1
|
Otsuka T, Ueda S, Yamagishi SI, Nagasawa H, Okuma T, Wakabayashi K, Kobayashi T, Murakoshi M, Nakata M, Gohda T, Matsui T, Higashimoto Y, Suzuki Y. Involvement of Mineralocorticoid Receptor Activation by High Mobility Group Box 1 and Receptor for Advanced Glycation End Products in the Development of Acute Kidney Injury. KIDNEY360 2025; 6:208-218. [PMID: 39636697 PMCID: PMC11882257 DOI: 10.34067/kid.0000000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Key Points Our study revealed that high mobility group box 1 activates the mineralocorticoid receptor (MR) through the receptor for advanced glycation end products (RAGE) in AKI. MR antagonists and RAGE aptamers inhibited high mobility group box 1–induced Rac1/MR activation and downstream inflammatory molecules in endothelial cells. MR antagonists and RAGE aptamers may represent promising therapeutic strategies for preventing AKI and CKD progression. Background Although AKI is associated with an increased risk of CKD, the underlying mechanisms remain unclear. High mobility group box 1 (HMGB1), one of the ligands for the receptor for advanced glycation end products (RAGE), is elevated in patients with AKI. We recently demonstrated that the mineralocorticoid receptor (MR) is activated by the RAGE/Rac1 pathway, contributing to chronic renal damage in hypertensive mice. Therefore, this study investigated the role of the HMGB1/RAGE/MR pathway in AKI and progression to CKD. Methods We performed a mouse model of renal ischemia–reperfusion (I/R) with or without MR antagonist (MRA). In vitro experiments were conducted using cultured endothelial cells to examine the interaction between the HMGB1/RAGE and Rac1/MR pathways. Results In renal I/R injury mice, renal MR activation was associated with elevated serum HMGB1, renal RAGE, and activated Rac1, all of which were suppressed by MRA. Renal I/R injury led to renal dysfunction, tubulointerstitial injury, and increased expressions of inflammation and fibrosis mediators, which were ameliorated by MRA. In vitro , RAGE aptamer or MRA inhibited HMGB1-induced Rac1/MR activation and upregulation of monocyte chemoattractant protein 1 and NF-κB expressions. Seven days after I/R injury, renal I/R injury mice developed CKD, whereas MRA prevented renal injury progression and decreased the mortality rate. Furthermore, in case of MRA treatment even after I/R injury, attenuated renal dysfunction compared with untreated mice was also observed. Conclusions Our findings suggest that HMGB1 may play a crucial role in AKI and CKD development by activating the Rac1/MR pathway through interactions with RAGE.
Collapse
Affiliation(s)
- Tomoyuki Otsuka
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Sho-ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Teruyuki Okuma
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Keiichi Wakabayashi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Kobayashi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masami Nakata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
3
|
Jiang L, Hu X, Feng Y, Wang Z, Tang H, Lin Q, Shen Y, Zhu Y, Xu Q, Li X. Reduction of renal interstitial fibrosis by targeting Tie2 in vascular endothelial cells. Pediatr Res 2024; 95:959-965. [PMID: 38012310 PMCID: PMC10920200 DOI: 10.1038/s41390-023-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yajun Feng
- Department of Pediatrics, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Zhen Wang
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, 255000, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
4
|
Kwiatkowska E, Kwiatkowski S, Dziedziejko V, Tomasiewicz I, Domański L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. BIOLOGY 2023; 12:biology12020327. [PMID: 36829602 PMCID: PMC9953191 DOI: 10.3390/biology12020327] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced renal perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that wraps around the renal tubules-peritubular capillary (PTC) network. Cortical and medullary superficial tubules have a large share in transport and require the supply of oxygen for ATP production, while it is the cortex that receives almost 100% of the blood flowing through the kidneys and the medulla only accounts for 5-10% of it. This difference makes the tubules present in the superficial layer of the medulla very susceptible to ischemia. Impaired blood flow causes damage to the endothelium, with an increase in its prothrombotic and pro-adhesive properties. This causes congestion in the microcirculation of the renal medulla. The next stage is the migration of pericytes with the disintegration of these vessels. The phenomenon of destruction of small vessels is called peritubular rarefaction, attributed as the main cause of further irreversible changes in the damaged kidney leading to the development of chronic kidney disease. In this article, we will present the characteristic structure of renal microcirculation, its regulation, and the mechanism of damage in acute ischemia, and we will try to find methods of prevention with particular emphasis on the inhibition of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
- Correspondence:
| | - Sebastian Kwiatkowski
- Department of Obstetrician and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Izabela Tomasiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| |
Collapse
|
5
|
Wang Z, Zhang C. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. Int J Mol Sci 2022; 23:ijms231810880. [PMID: 36142787 PMCID: PMC9504835 DOI: 10.3390/ijms231810880] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Acute kidney injury (AKI) is defined as a pathological condition in which the glomerular filtration rate decreases rapidly over a short period of time, resulting in changes in the physiological function and tissue structure of the kidney. An increasing amount of evidence indicates that there is an inseparable relationship between acute kidney injury and chronic kidney disease (CKD). With the progress in research in this area, researchers have found that the recovery of AKI may also result in the occurrence of CKD due to its own maladaptation and other potential mechanisms, which involve endothelial cell injury, inflammatory reactions, progression to fibrosis and other pathways that promote the progress of the disease. Based on these findings, this review summarizes the occurrence and potential mechanisms of maladaptive repair in the progression of AKI to CKD and explores possible treatment strategies in this process so as to provide a reference for the inhibition of the progression of AKI to CKD.
Collapse
|
6
|
Inada A, Inada O, Yasunami Y, Arakawa K, Nabeshima YI, Fukatsu A. Amelioration of Murine Diabetic Nephropathy with a SGLT2 Inhibitor Is Associated with Suppressing Abnormal Expression of Hypoxia-Inducible Factors. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1028-1052. [PMID: 35460614 DOI: 10.1016/j.ajpath.2022.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Diabetic nephropathy (DN), once manifested, is unlikely to completely recover. Factors that influence DN progression were explored by investigating the process of glomerulosclerosis and interstitial fibrosis and chronological changes in glucose, albuminuria, hyperfiltration, and expressions of sodium-glucose cotransporter 2 (SGLT2) and hypoxia-inducible factors (HIFs) up to 50 weeks in inducible cAMP early repressor transgenic mice, a model of severe DN. Long-term intervention with the SGLT2 inhibitor canagliflozin or islet transplantation or heminephrectomy was used. Inducible cAMP early repressor transgenic mice exhibited progressive diabetic glomerulosclerosis and mild interstitial fibrosis, and expressed extensive HIF-1α and HIF-2α in glomerulus and tubules, with sustained hyperfiltration up to 50 weeks. Canagliflozin ameliorated glomerulosclerosis/interstitial fibrosis gradually and reduced HIF overexpression. Islet-transplanted mice exhibited no amelioration. None of the heminephrectomized diabetic mice survived the hyperfiltration overload, but all of the canagliflozin-treated mice survived with re-expressions of HIF-1α and HIF-2α. These results suggest that persistent glomerular hyperfiltration might initiate glomerular injury, and persistent overexpression of HIFs could promote the development of glomerulosclerosis and interstitial fibrosis. Canagliflozin attenuated both changes. Oxidative stress or hypoxia was undetectable in this model. The abnormal expression of HIF-1α and HIF-2α may be a potential therapeutic target for preventing glomerulosclerosis and interstitial fibrosis.
Collapse
Affiliation(s)
- Akari Inada
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan; Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.
| | - Oogi Inada
- Diabetes and Genes, Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kenji Arakawa
- Medical Intelligence Department, Ikuyaku, Integrated Value Development Division, Tanabe Mitsubishi Pharma Corporation, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan
| | | |
Collapse
|
7
|
Doğruyol S, Akbaş İ, Koçak AO, Aygörmez S, Leylek HE, Akgöl Gür ST, Ertener Ö. Can Spesific Biomarkers Be Used to Enlighten the Major Mechanisms of Acute High Dose Diclofenac Sodium-Related Nephrotoxicity? EURASIAN JOURNAL OF EMERGENCY MEDICINE 2022. [DOI: 10.4274/eajem.galenos.2021.45467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
8
|
Klomjit N, Zhu XY, Massat AE, Pawar AS, Conley S, Puranik AS, Ferguson CM, Kim SR, Tang H, Jordan K, Saadiq I, Lerman A, Grande JP, Textor SC, Lerman LO. Microvascular remodeling and altered angiogenic signaling in human kidneys distal to occlusive atherosclerotic renal artery stenosis. Nephrol Dial Transplant 2022; 37:1844-1856. [PMID: 35451482 PMCID: PMC9494086 DOI: 10.1093/ndt/gfac156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth-factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large vessel occlusive disease on the microcirculation within human kidneys. METHOD This study included 5 patients who underwent nephrectomy due to renovascular occlusion, and 7 non-stenotic discarded donor kidneys (4 deceased donors). Micro-computed tomography was performed to assess microvascular spatial densities and tortuosity, an index of microvascular immaturity. Renal protein expression, gene expression, and histology were studied in-vitro using immunoblotting, polymerase-chain-reaction, and staining. RESULTS RAS demonstrated loss of medium-sized vessels (0.2-0.3mm) compared to donor kidneys (p = 0.037) and increased microvascular tortuosity. RAS kidneys had greater protein expression of angiopoietin-1, hypoxia-inducible factor (HIF)-1α, and thrombospondin (TSP)-1, but lower protein expression of vascular endothelial growth factor (VEGF) than donor kidneys. Renal fibrosis, loss of peritubular capillaries (PTC) and pericyte detachment were greater in RAS, yet they had more newly-formed PTC than donor kidneys. Therefore, our study quantified significant microvascular remodeling in the post-stenotic human kidney. RAS induced renal microvascular loss, vascular remodeling, and fibrosis. Despite downregulated VEGF, stenotic kidneys upregulated compensatory angiogenic pathways related to angiopoietin-1. CONCLUSIONS These observations underscore the nature of human RAS as a microvascular disease distal to main vessel stenosis, and support therapeutic strategies directly targeting the post-stenotic kidney microcirculation in patients with RAS.
Collapse
Affiliation(s)
- Nattawat Klomjit
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amrutesh S Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ishran Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Kim HJ, Kim J, Choi J, Sun W. Chemical fluorescence-based dye staining for 3-dimensional histopathology analysis. Anim Cells Syst (Seoul) 2022; 26:45-51. [PMID: 35479512 PMCID: PMC9037194 DOI: 10.1080/19768354.2022.2049641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Tissue clearing for 3-dimensional (3D) imaging is increasingly utilized in many biomedical applications, including the pathological examination of human biopsy specimens. Although many protocols offer rapid and efficient tissue clearing (>1 d), immunofluorescence labeling of thick specimens is a highly time-consuming process. The use of low molecular weight chemical dyes has potential benefits in terms of speed and quality of 3D labeling. Accordingly, we tested several chemical dyes to assess their potential applications in 3D imaging. The combination of SYTO 16 and eosin (S&E) was found to be a potential fluorescent version of the hematoxylin–eosin (H&E) stain. Furthermore, picrosirius red (for collagen), Congo red (for senile plaques), and fluorescent Nissl (for neurons in the normal brain or blood vessels in the injured brain) stains can be used alone or in combination with antibody labeling. As chemical labeling requires a relatively short incubation time (<1 d), fluorescent chemical dyes could expedite the 3D imaging process.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeongah Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Jungyoon Choi
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
10
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
11
|
Liao X, Jiang Y, Dai Q, Yu Y, Zhang Y, Hu G, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone attenuates renal fibrosis by inhibiting the mtROS-NLRP3 pathway in a murine model of folic acid nephropathy. Biochem Biophys Res Commun 2021; 534:694-701. [PMID: 33220928 DOI: 10.1016/j.bbrc.2020.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent that reduces the deposition of extracellular matrix (ECM) in various models of renal fibrosis. However, there are no reports on the effect of AKF-PD in preventing fibrosis in the folic acid nephropathy model. Besides, the mechanisms of action of AKF-PD in preventing renal fibrosis are not fully understood. In the study, we observed that AKF-PD reduced folate-induced kidney injury, ameliorated the deterioration of renal function, and suppressed the deposition of ECM by decreasing the expression of collagen I, collagen III, transforming growth factor-β (TGF-β), fibronectin (FN), and alpha smooth muscle actin (α-SMA) in the folic acid nephropathy model. Additionally, AKF-PD suppressed the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome to reduce the production of caspase-1 and IL-1β, and alleviated mitochondrial oxidative damage by promoting mitochondrial energy metabolism and reducing the expression of NADPH oxidase 4 (NOX4). The results of in vitro experiments demonstrated that AKF-PD suppressed NLRP3 inflammasome activation in activated peritoneal-derived macrophages (PDMs) and renal tubular epithelial cells (RTECs). AKF-PD increased the intracellular ATP content and decreased the expression of NOX4, while preventing the excessive production of mitochondrial reactive oxygen species (mtROS) in activated PDMs. In conclusion, this study demonstrated that AKF-PD inhibited renal fibrosis by suppressing the mtROS-NLRP3 pathway in the folic acid nephropathy model. These findings provide new evidence in support of the clinical use of AKF-PD in the treatment of diseases related to renal fibrosis.
Collapse
Affiliation(s)
- Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China.
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China.
| |
Collapse
|
12
|
Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int J Mol Sci 2020; 21:ijms21218255. [PMID: 33158122 PMCID: PMC7662781 DOI: 10.3390/ijms21218255] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Peritubular capillary (PTC) rarefaction is commonly detected in chronic kidney disease (CKD) such as hypertensive nephrosclerosis and diabetic nephropathy. Moreover, PTC rarefaction prominently correlates with impaired kidney function and predicts the future development of end-stage renal disease in patients with CKD. However, it is still underappreciated that PTC rarefaction is a pivotal regulator of CKD progression, primarily because the molecular mechanisms of PTC rarefaction have not been well-elucidated. In addition to the established mechanisms (reduced proangiogenic factors and increased anti-angiogenic factors), recent studies discovered significant contribution of the following elements to PTC loss: (1) prompt susceptibility of PTC to injury, (2) impaired proliferation of PTC, (3) apoptosis/senescence of PTC, and (4) pericyte detachment from PTC. Mainly based on the recent and novel findings in basic research and clinical study, this review describes the roles of the above-mentioned elements in PTC loss and focuses on the major factors regulating PTC angiogenesis, the assessment of PTC rarefaction and its surrogate markers, and an overview of the possible therapeutic agents to mitigate PTC rarefaction during CKD progression. PTC rarefaction is not only a prominent histological characteristic of CKD but also a central driving force of CKD progression.
Collapse
|
13
|
Zou J, Yang J, Zhu X, Zhong J, Elshaer A, Matsusaka T, Pastan I, Haase VH, Yang HC, Fogo AB. Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury. Kidney Int 2020; 99:620-631. [PMID: 33137336 DOI: 10.1016/j.kint.2020.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Previously, we found that mild tubulointerstitial injury sensitizes glomeruli to subsequent injury. Here, we evaluated whether stabilization of hypoxia-inducible factor-α (HIF-α), a key regulator of tissue response to hypoxia, ameliorates tubulointerstitial injury and impact on subsequent glomerular injury. Nep25 mice, which express the human CD25 receptor on podocytes under control of the nephrin promotor and develop glomerulosclerosis when a specific toxin is administered were used. Tubulointerstitial injury, evident by week two, was induced by folic acid, and mice were treated with an HIF stabilizer, dimethyloxalylglycine or vehicle from week three to six. Uninephrectomy at week six assessed tubulointerstitial fibrosis. Glomerular injury was induced by podocyte toxin at week seven, and mice were sacrificed ten days later. At week six tubular injury markers normalized but with patchy collagen I and interstitial fibrosis. Pimonidazole staining, a hypoxia marker, was increased by folic acid treatment compared to vehicle while dimethyloxalylglycine stimulated HIF-2α expression and attenuated tubulointerstitial hypoxia. The hematocrit was increased by dimethyloxalylglycine along with downstream effectors of HIF. Tubular epithelial cell injury, inflammation and interstitial fibrosis were improved after dimethyloxalylglycine, with further reduced mortality, interstitial fibrosis, and glomerulosclerosis induced by specific podocyte injury. Thus, our findings indicate that hypoxia contributes to tubular injury and consequent sensitization of glomeruli to injury. Hence, restoring HIFs may blunt this adverse crosstalk of tubules to glomeruli.
Collapse
Affiliation(s)
- Jun Zou
- Division of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jaewon Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, South Korea
| | - Xiaoye Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology, Huashan Hospital, Wudan University, Shanghai, China
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ahmed Elshaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker H Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
15
|
Okada H, Tanaka M, Yasuda T, Okada Y, Norikae H, Fujita T, Nishi T, Oyamada H, Yamane T, Fukui M. Decreased microcirculatory function measured by perfusion index is a novel indicator of diabetic kidney disease in patients with type 2 diabetes. J Diabetes Investig 2020; 11:681-687. [PMID: 31778299 PMCID: PMC7232288 DOI: 10.1111/jdi.13193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Diabetic kidney disease has been considered as an important risk factor of cardiovascular disease. Chronic hypoxia is considered to be the main cause of renal injury. Diminished microcirculatory blood flow could be associated with hypoxia in the kidney. Whether diminished microcirculation is associated with diabetic kidney disease has not yet been reported. Here, we investigated the correlation between microcirculatory function and diabetic kidney disease in patients with type 2 diabetes. MATERIALS AND METHODS Our cross-sectional study included 574 patients who were admitted to Matsushita Memorial Hospital in Moriguchi, Japan, for type 2 diabetes. Microcirculatory function was assessed using the perfusion index (PI), which represents the level of circulation through peripheral tissues. We measured the PI for all patients. RESULTS The median age and PI values were 70 years (range 60-77 years) and 2.8% (range 1.6-4.8%). Multiple regression analyses showed that the PI independently correlated with the logarithm of urinary albumin excretion (P = 0.009) and estimated glomerular filtration rate (P = 0.005), respectively. Multiple logistic regression analyses showed that patients with systolic blood pressure (SBP) greater than the median and PI less than or equal to the median (high-low group) had a significantly increased odds of albuminuria compared with those with SBP less than or equal to the median and PI greater than the median (low-high group), and patients with SBP greater than the median and PI less than or equal to the median (high-low group) had a significantly increased odds of estimated glomerular filtration rate <60 mL/min per 1.73 m2 compared with those with SBP less than or equal to the median and PI greater than the median (low-high group) or SBP greater than the median and PI greater than the median (high-high group). CONCLUSIONS PI could be a novel indicator of diabetic kidney disease in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hiroshi Okada
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Muhei Tanaka
- Department of Internal MedicineKyotamba HospitalKyotoJapan
| | - Takashi Yasuda
- Department of NephrologyMatsushita Memorial HospitalMoriguchiJapan
| | - Yuki Okada
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Hisahiro Norikae
- Department of General AffairsMatsushita Memorial HospitalMoriguchiJapan
| | - Tetsuya Fujita
- Department of General AffairsMatsushita Memorial HospitalMoriguchiJapan
| | - Takashi Nishi
- Department of General AffairsMatsushita Memorial HospitalMoriguchiJapan
| | - Hirokazu Oyamada
- Department of GastroenterologyMatsushita Memorial HospitalMoriguchiJapan
| | - Tetsuro Yamane
- Department of SurgeryMatsushita Memorial HospitalMoriguchiJapan
| | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of MedicineGraduate School of Medical ScienceKyotoJapan
| |
Collapse
|
16
|
Yang Y, He X, Cheng R, Chen Q, Shan C, Chen L, Ma JX. Diabetes-induced upregulation of kallistatin levels exacerbates diabetic nephropathy via RAS activation. FASEB J 2020; 34:8428-8441. [PMID: 32352602 PMCID: PMC7302980 DOI: 10.1096/fj.201903149r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Kallistatin is an inhibitor of tissue kallikrein and also inhibits the Wnt pathway. Its role in diabetic nephropathy (DN) is uncertain. Here we reported that serum kallistatin levels were significantly increased in diabetic patients with DN compared to those in diabetic patients without DN and healthy controls, and positively correlated with urinary albumin excretion. In addition, renal kallistatin levels were significantly upregulated in mouse models of type 1 (Akita, OVE26) and type 2 diabetes (db/db). To unveil the effects of kallistatin on DN and its underlying mechanism, we crossed transgenic mice overexpressing kallistatin with OVE26 mice (KS‐tg/OVE). Kallistatin overexpression exacerbated albuminuria, renal fibrosis, inflammation, and oxidative stress in diabetes. Kallikrein activity was inhibited while the renin‐angiotensin system (RAS) upregulated in the kidney of KS‐tg/OVE mice compared to WT/OVE mice, suggesting a disturbed balance between the RAS and kallikrein‐kinin systems. As shown by immunostaining of endothelial makers, renal vascular densities were decreased accompanied by increased HIF‐1α and erythropoietin levels in the kidneys of KS‐tg/OVE mice. Taken together, high levels of kallistatin exacerbate DN at least partly by inducing RAS overactivation and hypoxia. The present study demonstrated a positive correlation between kallistatin levels and DN, suggesting a potential biomarker for prognosis of DN.
Collapse
Affiliation(s)
- Yanhui Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuemin He
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Endocrinology and Metabolism Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Okada H, Tanaka M, Yasuda T, Okada Y, Norikae H, Fujita T, Nishi T, Oyamada H, Yamane T, Fukui M. Peripheral perfusion, measured by perfusion index, is a novel indicator for renal events in patients with type 2 diabetes mellitus. Sci Rep 2020; 10:6054. [PMID: 32269240 PMCID: PMC7142064 DOI: 10.1038/s41598-020-62926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/21/2020] [Indexed: 11/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end stage renal disease. Despite recent therapies, mortality due to DKD and resources spent on healthcare are important problems. Thus, appropriate markers are needed to predict renal outcomes. Therefore, we investigated the role of peripheral perfusion as an indicator for renal events in patients with type 2 diabetes mellitus. This retrospective cohort study included 566 patients who were admitted to Matsushita Memorial Hospital in Osaka, Japan for type 2 diabetes mellitus. Peripheral perfusion was assessed using perfusion index (PI), which represents the level of circulation through peripheral tissues and was measured on each toe using a Masimo SET Radical-7 (Masimo Corporation, Irvine, CA, USA) instrument. The duration of follow up was 3.0 years. The median age of patients was 70 years (IQR range: 61-77 years) and median PI value was 2.9% (IQR range: 1.8-4.8%). Multiple logistic regression analyses showed that PI (per 1% increase) was associated with an odds ratio of composite of end-stage renal disease (ESRD) and/or doubling of serum creatinine level; n = 40 (odds ratio 0.823 [95% CI: 0.680-0.970]), and composite of ESRD, doubling of serum creatinine level, and renal death and/or cardiovascular death; n = 44 (odds ratio 0.803 [95% CI: 0.665-0.944]). The factors which were statistically significant in univariate analysis and those known to be related factors for renal event were considered simultaneously as independent variables for multiple logistic regression analysis. PI can be a novel indicator for renal events in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Okada
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi, 570-8540, Japan.
| | - Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takashi Yasuda
- Department of Nephrology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Yuki Okada
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi, 570-8540, Japan
| | - Hisahiro Norikae
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Tetsuya Fujita
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Takashi Nishi
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Hirokazu Oyamada
- Department of Gastroenterology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Tetsuro Yamane
- Department of Surgery, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
18
|
Saifi MA, Godugu C. Inhibition of lysyl oxidase ameliorates renal injury by inhibiting CD44-mediated pericyte detachment and loss of peritubular capillaries. Life Sci 2020; 243:117294. [PMID: 31927047 DOI: 10.1016/j.lfs.2020.117294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is a common pathological manifestation of almost all forms of kidney disease irrespective of the etiological cause. Microvascular rarefaction represents itself as an important phenomenon associated with renal fibrosis and shows strong correlation with decline in renal functions. Lysyl oxidase (LOX) catalyzes crosslinking of extracellular matrix (ECM) proteins including collagens, plays an important role in stabilization of degradation resistant matrix. Since, there seems to be a causal link between deposition of excessive ECM and microvascular rarefaction, we investigated the effects of reduction in renal fibrosis on microvascular rarefaction in acute as well as end stage kidney. We used a well-established unilateral ureteral obstruction (UUO)-induced renal fibrosis model to produce renal fibrosis in animals. We treated animals with a LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, i.p.) and investigated effects on renal fibrosis and microvascular rarefaction. We observed that LOX inhibition was associated with reduction in collagen deposition in UUO-induced renal fibrosis animal model. Further, ECM normalization by LOX inhibition decreased the loss of peritubular capillaries (PTCs) in fibrotic kidney in acute study while the LOX inhibition failed to inhibit PTCs loss in end stage kidney. The results of present study suggested that inhibition of LOX reduces collagen deposition and renal fibrosis. Further, the reduction in fibrosis fails to protect from PTCs loss in chronic study suggesting the absence of strong link between reduction in fibrosis and improvement in PTCs in an end stage kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
19
|
Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, de Caestecker MP. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am J Physiol Renal Physiol 2019; 317:F1383-F1397. [PMID: 31509009 PMCID: PMC6879932 DOI: 10.1152/ajprenal.00366.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.
Collapse
Affiliation(s)
- Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
20
|
Samodelov SL, Gai Z, Kullak-Ublick GA, Visentin M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019; 11:nu11102353. [PMID: 31581752 PMCID: PMC6836044 DOI: 10.3390/nu11102353] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023] Open
Abstract
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
21
|
A critical review on anti-angiogenic property of phytochemicals. J Nutr Biochem 2019; 71:1-15. [PMID: 31174052 DOI: 10.1016/j.jnutbio.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Angiogenesis, a process involved in neovascularization, has been found to be associated with several metabolic diseases like cancer, retinopathy etc. Thus, currently, the focus on anti-angiogenic therapy for treatment and prevention of diseases has gained significant attention. Currently available Food and Drug Administration (FDA) approved drugs are targeting either vascular endothelial growth factor or it's receptor, but in the long term, these approaches were shown to cause several side effects and the chances of developing resistance to these drugs is also high. Therefore, identification of safe and cost-effective anti-angiogenic molecules is highly imperative. Over the past decades, dietary based natural compounds have been studied for their anti-angiogenic potential which provided avenues in improving the angiogenesis based therapy. In this review, major emphasis is given to the molecular mechanism behind anti-angiogenic effect of natural compounds from dietary sources.
Collapse
|
22
|
Polichnowski AJ. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Am J Physiol Renal Physiol 2018; 315:F1513-F1518. [PMID: 30256130 DOI: 10.1152/ajprenal.00419.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major complication in hospitalized patients and is associated with elevated mortality rates. Numerous recent studies indicate that AKI also significantly increases the risk of chronic kidney disease (CKD), end-stage renal disease (ESRD), hypertension, cardiovascular disease, and mortality in those patients who survive AKI. Moreover, the risk of ESRD and mortality after AKI is substantially higher in patients with preexisting CKD. However, the underlying mechanisms by which AKI and CKD interact to promote ESRD remain poorly understood. The recently developed models that superimpose AKI on rodents with preexisting CKD have provided new insights into the pathogenic mechanisms mediating the deleterious interactions between AKI and CKD. These studies show that preexisting CKD impairs recovery from AKI and promotes the development of mechanisms of CKD progression. Specifically, preexisting CKD exacerbates microvascular rarefaction, failed tubular redifferentiation, disruption of cell cycle regulation, hypertension, and proteinuria after AKI. The purpose of this review is to discuss the potential mechanisms by which microvascular rarefaction and hypertension contribute to impaired recovery from AKI and the subsequent progression of renal disease in preexisting CKD states.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
23
|
Ascher SB, Scherzer R, Estrella MM, Zhang WR, Muiru AN, Jotwani V, Grunfeld C, Parikh CR, Gustafson D, Young M, Sharma A, Cohen MH, Ng DK, Palella FJ, Witt MD, Ho K, Shlipak MG. Association of Urinary Biomarkers of Kidney Injury with Estimated GFR Decline in HIV-Infected Individuals following Tenofovir Disoproxil Fumarate Initiation. Clin J Am Soc Nephrol 2018; 13:1321-1329. [PMID: 30154221 PMCID: PMC6140559 DOI: 10.2215/cjn.01700218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Tenofovir disoproxil fumarate (tenofovir) is associated with elevated concentrations of biomarkers of kidney damage and dysfunction in individuals with HIV. The relationship of these kidney biomarkers with longitudinal kidney function decline is unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We evaluated associations of 14 urinary biomarkers of kidney injury with changes in eGFR among 198 men and women with HIV who initiated tenofovir between 2009 and 2015 in the Multicenter AIDS Cohort Study and Women's Interagency HIV Study. Urinary biomarkers included albumin-to-creatinine ratio, α-1-microglobulin, β-2-microglobulin, cystatin C, kidney injury molecule-1 (KIM-1), IL-18, neutrophil gelatinase-associated lipocalin (NGAL), clusterin, osteopontin, uromodulin, monocyte chemoattractant protein-1, EGF, trefoil factor 3, and chitinase 3-like protein 1. We used multivariable linear mixed-effect models controlling for demographics, traditional kidney disease risk factors, and HIV-related risk factors to evaluate associations of baseline biomarkers with first-year changes in eGFR, and associations of year 1 and first-year change in biomarkers with changes in eGFR from year 1 to year 3. We used the least absolute shrinkage and selection operator method to identify a parsimonious set of biomarkers jointly associated with changes in eGFR. RESULTS Median eGFR before tenofovir initiation was 103 (interquartile range, 88-116) ml/min per 1.73 m2. During the first year of tenofovir use, eGFR decreased on average by 9.2 (95% confidence interval, 6.5 to 11.9) ml/min per 1.73 m2 and was stable afterward (decrease of 0.62; 95% confidence interval, -0.85 to 2.1 ml/min per 1.73 m2 per year). After multivariable adjustment, higher baseline β-2-microglobulin, KIM-1, and clusterin were associated with larger first-year eGFR declines, whereas higher baseline uromodulin was associated with a smaller eGFR decline. First-year increase in urinary cystatin C and higher year 1 IL-18 were associated with larger annual eGFR declines from year 1 to year 3. The parsimonious models identified higher pre-tenofovir clusterin and KIM-1, lower pre-tenofovir uromodulin, and higher year 1 IL-18 as jointly associated with larger eGFR declines. CONCLUSIONS Urinary biomarkers of kidney injury measured before and after tenofovir initiation are associated with subsequent changes in eGFR in individuals with HIV. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_08_28_CJASNPodcast_18_9_S.mp3.
Collapse
Affiliation(s)
- Simon B. Ascher
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rebecca Scherzer
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Michelle M. Estrella
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - William R. Zhang
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Anthony N. Muiru
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Vasantha Jotwani
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Carl Grunfeld
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
- Department Epidemiology, and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Chirag R. Parikh
- Section of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut
| | - Deborah Gustafson
- Department of Neurology, The State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York
| | - Mary Young
- Division of Infectious Diseases, Department of Medicine, Georgetown University Medical Center, Washington, DC
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Mardge H. Cohen
- Department of Medicine, Stroger Hospital and Rush University, Chicago, Illinois
| | - Derek K. Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Frank J. Palella
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mallory D. Witt
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor–University of California Los Angeles Medical Center, Torrance, California; and
| | - Ken Ho
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael G. Shlipak
- Department of Medicine, Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, San Francisco, California
- Department Epidemiology, and Biostatistics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
24
|
González-Guerrero C, Morgado-Pascual JL, Cannata-Ortiz P, Ramos-Barron MA, Gómez-Alamillo C, Arias M, Mezzano S, Egido J, Ruiz-Ortega M, Ortiz A, Ramos AM. CCL20 blockade increases the severity of nephrotoxic folic acid-induced acute kidney injury. J Pathol 2018; 246:191-204. [PMID: 29984403 DOI: 10.1002/path.5132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 01/19/2023]
Abstract
The chemokine CCL20 activates the CCR6 receptor and has been implicated in the pathogenesis of glomerular injury. However, it is unknown whether it contributes to acute kidney injury (AKI). We identified CCL20 as upregulated in a systems biology strategy combining transcriptomics of kidney tissue from experimental toxic folic acid-induced AKI and from stressed cultured tubular cells and have explored the expression and function of CCL20 in experimental and clinical AKI. CCL20 upregulation was confirmed in three models of kidney injury induced by a folic acid overdose, cisplatin or unilateral ureteral obstruction. In injured kidneys, CCL20 was expressed by tubular, endothelial, and interstitial cells, and was also upregulated in human kidneys with AKI. Urinary CCL20 was increased in human AKI and was associated with severity. The function of CCL20 in nephrotoxic folic acid-induced AKI was assessed by using neutralising anti-CCL20 antibodies or CCR6-deficient mice. CCL20/CCR6 targeting increased the severity of kidney failure and mortality. This was associated with more severe histological injury, nephrocalcinosis, capillary rarefaction, and fibrosis, as well as higher expression of tubular injury-associated genes. Surprisingly, mice with CCL20 blockade had a lower tubular proliferative response and a higher number of cells in the G2/M phase, suggesting impaired repair mechanisms. This may be related to a lower influx of Tregs, despite a milder inflammatory response in terms of chemokine expression and infiltration by IL-17+ cells and neutrophils. In conclusion, CCL20 has a nephroprotective role during AKI, both by decreasing tissue injury and by facilitating repair. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cristian González-Guerrero
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN)
| | | | - Pablo Cannata-Ortiz
- Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - María Angeles Ramos-Barron
- Nephrology Investigation Unit, University Hospital Marqués de Valdecilla, IDIVAL (Instituto de Investigacion Valdecilla), Santander, Spain
| | - Carlos Gómez-Alamillo
- Red de Investigación Renal (REDINREN).,Nephrology Investigation Unit, University Hospital Marqués de Valdecilla, IDIVAL (Instituto de Investigacion Valdecilla), Santander, Spain
| | - Manuel Arias
- Red de Investigación Renal (REDINREN).,Nephrology Investigation Unit, University Hospital Marqués de Valdecilla, IDIVAL (Instituto de Investigacion Valdecilla), Santander, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN).,Cellular Biology in Renal Diseases Laboratory. School of Medicine, UAM, Madrid, Spain
| | - Alberto Ortiz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN)
| | - Adrián M Ramos
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN)
| |
Collapse
|
25
|
Jiang K, Ponzo TA, Tang H, Mishra PK, Macura SI, Lerman LO. Multiparametric MRI detects longitudinal evolution of folic acid-induced nephropathy in mice. Am J Physiol Renal Physiol 2018; 315:F1252-F1260. [PMID: 30089037 DOI: 10.1152/ajprenal.00128.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rodent model of folic acid (FA)-induced acute kidney injury (AKI) provides a useful model for studying human AKI, but little is known about longitudinal changes in renal hemodynamics and evolution of renal fibrosis in vivo. In this work, we aimed to longitudinally assess renal structural and functional changes using multiparametric magnetic resonance imaging (MRI). Ten adult mice were injected with FA, after which a multiparametric MRI was used to measure kidney volume, hypoxia index R2*, magnetization transfer ratio (MTR), perfusion, T1, and glomerular filtration rate (GFR) at 2 wk posttreatment. Then five mice were euthanized for histology, and the other five underwent MRI again at 4 wk, followed by histology. Control mice ( n = 5) were injected with vehicle and studied with MRI at 2 wk. Trichrome and hematoxylin-eosin staining were performed to assess FA-induced tissue injuries. Whereas kidney size and oxygenation showed progressive deterioration, a transient impairment in renal perfusion and normalized GFR slightly improved by 4 wk. Kidney fluid content, as reflected by T1, was prominent at 2 wk and tended to regress at 4 wk, consistent with observed tubular dilation. Trichrome staining revealed patchy necrosis and mild interstitial fibrosis at 2 wk, which exacerbated at 4 wk. MTR detected increased fibrosis at 4 wk. In conclusion, multiparametric MRI captured the longitudinal progression in kidney damage evolving within the first month after treatment with folic acid and may provide a useful tool for assessment of therapeutic strategies.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| | - Tristan A Ponzo
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| | - Prasanna K Mishra
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Slobodan I Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
26
|
Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 2018; 93:27-40. [PMID: 29291820 DOI: 10.1016/j.kint.2017.07.030] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
The acutely injured mammalian kidney mounts a cellular and molecular response to repair itself. However, in patchy regions such intrinsic processes are impaired and dysregulated leading to chronic kidney disease. Currently, no therapy exists to treat established acute kidney injury per se. Strategies to augment human endogenous repair processes and retard associated profibrotic responses are urgently required. Recent studies have identified injury-induced activation of the intrinsic molecular driver of epithelial regeneration and induction of partial epithelial to the mesenchymal state, respectively. Activation of key developmental transcription factors drive such processes; however, whether these recruit comparable gene regulatory networks with target genes similar to those in nephrogenesis is unclear. Extensive complex molecular cross-talk between the nephron epithelia and immune, interstitial, and endothelial cells regulate renal recovery. In vitro-based M1/M2 macrophage subtypes have been increasingly linked to renal repair; however, the precise contribution of in vivo macrophage plasticity to repair responses is poorly understood. Endothelial cell-pericyte intimacy, balance of the angiocrine/antiangiocrine system, and endothelial cell-regulated inflammatory processes have an impact on renal recovery and fibrosis. Close scrutiny of cellular and molecular pathways in repairing human kidneys is imperative for the identification of promising therapeutic targets and biomarker of human renal repair processes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
27
|
Chronic kidney disease-associated cardiovascular disease: scope and limitations of animal models. Cardiovasc Endocrinol 2017; 6:120-127. [PMID: 31646129 DOI: 10.1097/xce.0000000000000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a heterogeneous range of disorders affecting up to 11% of the world's population. The majority of patients with CKD die of cardiovascular disease (CVD) before progressing to end-stage renal disease. CKD patients have an increased risk of atherosclerotic disease as well as a unique cardiovascular phenotype. There remains no clear aetiology for these issues and a better understanding of the pathophysiology of CKD-associated CVD is urgently needed. Although nonanimal studies can provide insights into the nature of disease, the whole-organism nature of CKD-associated CVD means that high-quality animal models, at least for the immediate future, are likely to remain a key tool in improving our understanding in this area. We will discuss the methods used to induce renal impairment in rodents and the methods available to assess cardiovascular phenotype and in each case describe the applicability to humans.
Collapse
|
28
|
Nie S, Tang L, Zhang W, Feng Z, Chen X. Are There Modifiable Risk Factors to Improve AKI? BIOMED RESEARCH INTERNATIONAL 2017; 2017:5605634. [PMID: 28744467 PMCID: PMC5514336 DOI: 10.1155/2017/5605634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/26/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a common critical syndrome, with high morbidity and mortality. Patients with AKI typically have an adverse prognosis, from incident chronic kidney disease (CKD), progression to end-stage renal disease (ESRD), subsequent cardiovascular disease, and ultimately death. However, there is currently no effective therapy for AKI. Early detection of risk factors for AKI may offer a good approach to prevention or early intervention. Traditional risk factors include extreme age, many common comorbid diseases, such as preexisting CKD, some specific exposures, such as sepsis, and exposure to some nephrotoxic agents. Recently, several novel risk factors for AKI, such as hyperuricemia, hypoalbuminemia, obesity, anemia, and hyperglycemia, have been identified. The underlying mechanisms between these nontraditional risk factors and AKI and whether their correction can reduce AKI occurrence remain to be clarified. This review describes the current epidemiology of AKI, summarizes its outcome, outlines the traditional risk profile, and finally highlights some recently identified novel risk factors.
Collapse
Affiliation(s)
- Sasa Nie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Li Tang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Weiguang Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
29
|
Asada N, Tsukahara T, Furuhata M, Matsuoka D, Noda S, Naganuma K, Hashiguchi A, Awazu M. Polycythemia, capillary rarefaction, and focal glomerulosclerosis in two adolescents born extremely low birth weight and premature. Pediatr Nephrol 2017; 32:1275-1278. [PMID: 28435991 DOI: 10.1007/s00467-017-3654-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low birthweight infants have a reduced number of nephrons and are at high risk of chronic kidney disease. Preterm birth and/or intrauterine growth restriction (IUGR) may also affect peritubular capillary development, as has been shown in other organs. CASE-DIAGNOSIS/TREATMENT We report two patients with a history of preterm birth and extremely low birthweight who showed polycythemia and renal capillary rarefaction. Patient 1 and 2, born at 25 weeks of gestation with a birthweight of 728 and 466 g, showed mild proteinuria at age 8 and 6 years, respectively. In addition to increasing proteinuria, hemoglobin levels became elevated towards adolescence and their serum erythropoietin (EPO) was high despite polycythemia. Light microscopic examination of renal biopsy specimens showed glomerular hypertrophy, focal segmental glomerulosclerosis, and only mild tubulointerstitial fibrosis. A decrease in the immunohistochemical staining of CD31 and CD34 endothelial cells in renal biopsy specimens was consistent with peritubular capillary rarefaction. CONCLUSIONS Since kidney function was almost normal and fibrosis was not severe, we consider that the capillary rarefaction and polycythemia associated with elevated EPO levels were largely attributable to preterm birth and/or IUGR.
Collapse
Affiliation(s)
- Nariaki Asada
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | - Megumi Furuhata
- Department of Pediatrics, Saku Central Hospital, Nagano, Japan
| | | | - Shunsuke Noda
- Department of Pediatrics, Shinshu University, Nagano, Japan
| | - Kuniaki Naganuma
- Department of Pediatrics, Iida Municipal Hospital, Nagano, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
30
|
Nogueira A, Pires MJ, Oliveira PA. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. ACTA ACUST UNITED AC 2017; 31:1-22. [PMID: 28064215 DOI: 10.21873/invivo.11019] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a long-term condition in which the kidneys do not work correctly. It has a high prevalence and represents a serious hazard to human health and estimated to affects hundreds of millions of people. Diabetes and hypertension are the two principal causes of CKD. The progression of CKD is characterized by the loss of renal cells and their replacement by extracellular matrix (ECM), independently of the associated disease. Thus, one of the consequences of CKD is glomerulosclerosis and tubulointerstitial fibrosis caused by an imbalance between excessive synthesis and reduced breakdown of the ECM. There are many molecules and cells that are associated with progression of renal fibrosis e.g. angiotensin II (Ang II). Therefore, in order to understand the biopathology of renal fibrosis and for the evaluation of new treatments, the use of animal models is crucial such as: surgical, chemical and physical models, spontaneous models, genetic models and in vitro models. However, there are currently no effective treatments for preventing the progression of renal fibrosis. Therefore it is essential to improve our knowledge of the cellular and molecular mechanisms of the progress of renal fibrosis in order to achieve a reversion/elimination of renal fibrosis.
Collapse
Affiliation(s)
- António Nogueira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Therapeutic and Diagnostic Technologies, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Maria João Pires
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Paula Alexandra Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal .,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
31
|
Gerarduzzi C, Kumar RK, Trivedi P, Ajay AK, Iyer A, Boswell S, Hutchinson JN, Waikar SS, Vaidya VS. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight 2017; 2:90299. [PMID: 28422762 DOI: 10.1172/jci.insight.90299] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Secreted modular calcium-binding protein 2 (SMOC2) belongs to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins whose members are known to modulate cell-matrix interactions. We report that SMOC2 is upregulated in the kidney tubular epithelial cells of mice and humans following fibrosis. Using genetically manipulated mice with SMOC2 overexpression or knockdown, we show that SMOC2 is critically involved in the progression of kidney fibrosis. Mechanistically, we found that SMOC2 activates a fibroblast-to-myofibroblast transition (FMT) to stimulate stress fiber formation, proliferation, migration, and extracellular matrix production. Furthermore, we demonstrate that targeting SMOC2 by siRNA results in attenuation of TGFβ1-mediated FMT in vitro and an amelioration of kidney fibrosis in mice. These findings implicate that SMOC2 is a key signaling molecule in the pathological secretome of a damaged kidney and targeting SMOC2 offers a therapeutic strategy for inhibiting FMT-mediated kidney fibrosis - an unmet medical need.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sushrut S Waikar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Influence of the Expression of Inflammatory Markers on Kidney after Fetal Programming in an Experimental Model of Renal Failure. J Immunol Res 2016; 2016:9151607. [PMID: 28018922 PMCID: PMC5149704 DOI: 10.1155/2016/9151607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022] Open
Abstract
Objective. To evaluate the expression of inflammatory markers in experimental renal failure after fetal programming. Methods. The offspring aged two and five months were divided into four groups: CC (control dams, control offspring); DC (diabetic dams, control offspring); CFA (control dams, folic acid offspring, 250 mg/Kg); and DFA (diabetic dams, folic acid offspring). Gene expression of inflammatory markers MCP-1, IL-1, NOS3, TGF-β, TNF-α, and VEGF was evaluated by RT-PCR. Results. MCP-1 was increased in the CFA and DFA groups at two and five months of age, as well as in DC5 when compared to CC5. There was a higher expression of IL-1 in the CFA2, DFA2, and DC2 groups. There was a decrease in NOS3 and an increase in TNF-α in DFA5 in relation to CFA5. The gene expression of TGF-β increased in cases that had received folic acid at two and five months, and VEGF decreased in the CFA5 and DFA5 groups. DC5 showed increased VEGF expression in comparison with CC5. Conclusions. Gestational diabetes mellitus and folic acid both change the expression of inflammatory markers, thus demonstrating that the exposure to harmful agents in adulthood has a more severe impact in cases which underwent fetal reprogramming.
Collapse
|
33
|
Effects of transforming growth factor on the developing embryonic ureter: An in-vitro megaureter model in mice. J Pediatr Urol 2016; 12:310.e1-310.e4. [PMID: 27321555 DOI: 10.1016/j.jpurol.2016.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION It is generally agreed that the cause of a megaureter is narrowing at the vesicoureteral junction, with a functional obstruction arising from an aperistaltic, juxtavesical segment that is unable to transport urine at an acceptable rate. Histological examinations of megaureter specimens have reported several histological analyses, and the pathogenic role of transforming growth factor is still a matter of speculation. OBJECTIVE To evaluate whether transforming growth factor-beta (TGF-β) and its receptors (TGFRs) are expressed during ureterovesical junction (UVJ) and lower ureter development in mice, and whether exogenous TGF-β might postpone the maturation of smooth muscle cells, in the pathogenesis of megaureter using an embryonic organ-culture model. METHODS Expression of TGF-β and TGFRs on the lower ureter and UVJ were determined at different embryonic days (E) (E16, 18, 20 and postnatal day 1). The functional studies were performed by harvesting ureters from wild-type mice at embryonic day 16 (E16), which were grown in serum-free organ-culture; some cultures were supplemented with TGF-β (2 and 20 ng/ml) and/or with soluble TGFR, which blocks bioactivity. Organs were harvested after 6 days and the expression of CD31 and Ki67 were assessed using immunohistochemistry. The muscle content of the UVJ and ureter were analyzed by flowcytometry. RESULTS The TGF-β and TGFR positive cells were immune detected in embryonic ureters. The TGF-β expression was highest on E18 and decreased postnatally. Exogenous TGF-β decreased ureterovesical (UV) muscle differentiation and proliferation. The longitudinal muscle fibers were significantly less in TGF-β explants. The TGF-β also decreased the proportions of cells expressing α smooth muscle actin (α-SMA). Soluble TGFR blocked the effects of exogenous TGF-β. CONCLUSIONS In organ culture, exogenous TGF-β postpones the UV smooth muscle proliferation and affects the muscular structure. Whether the effects of TGF-β are direct or indirect, these form an in-vitro megaureter model. The finding that TGF-β is highest in embryonic ureters in vivo and decreased postnatally suggests that a pathological persistence might potentially explain the pathogenesis of primary megaureters.
Collapse
|
34
|
Bábíčková J, Klinkhammer BM, Buhl EM, Djudjaj S, Hoss M, Heymann F, Tacke F, Floege J, Becker JU, Boor P. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int 2016; 91:70-85. [PMID: 27678159 DOI: 10.1016/j.kint.2016.07.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/15/2016] [Accepted: 07/28/2016] [Indexed: 12/28/2022]
Abstract
Progressive renal diseases are associated with rarefaction of peritubular capillaries, but the ultrastructural and functional alterations of the microvasculature are not well described. To study this, we analyzed different time points during progressive kidney damage and fibrosis in 3 murine models of different disease etiologies. These models were unilateral ureteral obstruction, unilateral ischemia-reperfusion injury, and Col4a3-deficient mice, we analyzed ultrastructural alterations in patient biopsy specimens. Compared with kidneys of healthy mice, we found a significant and progressive reduction of peritubular capillaries in all models analyzed. Ultrastructurally, compared with the kidneys of control mice, focal widening of the subendothelial space and higher numbers of endothelial vacuoles and caveolae were found in fibrotic kidneys. Quantitative analysis showed that peritubular capillary endothelial cells in fibrotic kidneys had significantly and progressively reduced numbers of fenestrations and increased thickness of the cell soma and lamina densa of the capillary basement membrane. Similar ultrastructural changes were also observed in patient's kidney biopsy specimens. Compared with healthy murine kidneys, fibrotic kidneys had significantly increased extravasation of Evans blue dye in all 3 models. The extravasation could be visualized using 2-photon microscopy in real time in living animals and was mainly localized to capillary branching points. Finally, fibrotic kidneys in all models exhibited a significantly greater degree of interstitial deposition of fibrinogen. Thus, peritubular capillaries undergo significant ultrastructural and functional alterations during experimental progressive renal diseases, independent of the underlying injury. Analyses of these alterations could provide read-outs for the evaluation of therapeutic approaches targeting the renal microvasculature.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | | | - Eva M Buhl
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Mareike Hoss
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Electron Microscopy Facility, RWTH University of Aachen, Aachen, Germany
| | - Felix Heymann
- Division of Gastroenterology, RWTH University of Aachen, Aachen, Germany
| | - Frank Tacke
- Division of Gastroenterology, RWTH University of Aachen, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Aachen, Germany.
| |
Collapse
|
35
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
36
|
Ehling J, Bábíčková J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, Kiessling F, Floege J, Lammers T, Boor P. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J Am Soc Nephrol 2015. [PMID: 26195818 DOI: 10.1681/asn.2015020204] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Progressive kidney diseases and renal fibrosis are associated with endothelial injury and capillary rarefaction. However, our understanding of these processes has been hampered by the lack of tools enabling the quantitative and noninvasive monitoring of vessel functionality. Here, we used micro-computed tomography (µCT) for anatomical and functional imaging of vascular alterations in three murine models with distinct mechanisms of progressive kidney injury: ischemia-reperfusion (I/R, days 1-56), unilateral ureteral obstruction (UUO, days 1-10), and Alport mice (6-8 weeks old). Contrast-enhanced in vivo µCT enabled robust, noninvasive, and longitudinal monitoring of vessel functionality and revealed a progressive decline of the renal relative blood volume in all models. This reduction ranged from -20% in early disease stages to -61% in late disease stages and preceded fibrosis. Upon Microfil perfusion, high-resolution ex vivo µCT allowed quantitative analyses of three-dimensional vascular networks in all three models. These analyses revealed significant and previously unrecognized alterations of preglomerular arteries: a reduction in vessel diameter, a prominent reduction in vessel branching, and increased vessel tortuosity. In summary, using µCT methodology, we revealed insights into macro-to-microvascular alterations in progressive renal disease and provide a platform that may serve as the basis to evaluate vascular therapeutics in renal disease.
Collapse
Affiliation(s)
- Josef Ehling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Janka Bábíčková
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Sarah Baetke
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; and Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Boor
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany;
| |
Collapse
|
37
|
Louis K, Hertig A. How tubular epithelial cells dictate the rate of renal fibrogenesis? World J Nephrol 2015; 4:367-373. [PMID: 26167460 PMCID: PMC4491927 DOI: 10.5527/wjn.v4.i3.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
The main threat to a kidney injury, whatever its cause and regardless of whether it is acute or chronic, is the initiation of a process of renal fibrogenesis, since fibrosis can auto-perpetuate and is of high prognostic significance in individual patients. In the clinic, a decrease in glomerular filtration rate correlates better with tubulointerstitial damage than with glomerular injury. Accumulation of the extracellular matrix should not be isolated from other significant cellular changes occurring in the kidney, such as infiltration by inflammatory cells, proliferation of myofibroblasts, obliteration of peritubular capillaries and atrophy of tubules. The aim of this review is to focus on tubular epithelial cells (TEC), which, necessarily involved in the repair process, eventually contribute to accelerating fibrogenesis. In the context of injury, TEC rapidly exhibit phenotypic and functional changes that recall their mesenchymal origin, and produce several growth factors known to activate myofibroblasts. Because they are high-demanding energy cells, TEC will subsequently suffer from the local hypoxia that progressively arises in a microenvironment where the matrix increases and capillaries become rarified. The combination of hypoxia and metabolic acidosis may induce a vicious cycle of sustained inflammation, at the center of which TEC dictate the rate of renal fibrogenesis.
Collapse
|
38
|
Varrier M, Forni LG, Ostermann M. Long-term sequelae from acute kidney injury: potential mechanisms for the observed poor renal outcomes. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:102. [PMID: 25887052 PMCID: PMC4361133 DOI: 10.1186/s13054-015-0805-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Matt Varrier
- Department of Critical Care & Nephrology, Guy's & St Thomas' Foundation Hospital, London, UK. .,King's College London, London, UK.
| | - Lui G Forni
- Department of Intensive Care Medicine, Royal Surrey County Hospital, Surrey Peri-operative Anesthesia Critical Care Collaborative Research group (SPACeR), Guildford, UK.
| | - Marlies Ostermann
- Department of Critical Care & Nephrology, Guy's & St Thomas' Foundation Hospital, London, UK. .,King's College London, London, UK.
| |
Collapse
|
39
|
Loeffler I, Wolf G. The role of hypoxia and Morg1 in renal injury. Eur J Clin Invest 2015; 45:294-302. [PMID: 25615026 DOI: 10.1111/eci.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/19/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Renal hypoxia is known to play an important role in the pathophysiology of acute renal injury as well as in chronic kidney diseases. The mediators of hypoxia are the transcription factors HIF (hypoxia-inducible factors), that are highly regulated. Under normoxic conditions constitutively expressed HIF-α subunits are hydroxylated by prolyl hydroxylases (PHD1, PHD2, and PHD3) and subsequently degraded by proteasomes. MATERIALS AND METHODS This narrative review is based on the material searched for and obtained via PubMed and MEDLINE up to January 2015. RESULTS The MAPK organizer 1 (Morg1) has been identified to act as a scaffold protein of PHD3 and suppression of Morg1 leads to the stabilization of HIF-α, which forms in the absence of oxygen a heterodimer with HIF-β, translocates to the nucleus and promotes the transcription of HIF target genes. CONCLUSIONS This review summarizes the current knowledge regarding the role of hypoxia, HIF signalling, and Morg1 in acute and chronic renal injury.
Collapse
Affiliation(s)
- Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
40
|
Abstract
Chronic progressive renal fibrosis leads to end-stage renal failure many patients with chronic kidney disease (CKD). Loss of the rich peritubular capillary network is a prominent feature, and seems independent of the specific underlying disease. The mechanisms that contribute to peritubular capillary regression include the loss of glomerular perfusion, as flow-dependent shear forces are required to provide the survival signal for endothelial cells. Also, reduced endothelial cell survival signals from sclerotic glomeruli and atrophic or injured tubule epithelial cells contribute to peritubular capillary regression. In response to direct tubular epithelial cell injury, and the inflammatory reaction that ensues, capillary pericytes dissociate from their blood vessels, also reducing endothelial cell survival. In addition, direct inflammatory injury of capillary endothelial cells, for instance in chronic allograft nephropathy, also contributes to capillary dropout. Chronic tissue hypoxia, which ensues from the rarefaction of the peritubular capillary network, can generate both an angiogenic and a fibrogenic response. However, in CKD, the balance is strongly tipped toward fibrogenesis. Understanding the underlying mechanisms for failed angiogenesis in CKD and harnessing endothelial-specific survival and pro-angiogenic mechanisms for therapy should be our goal if we are to reduce the disease burden from CKD.
Collapse
Affiliation(s)
| | - Marya Obeidat
- Department of Medicine, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Delpech PO, Thuillier R, Le Pape S, Rossard L, Jayle C, Billault C, Goujon JM, Hauet T. Effects of warm ischaemia combined with cold preservation on the hypoxia-inducible factor 1α pathway in an experimental renal autotransplantation model. Br J Surg 2014; 101:1739-50. [DOI: 10.1002/bjs.9611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/12/2013] [Accepted: 06/10/2014] [Indexed: 01/12/2023]
Abstract
Abstract
Background
The increased use of marginal donors highlights the importance of organ quality in transplantation and the identification of prognostic biomarkers. This experimental study investigated modulation of the hypoxia-inducible factor (HIF) 1α pathway in kidney grafts in relation to different degrees of ischaemia.
Methods
In a porcine autotransplantation model, two different kidney graft protocols were compared: standard 24-h cold storage (CS) and 24-h CS preceded by 1 h warm ischaemia (WI + CS). The renal HIF-1α pathway and tubular dedifferentiation were analysed in the early phase of reperfusion and at 3 months.
Results
There was a relationship between the degree of ischaemic injury and the outcome of the kidney graft. During the first week of reperfusion, WI + CS grafts showed a higher degree of injury. The observed tubular dedifferentiation was associated with delayed HIF-1α expression, and with loss of its role in transcription. In highly injured kidneys, deregulation of the HIF-1α pathway was also observed in the chronic phase, with reduced production of vascular endothelial growth factor (VEGF) A, and upregulation of VEGF receptor 1 (Flt-1) and thrombospondin 1. In addition, these kidneys displayed altered kidney histology and decreased function.
Conclusion
The HIF-1α pathway appears to be abolished early in response to severe ischaemia. A high degree of ischaemic injury also results in chronic activation of the HIF-1α pathway, diverting it away from the beneficial activation of angiogenesis. Further studies on the finely tuned balance of signals in this pathway may provide diagnostic biomarkers that can determine organ quality during kidney transplantation. Surgical relevanceThe increased use of marginal donors has highlighted the importance of organ quality in transplantation. Renal ischaemia–reperfusion injury following transplantation induces graft dysfunction.In a porcine model of renal autotransplantation, the induction of regenerative processes, in response to graded degrees of ischaemia, was studied in the post-transplantation phase. There was early abrogation of the hypoxia-inducible factor (HIF) 1α pathway in response to severe ischaemia. High degrees of ischaemic injury induced chronic activation of the HIF-1α pathway, diverting it from the beneficial activation of angiogenesis.Identification of the mechanisms involved in renal regeneration, such as those related to the HIF-1α pathway, are important as these mechanisms can be used to identify novel therapeutic targets or develop diagnostic biomarkers to determine organ quality early in the transplantation process.
Collapse
Affiliation(s)
- P O Delpech
- Faculty of Medicine and Pharmacy, University of Poitiers, France
| | - R Thuillier
- Faculty of Medicine and Pharmacy, University of Poitiers, France
- Department of Biochemistry, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - S Le Pape
- Faculty of Medicine and Pharmacy, University of Poitiers, France
| | - L Rossard
- Faculty of Medicine and Pharmacy, University of Poitiers, France
| | - C Jayle
- Faculty of Medicine and Pharmacy, University of Poitiers, France
| | - C Billault
- Faculty of Medicine and Pharmacy, University of Poitiers, France
| | - J M Goujon
- Faculty of Medicine and Pharmacy, University of Poitiers, France
- Department of Pathology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - T Hauet
- Faculty of Medicine and Pharmacy, University of Poitiers, France
- Department of Biochemistry, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- National Institute for Agricultural Research (INRA), UE1372 GenESI, Platform IBiSA, Domaine Expérimental du Magneraud, Surgères, France
- University/Hospital Federation (SUPORT), Limoges, Poitiers and Tours, France
| |
Collapse
|
42
|
Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014; 307:F1187-95. [PMID: 25350978 DOI: 10.1152/ajprenal.00425.2014] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent clinical and animal studies have shown that acute kidney injury (AKI), even if followed by complete recovery of renal function, can eventually result in chronic kidney disease (CKD). Renal hypoxia is emerging as a key player in the pathophysiology of the AKI-to-CKD transition. Capillary rarefaction after AKI episodes induces renal hypoxia, which can in turn profoundly affect tubular epithelial cells, (myo)fibroblasts, and inflammatory cells, culminating in tubulointerstitial fibrosis, i.e., progression to CKD. Damaged tubular epithelial cells that fail to redifferentiate might supply a decreased amount of vascular endothelial growth factor and contribute to capillary rarefaction, thus aggravating hypoxia and forming a vicious cycle. Mounting evidence also shows that epigenetic changes are closely related to renal hypoxia in the pathophysiology of CKD progression. Animal experiments suggest that targeting hypoxia is a promising strategy to block the transition from AKI to CKD. However, the precise mechanisms by which hypoxia induces the AKI-to-CKD transition and by which hypoxia-inducible factor activation can exert a protective effect in this context should be clarified in further studies.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Shalaby RH, Rashed LA, Ismaail AE, Madkour NK, Elwakeel SH. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. AMERICAN JOURNAL OF STEM CELLS 2014; 3:83-96. [PMID: 25232508 PMCID: PMC4163607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could reside in local injury sites, leading to the relief of hyperemia and inflammation, but no obvious transdifferentiation into renal-like cells. The results lay the foundation for further study on the potential application of UC-HSCs in human disease and Because of their availability; HSC may be useful for cell replacement therapy of acute renal failure.
Collapse
Affiliation(s)
- Rokaya H Shalaby
- Department of Zoology, faculty of Women's, Ain Shams University Egypt
| | - Laila A Rashed
- Department of Medical biochemistry, Faculty of medicine, Cairo University Egypt
| | | | - Naglaa K Madkour
- Department of Zoology, faculty of Women's, Ain Shams University Egypt
| | | |
Collapse
|
44
|
Craciun FL, Ajay AK, Hoffmann D, Saikumar J, Fabian SL, Bijol V, Humphreys BD, Vaidya VS. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am J Physiol Renal Physiol 2014; 307:F471-84. [PMID: 25007874 DOI: 10.1152/ajprenal.00189.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibrinogen (Fg) has been implicated in the pathogenesis of several fibrotic disorders by acting as a profibrotic ligand for a variety of cellular surface receptors and by modulating the provisional fibrin matrix formed after injury. We demonstrated increased renal Fg expression after unilateral ureteral obstruction and folic acid (FA) nephropathy in mice, respectively. Urinary Fg excretion was also increased in FA nephropathy. Using in vitro and in vivo approaches, our results suggested that IL-6 mediates STAT3 activation in kidney fibrosis and that phosphorylated (p)STAT3 binds to Fgα, Fgβ, and Fgγ promoters in the kidney to regulate their transcription. Genetically modified Fg heterozygous mice (∼75% of normal plasma Fg levels) exhibited only 3% kidney interstitial fibrosis and tubular atrophy after FA nephropathy compared with 24% for wild-type mice. Fibrinogenolysis through Ancrod administration after FA reduced interstitial fibrosis more than threefold compared with vehicle-treated control mice. Mechanistically, we show that Fg acts synergistically with transforming growth factor (TGF)-β1 to induce fibroblast proliferation and activates TGF-β1/pSMAD2 signaling. This study offers increased understanding of Fg expression and molecular interactions with TGF-β1 in the progression to kidney fibrosis and, importantly, indicates that fibrinogenolytics like Ancrod present a treatment opportunity for a yet intractable disease.
Collapse
Affiliation(s)
- Florin L Craciun
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amrendra K Ajay
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dana Hoffmann
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Janani Saikumar
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Steven L Fabian
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Benjamin D Humphreys
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vishal S Vaidya
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Abstract
Renal pericytes have been neglected for many years, but recently they have become an intensively studied cell population in renal biology and pathophysiology. Pericytes are stromal cells that support vasculature, and a subset of pericytes are mesenchymal stem cells. In kidney, pericytes have been reported to play critical roles in angiogenesis, regulation of renal medullary and cortical blood flow, and serve as progenitors of interstitial myofibroblasts in renal fibrogenesis. They interact with endothelial cells through distinct signaling pathways and their activation and detachment from capillaries after acute or chronic kidney injury may be critical for driving chronic kidney disease progression. By contrast, during kidney homeostasis it is likely that pericytes serve as a local stem cell population that replenishes differentiated interstitial and vascular cells lost during aging. This review describes both the regenerative properties of pericytes as well as involvement in pathophysiologic conditions such as fibrogenesis.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Division of Nephrology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Benjamin D Humphreys
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
46
|
Edwards JC, Bruno J, Key P, Cheng YW. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol 2014; 15:54. [PMID: 24708746 PMCID: PMC4234247 DOI: 10.1186/1471-2369-15-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/28/2014] [Indexed: 12/02/2022] Open
Abstract
Background CLIC4, a member of the CLIC family of proteins, was recently demonstrated to translocate to the nucleus in differentiating keratinocytes where it potentiates TGFβ-driven gene regulation. Since TGFβ signaling is known to play important roles in the fibrotic response to acute kidney injury, and since CLIC4 is abundantly expressed in kidney, we hypothesized that CLIC4 may play a role in the response to acute kidney injury. Methods Previously described Clic4 null mice were analyzed for the effect of absence of CLIC4 on growth, development and response to kidney injury. Kidney size, glomerular counts and density of peritubular capillaries of matched WT and Clic4 null mice were determined. Cohorts of WT and Clic4 null mice were subjected to the folic acid model of acute kidney injury. Extent of acute injury and long term functional recovery were assessed by plasma blood urea nitrogen (BUN); long term fibrosis/scarring was determined by histochemical assessment of kidney sections and by residual renal mass. Activation of the TGFβ signaling pathway was assessed by semi-quantitative western blots of phosphorylated SMADs 2 and 3. Results CLIC4 is abundantly expressed in the apical pole of renal proximal tubule cells, and in endothelial cells of glomerular and peritubular capillaries. CLIC4 null mice are small, have smaller kidneys with fewer glomeruli and less dense peritubular capillary networks, and have increased proteinuria. The Clic4 null mice show increased susceptibility to folic acid-induced acute kidney injury but no difference in recovery from acute injury, no nuclear redistribution of CLIC4 following injury, and no significant difference in activation of the TGFβ-signaling pathway as reflected in the level of phosphorylation of SMADs 2 and 3. Conclusions Absence of CLIC4 results in morphologic changes consistent with its known role in angiogenesis. These changes may be at least partially responsible for the increased susceptibility to acute kidney injury. However, the absence of CLIC4 has no significant impact on the extent of functional recovery or fibrosis following acute injury, indicating that CLIC4 does not play a major non-redundant role in the TGFβ signaling involved in response to acute kidney injury.
Collapse
Affiliation(s)
- John C Edwards
- Kidney Center and the Department of Internal Medicine, University of North Carolina, Chapel Hill NC, USA.
| | | | | | | |
Collapse
|
47
|
Kramann R, Tanaka M, Humphreys BD. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J Am Soc Nephrol 2014; 25:1924-31. [PMID: 24652794 DOI: 10.1681/asn.2013101121] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI predicts the future development of CKD, and one proposed mechanism for this epidemiologic link is loss of peritubular capillaries triggering chronic hypoxia. A precise definition of changes in peritubular perfusion would help test this hypothesis by more accurately correlating these changes with future loss of kidney function. Here, we have adapted and validated a fluorescence microangiography approach for use with mice to visualize, analyze, and quantitate peritubular capillary dynamics after AKI. A novel software-based approach enabled rapid and automated quantitation of capillary number, individual area, and perimeter. After validating perfusion in mice with genetically labeled endothelia, we compared peritubular capillary number and size after moderate AKI, characterized by complete renal recovery, and after severe AKI, characterized by development of interstitial fibrosis and CKD. Eight weeks after severe AKI, we measured a 40%±7.4% reduction in peritubular capillary number (P<0.05) and a 36%±4% decrease in individual capillary cross-sectional area (P<0.001) for a 62%±2.2% reduction in total peritubular perfusion (P<0.01). Whereas total peritubular perfusion and number of capillaries did not change, we detected a significant change of single capillary size following moderate AKI. The loss of peritubular capillary density and caliber at week 8 closely correlated with severity of kidney injury at day 1, suggesting irreparable microvascular damage. These findings emphasize a direct link between severity of acute injury and future loss of peritubular perfusion, demonstrate that reduced capillary caliber is an unappreciated long-term consequence of AKI, and offer a new quantitative imaging tool for understanding how AKI leads to future CKD in mouse models.
Collapse
Affiliation(s)
- Rafael Kramann
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; and
| | - Mari Tanaka
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Humphreys
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Kidney Group, Harvard Stem Cell Institute, Cambridge, Massachussetts
| |
Collapse
|
48
|
Capillary dilation and rarefaction are correlated with intracapillary inflammation in antibody-mediated rejection. J Immunol Res 2014; 2014:582902. [PMID: 24741607 PMCID: PMC3987932 DOI: 10.1155/2014/582902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/31/2013] [Indexed: 01/09/2023] Open
Abstract
Antibody-mediated rejection (ABMR) remains one of the major causes of graft loss after renal transplantation. It is dominated by endothelial damage in microcirculation. Clarifying the mechanism of microcirculating damage is obviously a key step to understand the pathogenesis of ABMR. Here we characterized capillary variation in ABMR and its possible mechanisms. Compared with T cell-mediated rejection and stable grafts, there was a significant dilation and rarefaction in peritubular capillaries (PTCs) of the ABMR group; Image-Pro Plus revealed a significantly larger intra-PTC area. Interestingly, the dilation of PTCs was strongly correlated with the intra-PTC cell counting. Moreover, peritubular capillary inflammation is correlated with in situ T-bet expression, and there was a good correlation between the intra-PTC expression of T-bet and the PTC diameter. HIF-1α up-regulation could be observed in ABMR but it was not necessary for capillary dilation. In general, ABMR is characterized with early capillary dilation and rarefaction; our data confirmed that the dilation is strongly correlated with intracapillary inflammation, which in turn is correlated with in situ T-bet expression. T-bet plays an important role in the development of microcirculating injury, and thus it is a potential target for the treatment of ABMR.
Collapse
|
49
|
Polichnowski AJ, Lan R, Geng H, Griffin KA, Venkatachalam MA, Bidani AK. Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J Am Soc Nephrol 2014; 25:1496-507. [PMID: 24511135 DOI: 10.1681/asn.2013040359] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preexisting CKD may affect the severity of and/or recovery from AKI. We assessed the impact of prior graded normotensive renal mass reduction on ischemia-reperfusion-induced AKI. Rats underwent 40 minutes of ischemia 2 weeks after right uninephrectomy and surgical excision of both poles of the left kidney (75% reduction of renal mass), right uninephrectomy (50% reduction of renal mass), or sham reduction of renal mass. The severity of AKI was comparable among groups, which was reflected by similarly increased serum creatinine (SCr; approximately 4.5 mg/dl) at 2 days, tubule necrosis at 3 days, and vimentin-expressing regenerating tubules at 7 days postischemia-reperfusion. However, SCr remained elevated compared with preischemia-reperfusion values, and more tubules failed to differentiate during late recovery 4 weeks after ischemia-reperfusion in rats with 75% renal mass reduction relative to other groups. Tubules that failed to differentiate continued to produce vimentin, exhibited vicarious proliferative signaling, and expressed less vascular endothelial growth factor but more profibrotic peptides. The disproportionate failure of regenerating tubules to redifferentiate in rats with 75% renal mass reduction associated with more severe capillary rarefaction and greater tubulointerstitial fibrosis. Furthermore, initially normotensive rats with 75% renal mass reduction developed hypertension and proteinuria, 2-4 weeks postischemia-reperfusion. In summary, severe (>50%) renal mass reduction disproportionately compromised tubule repair, diminished capillary density, and promoted fibrosis with hypertension after ischemia-reperfusion-induced AKI in rats, suggesting that accelerated declines of renal function may occur after AKI in patients with preexisting CKD.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Karen A Griffin
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| | | | - Anil K Bidani
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| |
Collapse
|
50
|
Stallons LJ, Whitaker RM, Schnellmann RG. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol Lett 2013; 224:326-32. [PMID: 24275386 DOI: 10.1016/j.toxlet.2013.11.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023]
Abstract
Acute kidney injury (AKI) is a disease with mitochondrial dysfunction and a newly established risk factor for the development of chronic kidney disease (CKD) and fibrosis. We examined mitochondrial homeostasis in the folic acid (FA)-induced AKI model that develops early fibrosis over a rapid time course. Mice given a single dose of FA had elevated serum creatinine (3-fold) and urine glucose (2.2-fold) 1 and 2 d after injection that resolved by 4d. In contrast, peroxisome proliferator gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), critical transcriptional regulators of mitochondrial biogenesis (MB), were down-regulated ∼80% 1d after FA injection and remained depressed through 14 d. Multiple electron transport chain and ATP synthesis genes were also down-regulated from 1 to 14 d after FA, including NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8 (NDUFβ8), ATP synthase subunit β (ATPS-β), and cytochrome C oxidase subunit I (COXI). Mitochondrial DNA copy number was reduced ∼50% from 2 to 14 d after FA injection. Protein levels of early fibrosis markers α-smooth muscle actin and transforming growth factor β1 were elevated at 6 and 14 d after FA. Picrosirius red staining and collagen 1A2 (COL1A2) IHC revealed staining for mature collagen deposition at 14 d. We propose that mitochondrial dysfunction induced by AKI is a persistent cellular injury that promotes progression to fibrosis and CKD, and that this model can be used to test mitochondrial therapeutics that limit progression to fibrosis and CKD.
Collapse
Affiliation(s)
- L Jay Stallons
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA.
| | - Ryan M Whitaker
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA.
| | - Rick G Schnellmann
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA; Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| |
Collapse
|