammalian target of rapamycin complex 1-independent mechanism.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
21
|
Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of GALGT2 Expression and GALGT2-Dependent Muscle and Neuromuscular Phenotypes. Mol Cell Biol 2019; 39:MCB.00140-19. [PMID: 31036568 DOI: 10.1128/mcb.00140-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.
Collapse
|
22
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
23
|
Hightower RM, Alexander MS. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies. Muscle Nerve 2018; 57:6-15. [PMID: 28877560 PMCID: PMC5759757 DOI: 10.1002/mus.25953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 01/05/2023]
Abstract
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018.
Collapse
Affiliation(s)
- Rylie M. Hightower
- University of Alabama at Birmingham Graduate School of Biomedical Sciences, Birmingham, AL 35294
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at Children’s of Alabama and the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
24
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
25
|
Ishii K, Suzuki N, Mabuchi Y, Sekiya I, Akazawa C. Technical advantage of recombinant collagenase for isolation of muscle stem cells. Regen Ther 2017; 7:1-7. [PMID: 30271846 PMCID: PMC6134918 DOI: 10.1016/j.reth.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
Background Muscle satellite cells are resident skeletal muscle stem cells responsible for muscle regeneration. Isolation of satellite cells is a critical process for clinical application such as drug screening and cell transplantation. Fluorescence-activated cell sorting (FACS) enables the direct isolation of satellite cells from muscle tissue. During the process used to isolate satellite cells from skeletal muscle, enzymatic digestion is the first step. Therefore, the evaluation and standardization of enzymes is important not only for reproducibility of cellular yield and viability, but also for traceability of material used in protocols. Methods The comparison of muscle digestion was performed either by a mixture of recombinant collagenase G (ColG) and collagenase H (ColH) or by a conventional collagenase II. The degree of cell damage and surface antigen expression upon collagenase treatment were analyzed by FACS. To investigate whether satellite cells isolated using recombinant collagenase can regenerate injured muscle, satellite cells were cultured, transplanted into injured muscles, and analyzed by immunostaining. Results We show that ColG and ColH were efficient to isolate satellite cells from mouse skeletal muscle tissue. Digestion with a combination of ColG and ColH enriched satellite cells with intact surface antigens such as α7 and β1 integrins. Furthermore, satellite cells isolated using ColG and ColH dramatically proliferated and remained undifferentiated in vitro. When transplanted, satellite cells isolated using ColG and ColH enhanced the therapeutic efficacy in vivo. Conclusions Our results provide an efficient method of satellite cell preparation using recombinant collagenases with a high cell yield, viability of cells, and regeneration potency to fit the biological raw material criteria.
Collapse
Key Words
- CTX, cardiotoxin
- ColG, collagenase G
- ColH, collagenase H
- Collagenase
- Ct, cycle threshold
- ECM, extracellular matrix
- FACS, fluorescence-activated cell sorting
- Muscle stem cell
- PBS, phosphate-buffered saline
- PE, phycoerythrin
- PI, propidium iodide
- Regeneration
- Satellite cell
- TA, tibialis anterior
- Transplantation
Collapse
Affiliation(s)
- Kana Ishii
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuharu Suzuki
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
26
|
Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam JS, Spencer MJ, Crosbie-Watson RH. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum Mol Genet 2017; 25:5395-5406. [PMID: 27798107 PMCID: PMC5418831 DOI: 10.1093/hmg/ddw356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Eva Ma
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Thien M Nguyen
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Grace Hong
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Jessica S Lam
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy
| | - Melissa J Spencer
- Center for Duchenne Muscular Dystrophy.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology.,Center for Duchenne Muscular Dystrophy.,Department of Neurology David Geffen School of Medicine.,Molecular Biology Institute, University of California Los Angeles CA 90095, USA
| |
Collapse
|
27
|
SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2017; 25:1395-1407. [PMID: 28391962 DOI: 10.1016/j.ymthe.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.
Collapse
|
28
|
Sarathy A, Nunes AM, Fontelonga TM, Ogata TY, Burkin DJ. Commentary: SU9516 increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy. JOURNAL OF RARE DISEASES RESEARCH & TREATMENT 2017; 2:1-4. [PMID: 30882096 PMCID: PMC6417831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Apurva Sarathy
- Department of Pharmacology, University of Nevada, Reno
School of Medicine, Reno, NV 89557, USA
| | - Andreia M. Nunes
- Department of Pharmacology, University of Nevada, Reno
School of Medicine, Reno, NV 89557, USA,Departamento de Biologia Animal, Centro de Ecologia,
Evolução e Alterações Ambientais, Faculdade de
Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Tatiana M. Fontelonga
- Department of Pharmacology, University of Nevada, Reno
School of Medicine, Reno, NV 89557, USA
| | - Tracy Y. Ogata
- Department of Pharmacology, University of Nevada, Reno
School of Medicine, Reno, NV 89557, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada, Reno
School of Medicine, Reno, NV 89557, USA,Correspondence: Dr. Dean J Burkin,
PhD, Professor of Pharmacology, Director, Cellular and Molecular Pharmacology
and Physiology Graduate Program, Department of Pharmacology/MS573, Center for
Molecular Medicine, Room 303C, University of Nevada School of Medicine, Reno, NV
89557, USA, Tel: 775-784-6288, Fax: 775-784-1620;
| |
Collapse
|
29
|
Alexander MS, Rozkalne A, Colletta A, Spinazzola JM, Johnson S, Rahimov F, Meng H, Lawlor MW, Estrella E, Kunkel LM, Gussoni E. CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. Cell Stem Cell 2016; 19:800-807. [PMID: 27641304 DOI: 10.1016/j.stem.2016.08.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022]
Abstract
Cell-surface markers for prospective isolation of stem cells from human skeletal muscle have been difficult to identify. Such markers would be powerful tools for studying satellite cell function during homeostasis and in pathogenesis of diseases such as muscular dystrophies. In this study, we show that the tetraspanin KAI/CD82 is an excellent marker for prospectively isolating stem cells from human fetal and adult skeletal muscle. Human CD82+ muscle cells robustly engraft into a mouse model of muscular dystrophy. shRNA knockdown of CD82 in myogenic cells reduces myoblast proliferation, suggesting it is functionally involved in muscle homeostasis. CD82 physically interacts with alpha7beta1 integrin (α7β1-ITG) and with α-sarcoglycan, a member of the Dystrophin-Associated Glycoprotein Complex (DAPC), both of which have been linked to muscular dystrophies. Consistently, CD82 expression is decreased in Duchenne muscular dystrophy patients. Together, these findings suggest that CD82 function may be important for muscle stem cell function in muscular disorders.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alessandro Colletta
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Boston University School of Medicine, Boston, MA 02215, USA
| | - Janelle M Spinazzola
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Samuel Johnson
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fedik Rahimov
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elicia Estrella
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Turk R, Hsiao JJ, Smits MM, Ng BH, Pospisil TC, Jones KS, Campbell KP, Wright ME. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy. Mol Cell Proteomics 2016; 15:2169-85. [PMID: 27099343 PMCID: PMC5083101 DOI: 10.1074/mcp.m116.059188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 01/16/2023] Open
Abstract
Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research.
Collapse
Affiliation(s)
- Rolf Turk
- From the ‡Howard Hughes Medical Institute, §Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, ¶Department of Molecular Physiology and Biophysics, ‖Department of Neurology, **Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | | - Brandon H Ng
- ¶Department of Molecular Physiology and Biophysics
| | - Tyler C Pospisil
- From the ‡Howard Hughes Medical Institute, §Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, ¶Department of Molecular Physiology and Biophysics, ‖Department of Neurology, **Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Kayla S Jones
- From the ‡Howard Hughes Medical Institute, §Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, ¶Department of Molecular Physiology and Biophysics, ‖Department of Neurology, **Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Kevin P Campbell
- From the ‡Howard Hughes Medical Institute, §Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, ¶Department of Molecular Physiology and Biophysics, ‖Department of Neurology, **Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
31
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
32
|
Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002481. [PMID: 26702077 PMCID: PMC4845268 DOI: 10.1161/jaha.115.002481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin‐associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin‐binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. Methods and Results SSPN‐null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β‐adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN‐null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α‐, δ‐, and γ‐subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdxTG) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. Conclusions SSPN regulates sarcolemmal expression of laminin‐binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Reginald T Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.)
| | - Maria C Jordan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Vanitra A Richardson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Kenneth P Roos
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA (R.H.C.W.)
| |
Collapse
|
33
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
34
|
Dey D, Goldhamer DJ, Yu PB. Contributions of muscle-resident progenitor cells to homeostasis and disease. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:175-188. [PMID: 29075589 PMCID: PMC5654566 DOI: 10.1007/s40610-015-0025-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to regulate regeneration or repair. We describe the known phylogenetic and functional relationships of the multiple progenitor populations residing within skeletal muscle, their putative roles in the coordination of injury repair, and their possible contributions to health and disease.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| | - David J. Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| |
Collapse
|
35
|
Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 2015; 25:R9-17. [PMID: 26450518 DOI: 10.1093/hmg/ddv420] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.
Collapse
Affiliation(s)
| | | | | | - Jeffrey S Chamberlain
- Department of Neurology and Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
36
|
Gawlik KI, Durbeej M. Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. Sci Rep 2015; 5:13916. [PMID: 26355035 PMCID: PMC4564817 DOI: 10.1038/srep13916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/10/2015] [Indexed: 11/09/2022] Open
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane, exerting its biological functions by binding to cell surface receptors integrin α7β1 and dystroglycan (the latter is part of the dystrophin-glycoprotein complex). The importance of these molecules for normal muscle function is underscored by the fact that their respective deficiency leads to different forms of muscular dystrophy with different severity in humans and animal models. We recently demonstrated that laminin α2 chain and members of the dystrophin-glycoprotein complex have overlapping but non-redundant roles despite being part of the same adhesion complex. To analyse whether laminin-211 and integrin α7 subunit have non-redundant functions we generated mice deficient in laminin α2 chain and integrin α7 subunit (dy3K/itga7). We show that lack of both molecules did not exacerbate the severe phenotype of laminin α2-chain deficient animals. They displayed the same weight, survival and dystrophic pattern of muscle biopsy, with similar degree of inflammation and fibrosis. These data suggest that laminin-211 and integrin α7β1 have intersecting roles in skeletal muscle.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| |
Collapse
|
37
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
38
|
Heller KN, Montgomery CL, Shontz KM, Clark KR, Mendell JR, Rodino-Klapac LR. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice. Hum Gene Ther 2015; 26:647-56. [PMID: 26076707 DOI: 10.1089/hum.2015.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD.
Collapse
Affiliation(s)
- Kristin N Heller
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Chrystal L Montgomery
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Kimberly M Shontz
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - K Reed Clark
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Jerry R Mendell
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| | - Louise R Rodino-Klapac
- 1 Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 Department of Pediatrics and Neurology, The Ohio State University , Columbus, Ohio
| |
Collapse
|
39
|
Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2015; 23:1285-1297. [PMID: 26050991 DOI: 10.1038/mt.2015.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the dystrophin gene, leading to the loss of a critical component of the sarcolemmal dystrophin glycoprotein complex. Galectin-1 is a small 14 kDa protein normally found in skeletal muscle and has been shown to be a modifier of immune response, muscle repair, and apoptosis. Galectin-1 levels are elevated in the muscle of mouse and dog models of DMD. Together, these findings led us to hypothesize that Galectin-1 may serve as a modifier of disease progression in DMD. To test this hypothesis, recombinant mouse Galectin-1 was produced and used to treat myogenic cells and the mdx mouse model of DMD. Here we show that intramuscular and intraperitoneal injections of Galectin-1 into mdx mice prevented pathology and improved muscle function in skeletal muscle. These improvements were a result of enhanced sarcolemmal stability mediated by elevated utrophin and α7β1 integrin protein levels. Together our results demonstrate for the first time that Galectin-1 may serve as an exciting new protein therapeutic for the treatment of DMD.
Collapse
|
40
|
Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 2014; 24:2011-22. [PMID: 25504048 DOI: 10.1093/hmg/ddu615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Jennifer Oh
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Eric Chou
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Joy A Lee
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Johan Holmberg
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Dean J Burkin
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy, Molecular Biology Institute, Department of Neurology, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
41
|
Israeli-Rosenberg S, Chen C, Li R, Deussen DN, Niesman IR, Okada H, Patel HH, Roth DM, Ross RS. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 2014; 29:374-84. [PMID: 25366344 DOI: 10.1096/fj.13-243139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
β1 integrins (β1) transduce mechanical signals in many cells, including cardiac myocytes (CM). Given their close localization, as well as their role in mechanotransduction and signaling, we hypothesized that caveolin (Cav) proteins might regulate integrins in the CM. β1 localization, complex formation, activation state, and signaling were analyzed using wild-type, Cav3 knockout, and Cav3 CM-specific transgenic heart and myocyte samples. Studies were performed under basal and mechanically loaded conditions. We found that: (1) β1 and Cav3 colocalize in CM and coimmunoprecipitate from CM protein lysates; (2) β1 is detected in a subset of caveolae; (3) loss of Cav3 caused reduction of β1D integrin isoform and active β1 integrin from the buoyant domains in the heart; (4) increased expression of myocyte Cav3 correlates with increased active β1 integrin in adult CM; (5) in vivo pressure overload of the wild-type heart results in increased activated integrin in buoyant membrane domains along with increased association between active integrin and Cav3; and (6) Cav3-deficient myocytes have perturbed basal and stretch mediated signaling responses. Thus, Cav3 protein can modify integrin function and mechanotransduction in the CM and intact heart.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Chao Chen
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Ruixia Li
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Daniel N Deussen
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Ingrid R Niesman
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Hideshi Okada
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Hemal H Patel
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - David M Roth
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Robert S Ross
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
42
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
43
|
Van Ry PM, Minogue P, Hodges BL, Burkin DJ. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2013; 23:383-96. [PMID: 24009313 DOI: 10.1093/hmg/ddt428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a severe and fatal muscle-wasting disease with no cure. MDC1A patients and the dy(W-/-) mouse model exhibit severe muscle weakness, demyelinating neuropathy, failed muscle regeneration and premature death. We have recently shown that laminin-111, a form of laminin found in embryonic skeletal muscle, can substitute for the loss of laminin-211/221 and prevent muscle disease progression in the dy(W-/-) mouse model. What is unclear from these studies is whether laminin-111 can restore failed regeneration to laminin-α2-deficient muscle. To investigate the potential of laminin-111 protein therapy to improve muscle regeneration, laminin-111 or phosphate-buffered saline-treated laminin-α2-deficient muscle was damaged with cardiotoxin and muscle regeneration quantified. Our results show laminin-111 treatment promoted an increase in myofiber size and number, and an increased expression of α7β1 integrin, Pax7, myogenin and embryonic myosin heavy chain, indicating a restoration of the muscle regenerative program. Together, our results show laminin-111 restores muscle regeneration to laminin-α2-deficient muscle and further supports laminin-111 protein as a therapy for the treatment of MDC1A.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA and
| | | | | | | |
Collapse
|
44
|
Hakim CH, Burkin DJ, Duan D. Alpha 7 integrin preserves the function of the extensor digitorum longus muscle in dystrophin-null mice. J Appl Physiol (1985) 2013; 115:1388-92. [PMID: 23990247 DOI: 10.1152/japplphysiol.00602.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dystrophin-associated glycoprotein complex (DGC) and the α7β1-integrin complex are two independent protein complexes that link the extracellular matrix with the cytoskeleton in muscle cells. These associations stabilize the sarcolemma during force transmission. Loss of either one of these complexes leads to muscular dystrophy. Dystrophin is a major component of the DGC. Its absence results in Duchenne muscular dystrophy (DMD). Because α7-integrin overexpression has been shown to ameliorate muscle histopathology in mouse models of DMD, we hypothesize that the α7β1-integrin complex can help preserve muscle function. To test this hypothesis, we evaluated muscle force, elasticity, and the viscous property of the extensor digitorum longus muscle in 19-day-old normal BL6, dystrophin-null mdx4cv, α7-integrin-null, and dystrophin/α7-integrin double knockout mice. While nominal changes were found in single knockout mice, contractility and passive properties were significantly compromised in α7-integrin double knockout mice. Our results suggest that DGC and α7β1-integrin complexes may compensate each other to maintain normal skeletal muscle function. α7β1-Integrin upregulation may hold promise to treat not only histological, but also physiological, defects in DMD.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri
| | | | | |
Collapse
|
45
|
Wuebbles RD, Sarathy A, Kornegay JN, Burkin DJ. Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy. Dis Model Mech 2013; 6:1175-84. [PMID: 23846963 PMCID: PMC3759337 DOI: 10.1242/dmm.012211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.
Collapse
Affiliation(s)
- Ryan D Wuebbles
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
46
|
Dorchies OM, Reutenauer-Patte J, Dahmane E, Ismail HM, Petermann O, Patthey- Vuadens O, Comyn SA, Gayi E, Piacenza T, Handa RJ, Décosterd LA, Ruegg UT. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:485-504. [PMID: 23332367 DOI: 10.1016/j.ajpath.2012.10.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/07/2012] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Behavior, Animal/drug effects
- Biomarkers/metabolism
- Biomechanical Phenomena/drug effects
- Body Weight/drug effects
- Creatine Kinase/blood
- Diaphragm/pathology
- Diaphragm/physiopathology
- Disease Models, Animal
- Feeding Behavior/drug effects
- Fibrosis
- Mice
- Muscle Contraction/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscular Dystrophy, Animal/blood
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardium/pathology
- Organ Size/drug effects
- Receptors, Estrogen/metabolism
- Tamoxifen/blood
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
Collapse
Affiliation(s)
- Olivier M Dorchies
- Department of Pharmacology, University of Geneva and University of Lausanne, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siegel AL, Gurevich DB, Currie PD. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 2013; 280:4074-88. [PMID: 23607511 DOI: 10.1111/febs.12300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.
Collapse
Affiliation(s)
- Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
48
|
AAV-mediated overexpression of human α7 integrin leads to histological and functional improvement in dystrophic mice. Mol Ther 2013; 21:520-5. [PMID: 23319059 DOI: 10.1038/mt.2012.281] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by mutations in the DMD gene, with loss of its gene product, dystrophin. Dystrophin helps link integral membrane proteins to the actin cytoskeleton and stabilizes the sarcolemma during muscle activity. We investigated an alternative therapeutic approach to dystrophin replacement by overexpressing human α7 integrin (ITGA7) using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal and cardiac muscle that links the extracellular matrix (ECM) to the actin skeleton. It is modestly upregulated in DMD muscle and has been proposed to be an important modifier of dystrophic symptoms. We delivered rAAV8.MCK.ITGA7 to the lower limb of mdx mice through isolated limb perfusion (ILP) of the femoral artery. We demonstrated ~50% of fibers in the tibialis anterior (TA) and extensor digitorum longus (EDL) overexpressing α7 integrin at the sarcolemma following AAV gene transfer. The increase in ITGA7 in skeletal muscle significantly protected against loss of force following eccentric contraction-induced injury compared with untreated (contralateral) muscles while specific force following tetanic contraction was unchanged. Reversal of additional dystrophic features included reduced Evans blue dye (EBD) uptake and increased muscle fiber diameter. Taken together, this data shows that rAAV8.MCK.ITGA7 gene transfer stabilizes the sarcolemma potentially preserving mdx muscle from further damage. This therapeutic approach demonstrates promise as a viable treatment for DMD with further implications for other forms of muscular dystrophy.
Collapse
|
49
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
50
|
NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012; 10:e1001409. [PMID: 23109907 PMCID: PMC3479101 DOI: 10.1371/journal.pbio.1001409] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 01/27/2023] Open
Abstract
NAD+ improves muscle tissue structure and function in dystrophic zebrafish by increasing basement membrane organization. Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. A variety of diseases, both inherited and acquired, affect muscle tissues in humans. Critical to muscle homeostasis is the anchoring of muscle fibers to their surrounding microenvironment through cell adhesion complexes that help to resist the repeated stress experienced during muscle contraction. Genetic mutations in these complexes weaken this mechanical attachment, making fibers more susceptible to damage and death. The resulting increased fiber degeneration can eventually lead to progressive muscle-wasting diseases, known collectively as muscular dystrophies. Although clinical trials are ongoing, there is presently no way to cure the loss of muscle structure and function associated with these diseases. We identified a novel cell adhesion pathway involving integrin alpha6 that promotes adhesion of muscle cells to their microenvironment. Here, we show that activation of this pathway not only significantly reduces muscle degeneration but also improves the swimming ability of dystrophic zebrafish. We explore the likely benefits and limitations of this pathway in treating symptoms of congenital muscular dystrophies. Our findings suggest that activation of this pathway (for example, by boosting levels of NAD+) has the potential to ameliorate loss of muscle structure and function in multiple muscular dystrophies.
Collapse
|