1
|
Gupta S, Zhang E, Sinha S, Martin LM, Varghese TS, Forck NG, Sinha PR, Ericsson AC, Hesemann NP, Mohan RR. Analysis of Smad3 in the modulation of stromal extracellular matrix proteins in corneal scarring after alkali injury. Mol Vis 2024; 30:448-464. [PMID: 39959170 PMCID: PMC11829792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/28/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose During ocular trauma, excessive proliferation and transdifferentiation of corneal stromal fibroblasts cause haze/fibrosis in the cornea. Transforming growth factor β (TGFβ) plays a key role in corneal fibrosis through the Smad signaling pathway. The aberrant activity of TGFβ signaling during ocular trauma (viz. mechanical, infectious, chemical, or surgically altered TGFβ/Smad signaling) leads to regulating the predominant expression of myogenic proteins and the extracellular matrix (ECM). We sought to investigate the functional role of Smad3 in corneal wound repair and stromal ECM assembly using Smad3+/+ wild-type and Smad3-/- deficient mice. Methods Corneal injury was introduced with the topical application of an alkali-soaked 2-mm filter disc on the central cornea in the Smad3+/+ (C57BL/6J) and Smad3-/- (129-Smad3tm1Par/J) mouse strains. Slit-lamp and stereo microscopy were used for clinical assessment and corneal haze grading in live animals. Hematoxylin and eosin and Masson's trichrome staining were used to study comparative morphology and collagen level alterations between the groups. Real-time qRT-PCR, western blot, and immunohistochemistry were used to measure changes in profibrotic genes at the mRNA and protein levels. Results Slit-lamp clinical exams and stereo microscopy detected notably less opaque cornea in the eyes of Smad3-/- compared with Smad3+/+ mice at 3 weeks (p<0.01) in live animals. Corneal tissue sections of Smad3-/- mice showed significantly fewer α-smooth muscle actin-positive cells compared with those of the Smad3+/+ animals (p<0.05). The corneas of the Smad3-/- mice showed significantly lower mRNA levels of pro-fibrotic genes, α-smooth muscle actin, fibronectin, and collagen I (p<0.05, p<0.01, and p<0.001). In addition, the matrix metalloproteinase and tissue inhibitors of metalloproteinase levels were significantly increased (p<0.001) in the corneal tissue during alkali injury in both Smad3+/+ wild-type and Smad3-/- deficient mice. Conclusions The significant changes in profibrotic genes and stromal ECM proteins revealed a direct role of Smad3 in stromal ECM proteins and TGFβ/Smad-driven wound healing. Smad3 appears to be an attractive molecular target for limiting abnormal stroma wound healing to treat corneal fibrosis in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Eric Zhang
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Sampann Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Thomas S. Varghese
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Nathan G. Forck
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Aaron C. Ericsson
- Departments of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
2
|
Lawrence J, Seelig D, Demos-Davies K, Ferreira C, Ren Y, Wang L, Alam SK, Yang R, Guedes A, Craig A, Hoeppner LH. Radiation dermatitis in the hairless mouse model mimics human radiation dermatitis. Sci Rep 2024; 14:24819. [PMID: 39438583 PMCID: PMC11496547 DOI: 10.1038/s41598-024-76021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Over half of all people diagnosed with cancer receive radiation therapy. Moderate to severe radiation dermatitis occurs in most human radiation patients, causing pain, aesthetic distress, and a negative impact on tumor control. No effective prevention or treatment for radiation dermatitis exists. The lack of well-characterized, clinically relevant animal models of human radiation dermatitis contributes to the absence of strategies to mitigate radiation dermatitis. Here, we establish and characterize a hairless SKH-1 mouse model of human radiation dermatitis by correlating temporal stages of clinical and pathological skin injury. We demonstrate that a single ionizing radiation treatment of 30 Gy using 6 MeV electrons induces severe clinical grade 3 peak toxicity at 12 days, defined by marked erythema, desquamation and partial ulceration, with resolution occurring by 25 days. Histopathology reveals that radiation-induced skin injury features temporally unique inflammatory changes. Upregulation of epidermal and dermal TGF-ß1 and COX-2 protein expression occurs at peak dermatitis, with sustained epidermal TGF-ß1 expression beyond resolution. Specific histopathological variables that remain substantially high at peak toxicity and early clinical resolution, including epidermal thickening, hyperkeratosis and dermal fibroplasia/fibrosis, serve as specific measurable parameters for in vivo interventional preclinical studies that seek to mitigate radiation-induced skin injury.
Collapse
Affiliation(s)
- Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA.
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA.
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
| | - Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Clara Ferreira
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Angela Craig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
- Hennepin Healthcare Research Institute, 701 Park Ave, Suite S3, Minneapolis, MN, 55415, USA
| | - Luke H Hoeppner
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
4
|
Shafi T, Rasool Wani R, Hussain S, Bhat IA, Makhdoomi R, Bashir SA, Hassan I, Shah ZA. Investigating dysregulation of TGF-β1/SMAD3 signaling in atopic dermatitis: a molecular and immunohistochemical analysis. Clin Exp Immunol 2024; 216:192-199. [PMID: 38066678 PMCID: PMC11036103 DOI: 10.1093/cei/uxad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 04/24/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.
Collapse
Affiliation(s)
- Tabasum Shafi
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Roohi Rasool Wani
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Showkat Hussain
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | - Imtiyaz A Bhat
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| | | | - Sheikh Adil Bashir
- Department of Plastic and Reconstructive Surgery, SKIMS, Srinagar, India-190011
| | - Iffat Hassan
- Department of Dermatology, Venereology, and Leprosy, GMC, Srinagar, India-190010
| | - Zafar A Shah
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, India-190011
| |
Collapse
|
5
|
Yan Y, Cao D, Liang J, Yang Q, Gao D, Shen C, Hu F, Li Z, Han Y, Cao X, Wang Q. Dangui Huoxue Preparation (DHP) Ameliorates Skin Fibrosis, Inflammation, and Vasculopathy in the Bleomycin-Induced Murine Model of Systemic Sclerosis. Adv Biol (Weinh) 2024; 8:e2300315. [PMID: 37759403 DOI: 10.1002/adbi.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-β1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1β, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-β1/Smad3 signaling pathway through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
- Yuemei Yan
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
- Department of Dermatology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing, Zhejiang, 314000, P. R. China
| | - Dianyu Cao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jian Liang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Qiaorong Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Chen Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, P. R. China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Zheng Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Yumei Han
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
7
|
Shafi T, Rasool R, Ayub S, Bhat IA, Gull A, Hussain S, Hassan Shah I, Shah ZA. Analysis of intronic SNP (rs4147358) and expression of SMAD3 gene in Atopic Dermatitis: A case-control study. Immunobiology 2023; 228:152390. [PMID: 37100019 DOI: 10.1016/j.imbio.2023.152390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Atopic Dermatitis (AD) is a multifactorial cutaneous disorder associated with chronic inflammation of the skin. Growing evidence points to TGF-β/SMAD signaling as a key player in mediating inflammation and the subsequent tissue remodeling, often resulting in fibrosis. This study investigates the role of a core transcription factor involved in TGF-β signaling i.e., SMAD3 genetic variants (rs4147358) in AD predisposition and its association with SMAD3 mRNA expression, serum IgE levels, and sensitization to various allergens in AD patients. METHODS A total of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for SMAD3 intronic SNP by PCR-RFLP. mRNA expression of SMAD3 was determined by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and total serum IgE levels by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites (HDM) and food allergens. RESULTS A significantly higher frequency of mutant genotype AA (cases: 19.4% vs controls: 8.9%) (OR = 2.8, CI = 1.2 - 6.7, p = 0.01) was observed in AD cases. The mutant allele 'A' also showed a 1.9-fold higher risk for AD compared to the wild allele 'C' indicating that the carriers of the A allele have a higher risk for AD predisposition (OR-1.9, CI = 1.3-2.8, p < 0.001). In addition, quantitative analysis of SMAD3 mRNA in peripheral blood showed 2.8-fold increased expression in AD cases as compared to healthy controls. Stratification analysis revealed the association of the mutant AA genotype with deficient serum Vitamin D levels (p = 0.02) and SMAD3 mRNA overexpression with HDM sensitization (p = 0.03). Furthermore, no significant association of genotypes with SMAD3 mRNA expression was observed. CONCLUSION Our study indicates that SMAD3 intronic SNP bears a significant risk of AD development. Moreover, overexpression of SMAD3 mRNA and its association with HDM sensitization highlights the possible role of this gene in AD pathogenesis.
Collapse
Affiliation(s)
- Tabasum Shafi
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India.
| | - Sakeena Ayub
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Imtiyaz A Bhat
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Ayaz Gull
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Showkat Hussain
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iffat Hassan Shah
- Department of Dermatology, Venereology, and Leprosy, GMC- Srinagar 190010, India
| | - Zafar A Shah
- Department of Immunology & Molecular Medicine, SKIMS, Srinagar 190011, India
| |
Collapse
|
8
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
9
|
Rodríguez A, Epperly M, Filiatrault J, Velázquez M, Yang C, McQueen K, Sambel LA, Nguyen H, Iyer DR, Juárez U, Ayala-Zambrano C, Martignetti DB, Frías S, Fisher R, Parmar K, Greenberger JS, D’Andrea AD. TGFβ pathway is required for viable gestation of Fanconi anemia embryos. PLoS Genet 2022; 18:e1010459. [PMID: 36441774 PMCID: PMC9731498 DOI: 10.1371/journal.pgen.1010459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Overexpression of the TGFβ pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFβ promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFβ signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFβ pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFβ and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFβ-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFβ-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFβ-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michael Epperly
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jessica Filiatrault
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Martha Velázquez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chunyu Yang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Kelsey McQueen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Larissa A. Sambel
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Huy Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Divya Ramalingam Iyer
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Ulises Juárez
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México, México
| | - David B. Martignetti
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sara Frías
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Renee Fisher
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joel S. Greenberger
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
11
|
LIN J, WANG L, CHEN B, OU S, QIN J, FAN J. Shenweifang-containing serum inhibits transforming growth factor-β1 induced myofibroblast differentiation in normal rat kidney interstitial fibroblast cell. J TRADIT CHIN MED 2022; 42:39-48. [PMID: 35294121 PMCID: PMC10164629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/16/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVE To investigate the efficacy of Shenweifang (SWF)-containing serum on transforming growth factor (TGF)-β1-induced fibroblast-myofibroblast transition in normal rat kidney interstitial fibroblast cells (NRK-49F). METHODS Sprague-Dawley rats were gavaged with one of five solutions: (a) saline; (b) saline plus low-dose SWF; (c) saline plus medium-dose SWF; (d) saline plus highdose SWF; and (e) saline plus valsartan. NRK-49F cells were treated with TGF-β1 and cultured using serum from the gavaged rats. RESULTS TGF-β1 treatment increased the expression of α-smooth muscle actin, proliferating cell nuclear antigen, collagen I, Smad3, mitogen-activated protein kinase (MAPK) 10, and c-Jun N-terminal kinase (JNK) 3 and induced abnormalities in cell morphology, cell cycle progression, and cell proliferation. CONCLUSIONS SWF- or valsartan-containing serum corrected (or partially corrected) TGF-β1-induced abnormal changes in this in vitro system. SWF-containing serum reversed abnormalities in morphology, cell cycle progression, and proliferation in TGF-β1-treated NRK49F cells, probably by blocking the TGF-β1/Smads and TGF-β1/MAPK/JNK pathways.
Collapse
Affiliation(s)
- Jiaru LIN
- 1 Department of Nephrology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 2 Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou 646000, China
- 3 Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Li WANG
- 4 Central Laboratory, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Bo CHEN
- 4 Central Laboratory, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Santao OU
- 1 Department of Nephrology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua QIN
- 1 Department of Nephrology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Junming FAN
- 1 Department of Nephrology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 3 Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 4 Central Laboratory, Affiliated Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- 5 Southwest Medical University, Luzhou 646000, China
- 6 Chengdu Medical College, Chengdu, Sichuan 610500, China
| |
Collapse
|
12
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
Deleon NMD, Adem S, Lavin CV, Abbas DB, Griffin M, King ME, Borrelli MR, Patel RA, Fahy EJ, Lee D, Shen AH, Momeni A, Longaker MT, Wan DC. Angiogenic CD34+CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy. J Tissue Eng Regen Med 2021; 15:1105-1117. [PMID: 34582109 DOI: 10.1002/term.3253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Radiation therapy is effective for cancer treatment but may also result in collateral soft tissue contracture, contour deformities, and non-healing wounds. Autologous fat transfer has been described to improve tissue architecture and function of radiation-induced fibrosis and these effects may be augmented by enrichment with specific adipose-derived stromal cells (ASCs) with enhanced angiogenic potential. CD34+CD146+, CD34+CD146-, or CD34+ unfractionated human ASCs were isolated by flow cytometry and used to supplement human lipoaspirate placed beneath the scalp of irradiated mice. Volume retention was followed radiographically and fat grafts as well as overlying soft tissue were harvested after eight weeks for histologic and biomechanical analyses. Radiographic evaluation revealed the highest volume retention in fat grafts supplemented with CD34+CD146+ ASCs, and these grafts were also found to have greater histologic integrity than other groups. Irradiated skin overlying CD34+CD146+ ASC-enriched grafts was significantly more vascularized than other treatment groups, had significantly less dermal thickness and collagen deposition, and the greatest improvement in fibrillin staining and return of elasticity. Radiation therapy obliterates vascularity and contributes to scarring and loss of tissue function. ASC-enrichment of fat grafts with CD34+CD146+ ASCs not only enhances fat graft vascularization and retention, but also significantly promotes improvement in overlying radiation-injured soft tissue. This regenerative effect on skin is highly promising for patients with impaired wound healing and deformities following radiotherapy.
Collapse
Affiliation(s)
- Nestor M Diaz Deleon
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V Lavin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B Abbas
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Megan E King
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi R Borrelli
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Evan J Fahy
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Lee
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021; 142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Acute kidney disease due to renal ischemia/reperfusion (I/R) is a major clinical problem without effective therapies. The injured tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT). It will loss epithelial phenotypes and express the mesenchymal characteristics. The formation of scar tissue in the interstitial space during renal remodeling is caused by the excessive accumulation of extracellular matrix components and induced fibrosis. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on renal remodeling after injury. The inhibitory role of CAEA on EMT was determined by western blotting, real-time PCR, and immunohistochemistry staining. Treating renal epithelial cells with CAEA in TGF-β exposed cell culture successfully maintained the content of E-cadherin and inhibited the expression of mesenchymal marker, indicating that CAEA prevented renal epithelial cells undergo EMT after TGF-β exposure. Unilateral renal I/R were performed in mice to induce renal remodeling models. CAEA can protect against I/R-induced renal remodeling by inhibiting inflammatory reactions and consecutively inhibiting TGF-β-induced EMT, characterized by the preserved E-cadherin expression and alleviated α-SMA and collagen expression, as well as the alleviated of renal fibrosis. We also revealed that CAEA may exhibits biological activity by targeting TGFBRI. CAEA may antagonize TGF-β signaling by interacting with TGFBR1, thereby blocking binding between TGF-β and TGFBR1 and reducing downstream signaling, such as Smad3 phosphorylation. Our data support the administration of CAEA after I/R as a viable method for preventing the progression of acute renal injury to renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan
| | - Tzu-Tang Wei
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254:358-373. [PMID: 33834494 DOI: 10.1002/path.5680] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erine H Budi
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | | | | | - Scott Turner
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Li L, Ren S, Hao X, Zhen Z, Ji L, Ji H. MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway. Exp Ther Med 2021; 21:492. [PMID: 33791001 PMCID: PMC8005700 DOI: 10.3892/etm.2021.9923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Intracranial aneurysms (IAs) are bulges of blood vessels in the cerebral area. The development and progression of IAs are associated with the proliferation of vascular smooth muscle cells (VSMCs) during phenotypic modulation under environmental cues. MicroRNA-29b (miR-29b) has been studied extensively and demonstrated to reduce cell proliferation in various diseases by binding to the 3'-untranslated region (3'-UTR) of a variety of target messenger RNAs (mRNAs), thereby inhibiting their translation. The present study aimed to investigate the role of miR-29b on the proliferation of VSMCs and human umbilical artery smooth muscle cells. The results indicated that the overexpression of miR-29b reduced cell migration and proliferation. Western blotting results indicated that this effect may be attributed to the attenuation of a signaling pathway involving transforming growth factor β (TGF-β) and Smad3 proteins. Luciferase assay confirmed the binding of miR-29b to TGF-β1 and the knockdown of TGF-β1 reduced miR-29b inhibitor-induced cell migration. The present study indicates that miR-29b downregulates the expression of TGF-β1 by targeting the 3'-UTR of its mRNA and modulates cell migration and proliferation via the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Lirong Li
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Shaohua Ren
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xudong Hao
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zigang Zhen
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Lei Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Hongming Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
17
|
Gans I, El Abiad JM, James AW, Levin AS, Morris CD. Administration of TGF-ß Inhibitor Mitigates Radiation-induced Fibrosis in a Mouse Model. Clin Orthop Relat Res 2021; 479:468-474. [PMID: 33252888 PMCID: PMC7899598 DOI: 10.1097/corr.0000000000001286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation-induced fibrosis is a long-term adverse effect of external beam radiation therapy for cancer treatment that can cause pain, loss of function, and decreased quality of life. Transforming growth factor beta (TGF-β) is believed to be critical to the development of radiation-induced fibrosis, and TGF-β inhibition decreases the development of fibrosis. However, no treatment exists to prevent radiation-induced fibrosis. Therefore, we aimed to mitigate the development of radiation-induced fibrosis in a mouse model by inhibiting TGF-β. QUESTION/PURPOSES Does TGF-β inhibition decrease the development of muscle fibrosis induced by external beam radiation in a mouse model? METHODS Twenty-eight 12-week-old male C57BL/6 mice were assigned randomly to three groups: irradiated mice treated with TGF-βi, irradiated mice treated with placebo, and control mice that received neither irradiation nor treatment. The irradiated mice received one 50-Gy fraction of radiation to the right hindlimb before treatment initiation. Mice treated with TGF-c (n = 10) received daily intraperitoneal injections of a small-molecule inhibitor of TGF-β (1 mg/kg) in a dimethyl sulfoxide vehicle for 8 weeks (seven survived to histologic analysis). Mice treated with placebo (n = 10) received daily intraperitoneal injections of only a dimethyl sulfoxide vehicle for 8 weeks (10 survived to histologic analysis). Control mice (n = 8) received neither radiation nor TGF-β treatment. Control mice were euthanized at 3 months because they were not expected to exhibit any changes related to treatment. Mice in the two treatment groups were euthanized 9 months after radiation, and the quadriceps of each thigh was sampled. Masson's trichome stain was used to assess muscle fibrosis. Slides were viewed at 10 × magnification using bright-field microscopy, and in a blinded fashion, five representative images per mouse were used to quantify fibrosis. The mean ± SD fibrosis pixel densities in the TGF-βi and radiation-only groups were compared using Mann-Whitney U tests. The ratio of fibrosis to muscle was calculated using the mean fibrosis per slide in the TGF-βi group to standardize measurements. Alpha was set at 0.05. RESULTS The mean (± SD) percentage of fibrosis per slide was greater in the radiation-only group (1.2% ± 0.42%) than in the TGF-βi group (0.14% ± 0.09%) (odds ratio 0.12 [95% CI 0.07 to 0.20]; p < 0.001). Among control mice, mean fibrosis was 0.05% ± 0.02% per slide. Mice in the radiation-only group had 9.1 times the density of fibrosis as did mice in the TGF-βi group. CONCLUSION Our study provides preliminary evidence that the fibrosis associated with radiation therapy to a quadriceps muscle can be reduced by treatment with a TGF-β inhibitor in a mouse model. CLINICAL RELEVANCE If these observations are substantiated by further investigation into the role of TGF-β inhibition on the development of radiation-induced fibrosis in larger animal models and humans, our results may aid in the development of novel therapies to mitigate this complication of radiation treatment.
Collapse
Affiliation(s)
- Itai Gans
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Jad M El Abiad
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Aaron W James
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Adam S Levin
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| | - Carol D Morris
- I. Gans, J. M. El Abiad, A. S. Levin, C. D. Morris, Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- A. W. James, Department of Pathology, The Johns Hopkins University School of Medicine, Ross Research Building, Baltimore, MD, USA
- C. D. Morris, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The institution of one or more of the authors (IG) has received, during the study period, funding from the Orthopaedic Research and Education Foundation (Rosemont, IL, USA)
| |
Collapse
|
18
|
Abarca-Buis RF, Mandujano-Tinoco EA, Cabrera-Wrooman A, Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J Cell Commun Signal 2021; 15:7-23. [PMID: 33481173 DOI: 10.1007/s12079-021-00605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor β TGFβ/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-β/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFβ/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFβ/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFβ/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-β/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.
Collapse
Affiliation(s)
- René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
19
|
Turchan WT, Gutiontov SI, Spiotto MT, Liauw SL. Prostate Cancer Radiotherapy: Increased Biochemical Control and Late Toxicity in Men With Medication Allergies. JNCI Cancer Spectr 2020; 4:pkaa081. [PMID: 33409456 PMCID: PMC7771007 DOI: 10.1093/jncics/pkaa081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Given similarities in the mediators of medication allergy (MA) and tissue response to radiotherapy, we assessed whether outcomes following prostate radiotherapy differ in patients with MAs.
Methods
A total 587 men with known MA history and nonmetastatic prostate cancer underwent radiotherapy from 1989 to 2006. Clinicopathologic and treatment variables were analyzed for association with freedom from biochemical failure (FFBF) and late treatment–related, physician-defined Radiation Therapy Oncology Group gastrointestinal (GI) and genitourinary (GU) toxicity. Covariates identified on univariate analysis for toxicity and disease control were examined on multivariable analysis. All statistical tests were 2-sided, and a P less than .05 was considered statistically significant.
Results
A total of 155 of 587 men (26.4%) had 1 or more MAs, most commonly to penicillin (n = 71), sulfa (n = 35), and aspirin or nonsteroidal antiinflammatory drugs (n = 28). On univariate analysis, men with MAs had superior 10-y FFBF (71.5% vs 63.5%, P = .02) and higher incidence of late GI grade 2 or higher (G2+; 20.6% vs 13.2%, P = .04) and grade 3 or higher (G3+; 7.5% vs 3.9%, P = .08) as well as late GU G2+ (42.5% vs 33.2%, P = .04) and G3+ (7.5% vs 3.0%, P = .02) toxicity than men without MAs. On multivariable analysis, MA history remained a statistically significant predictor of FFBF (hazard ratio [HR] = 0.64, 95% confidence interval [CI] = 0.43 to 0.93, P = .02), late G2+ GI (HR = 1.76, 95% CI = 1.06 to 2.90, P=.03), and G3+ GU (HR = 2.69, 95% CI = 1.16 to 6.27, P = .02) toxicity after controlling for corresponding covariates in each model.
Conclusions
Men with MAs had improved FFBF and increased treatment-related toxicity following radiotherapy for prostate cancer. MA history could be a relevant consideration in the management of men with localized prostate cancer.
Collapse
Affiliation(s)
- William Tyler Turchan
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Stanley I Gutiontov
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Michael T Spiotto
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Stanley L Liauw
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Pandya UM, Manzanares MA, Tellechea A, Egbuta C, Daubriac J, Jimenez-Jaramillo C, Samra F, Fredston-Hermann A, Saadipour K, Gold LI. Calreticulin exploits TGF-β for extracellular matrix induction engineering a tissue regenerative process. FASEB J 2020; 34:15849-15874. [PMID: 33015849 DOI: 10.1096/fj.202001161r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-β canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and β1 integrins was not mediated by TGF-β signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-β3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-β receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-β1 and ECM proteins. In addition, TGF-β1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-β-mediated fibrosis/scarring to achieve tissue regeneration.
Collapse
Affiliation(s)
- Unnati M Pandya
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Miguel A Manzanares
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Ana Tellechea
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Chinaza Egbuta
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Couger Jimenez-Jaramillo
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Fares Samra
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Alexa Fredston-Hermann
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Khalil Saadipour
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA.,Pathology Department, New York University School of Medicine-Langone Health, New York, NY, USA
| |
Collapse
|
21
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 676] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
22
|
Li XY, Weng XJ, Li XJ, Tian XY. TSG-6 Inhibits the Growth of Keloid Fibroblasts Via Mediating the TGF-β1/Smad Signaling Pathway. J INVEST SURG 2020; 34:947-956. [PMID: 31986937 DOI: 10.1080/08941939.2020.1716894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin-Yi Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Juan Weng
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Jing Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| | - Xiao-Yu Tian
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
23
|
Binabaj MM, Asgharzadeh F, Avan A, Rahmani F, Soleimani A, Parizadeh MR, Ferns GA, Ryzhikov M, Khazaei M, Hassanian SM. EW-7197 prevents ulcerative colitis-associated fibrosis and inflammation. J Cell Physiol 2019; 234:11654-11661. [PMID: 30478959 DOI: 10.1002/jcp.27823] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
EW-7197 is a transforming growth factor-β type I receptor kinase inhibitor with potential anti-inflammatory and antifibrotic properties. Here, we investigate the potential therapeutic effects of EW-7197 in a murine model of ulcerative colitis. EW-7197 attenuated the colitis disease activity index by improving rectal bleeding, body weight, and degree of stool consistency. EW-7197 also reduced colorectal tissue damage and the colon histopathological score by reducing crypt loss, mucosal damage, and tissue inflammation. Moreover, EW-7197 appeared to ameliorate the inflammatory and fibrotic responses by reducing oxidative stress, reducing submucosal edema and inflammatory cell infiltration, downregulating proinflammatory and pro-fibrotic genes, and inhibiting excessive collagen deposition in inflamed and fibrotic ulcerative colitis tissues. These results suggest that EW-7197 has potentially useful therapeutic properties against colitis, with clinically translational potential of inhibiting key pathological responses of inflammation and fibrosis in patients with colitis.
Collapse
Affiliation(s)
- Maryam M Binabaj
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Parizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, Saint Louis, Missouri
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Qiu Y, Gao Y, Yu D, Zhong L, Cai W, Ji J, Geng F, Tang G, Zhang H, Cao J, Zhang J, Zhang S. Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway. J Invest Dermatol 2019; 140:94-102.e7. [PMID: 31254515 DOI: 10.1016/j.jid.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. DNA methylation has been characterized as an important regulatory mechanism of multiple pathological processes. In this study, we compared the genome-wide DNA methylation status in radiation-induced fibrotic skin and adjacent normal tissues of rats by methylated DNA immunoprecipitation sequencing. Radiation-induced fibrotic skin showed differentially methylated regions associated with 3,650 protein-coding genes, 72 microRNAs, 5,836 long noncoding RNAs and 3 piwi-interacting RNAs. By integrating the mRNA and methylation profiles, the zinc transporter SLC39A9/ZIP9 was investigated in greater detail. The protein level of ZIP9 was increased in irradiated skin tissues of humans, monkeys, and rats, especially in radiogenic fibrotic skin tissues. Radiation induced the demethylation of a CpG dinucleotide in exon 1 of ZIP9 that resulted in recruitment of the transcriptional factor Sp1 and increased ZIP9 expression. Overexpression of ZIP9 resulted in activation of the profibrotic transforming growth factor-β signaling pathway through protein kinase B in human fibroblasts. In addition, radiation-induced skin fibrosis was associated with increased zinc accumulation. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethylenediamine abrogated ZIP9-induced activation of the transforming growth factor-β signaling pathway and attenuated radiation-induced skin fibrosis in a rat model. In summary, our findings illustrate epigenetic regulation of ZIP9 and its critical role in promoting radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiying Gao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Daojiang Yu
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Weichao Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fenghao Geng
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China.
| |
Collapse
|
25
|
Radiation induces changes in toll-like receptors of the uterine cervix of the rat. PLoS One 2019; 14:e0215250. [PMID: 30998706 PMCID: PMC6472742 DOI: 10.1371/journal.pone.0215250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy is an important therapeutic approach against cervical cancer but associated with adverse effects including vaginal fibrosis and dyspareunia. We here assessed the immunological and oxidative responses to cervical irradiation in an animal model for radiation-induced cervicitis. Rats were sedated and either exposed to 20 Gy of ionising radiation given by a linear accelerator or only sedated (controls) and euthanized 1–14 days later. The expressions of toll-like receptors (TLRs) and coupled intracellular pathways in the cervix were assessed with immunohistofluorescence and western blot. Expression of cytokines were analysed with the Bio-Plex Suspension Array System (Bio-Rad). We showed that TLRs 2–9 were expressed in the rat cervix and cervical irradiation induced up-regulation of TLR5, TRIF and NF-κB. In the irradiated cervical epithelium, TLR5 and TRIF were increased in concert with an up-regulation of oxidative stress (8-OHdG) and antioxidant enzymes (SOD-1 and catalase). G-CSF, M-CSF, IL-10, IL- 17A, IL-18 and RANTES expressions in the cervix decreased two weeks after cervical irradiation. In conclusion, the rat uterine cervix expresses the TLRs 2–9. Cervical irradiation induces immunological changes and oxidative stress, which could have importance in the development of adverse effects to radiotherapy.
Collapse
|
26
|
Ejaz A, Epperly MW, Hou W, Greenberger JS, Rubin JP. Adipose-Derived Stem Cell Therapy Ameliorates Ionizing Irradiation Fibrosis via Hepatocyte Growth Factor-Mediated Transforming Growth Factor-β Downregulation and Recruitment of Bone Marrow Cells. Stem Cells 2019; 37:791-802. [PMID: 30861238 DOI: 10.1002/stem.3000] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/06/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023]
Abstract
Radiation therapy to anatomic regions, including the head and neck, chest wall, and extremities, can produce radiation-induced fibrosis (RIF). To elucidate the cellular and molecular mechanism(s) involved in RIF, female C57BL/6J mice were irradiated to the right flank to 35 Gy in single fraction using 6 Mv electrons. Radiation fibrosis was detected by day 14, was increased by day 28, and confirmed by Masson's trichrome histological staining for collagen. Biopsied tissue at day 14 showed an increase in expression of fibrosis-related genes including transforming growth factor-β (TGF-β) and collagens 1-6. A single adipose-derived stem cell (ASC) injection on day 28 at the irradiated site decreased by day 40: epithelial thickness, collagen deposition, and significantly improved limb excursion compared with irradiated controls. Noncontact transwell coculture of ASCs above a monolayer of irradiated human foreskin fibroblasts downregulated fibrosis-related genes TGF-β, connective tissue growth factor, interleukin-1, NF-kB, tumor necrosis factor, and collagens 1-6. Hepatocyte growth factor (HGF) secreted by ASCs was identified as a novel mechanism by which ASCs exert antifibrotic effects by downregulating fibrotic gene expression in irradiated cells and recruiting bone marrow cells to the irradiated site. In conclusion, these data indicate a mechanistic role of HGF secreted by ASCs in reducing RIF. Stem Cells 2019;37:791-802.
Collapse
Affiliation(s)
- Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
28
|
Lee CM, Cho SJ, Cho WK, Park JW, Lee JH, Choi AM, Rosas IO, Zheng M, Peltz G, Lee CG, Elias JA. Laminin α1 is a genetic modifier of TGF-β1-stimulated pulmonary fibrosis. JCI Insight 2018; 3:99574. [PMID: 30232270 DOI: 10.1172/jci.insight.99574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
The pathogenetic mechanisms underlying the pathologic fibrosis in diseases such as idiopathic pulmonary fibrosis (IPF) are poorly understood. To identify genetic factors affecting susceptibility to IPF, we analyzed a murine genetic model of IPF in which a profibrotic cytokine (TGF-β1) was expressed in the lungs of 10 different inbred mouse strains. Surprisingly, the extent of TGF-β1-induced lung fibrosis was highly strain dependent. Haplotype-based computational genetic analysis and gene expression profiling of lung tissue obtained from fibrosis-susceptible and -resistant strains identified laminin α1 (Lama1) as a genetic modifier for susceptibility to IPF. Subsequent studies demonstrated that Lama1 plays an important role in multiple processes that affect the pulmonary response to lung injury and susceptibility to fibrosis, which include: macrophage activation, fibroblast proliferation, myofibroblast transformation, and the production of extracellular matrix. Also, Lama1 mRNA expression was significantly increased in lung tissue obtained from IPF patients. These studies identify Lama1 as the genetic modifier of TGF-β1 effector responses that significantly affects the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Soo Jung Cho
- Weill Cornell Medicine Pulmonary and Critical Care Medicine, New York, New York, USA
| | - Won-Kyung Cho
- International Health Care Center, Pulmonary and Critical Care Medicine, Ulsan University College of Medicine, Seoul, South Korea
| | - Jin Wook Park
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M Choi
- Weill Cornell Medicine Pulmonary and Critical Care Medicine, New York, New York, USA
| | - Ivan O Rosas
- Brigham and Women's Hospital, Medicine-Clinics 3, Boston, Massachusetts, USA
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA.,Division of Medicine and Biological Sciences, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
29
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [PMID: 29504497 DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Cancer treatment is one of the most challenging diseases in the present era. Among a few modalities for cancer therapy, radiotherapy plays a pivotal role in more than half of all treatments alone or combined with other cancer treatment modalities. Management of normal tissue toxicity induced by radiation is one of the most important limiting factors for an appropriate radiation treatment course. The evaluation of mechanisms of normal tissue toxicity has shown that immune responses especially inflammatory responses play a key role in both early and late side effects of exposure to ionizing radiation (IR). DNA damage and cell death, as well as damage to some organelles such as mitochondria initiate several signaling pathways that result in the response of immune cells. Massive cell damage which is a common phenomenon following exposure to a high dose of IR cause secretion of a lot of inflammatory mediators including cytokines and chemokines. These mediators initiate different changes in normal tissues that may continue for a long time after irradiation. In this study, we reviewed the mechanisms of inflammatory responses to IR that are involved in normal tissue toxicity and considered as the most important limiting factors in radiotherapy. Also, we introduced some agents that have been proposed for management of these responses. CONCLUSIONS The early inflammation during the radiation treatment is often a limiting factor in radiotherapy. In addition to the limiting factors, chronic inflammatory responses may increase the risk of second primary cancers through continuous free radical production, attenuation of tumor suppressor genes, and activation of oncogenes. Moreover, these effects may influence non-irradiated tissues through a mechanism named bystander effect.
Collapse
Affiliation(s)
- Masoud Najafi
- a Radiology and Nuclear Medicine Department, School of Paramedical Sciences , Kermanshah University of Medical Science , Kermanshah , Iran
| | - Elahe Motevaseli
- b Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Shirazi
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Ghazale Geraily
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolhasan Rezaeyan
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Farzad Norouzi
- e Science and Research Branch , Azad University , Tehran , Iran
| | - Saeed Rezapoor
- f Department of Radiology, Faculty of Paramedical Sciences , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Abdollahi
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
30
|
In Search of a Murine Model of Radiation-Induced Periprosthetic Capsular Fibrosis. Ann Plast Surg 2018; 80:S204-S210. [DOI: 10.1097/sap.0000000000001362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Willis J, Epperly MW, Fisher R, Zhang X, Shields D, Hou W, Wang H, Li S, Wipf P, Parmar K, Guinan E, Steinman J, Greenberger JS. Amelioration of Head and Neck Radiation-Induced Mucositis and Distant Marrow Suppression in Fanca -/- and Fancg -/- Mice by Intraoral Administration of GS-Nitroxide (JP4-039). Radiat Res 2018; 189:560-578. [PMID: 29584588 DOI: 10.1667/rr14878.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamous cell carcinomas of the head and neck are appearing with increased frequency in both marrow transplanted and non-transplanted Fanconi anemia (FA) patients. FA patients commonly display radiosensitivity of epithelial tissues, complicating effective radiotherapy. Fancd2-/- mice (C57BL/6J and 129/Sv background) demonstrate epithelial tissue sensitivity to single-fraction or fractionated irradiation to the head and neck and distant marrow suppression (abscopal effect), both ameliorated by intraoral administration of the mitochondrial-targeted antioxidant, GS-nitroxide, JP4-039. We now report that mice of two other FA genotypes, Fancg-/- (B6) and the most prevalent human genotype Fanca-/- (129/Sv), also demonstrate: 1. reduced longevity of hematopoiesis in long-term bone marrow cultures; 2. radiosensitivity of bone marrow stromal cell lines; and 3. head and neck radiation-induced severe mucositis and abscopal suppression of distant marrow hematopoiesis. Intraoral administration of JP4-039/F15, but not non-mitochondrial-targeted 4-amino-Tempo/F15 or F15 alone, prior to each radiation treatment ameliorated both local and abscopal radiation effects. Head and neck irradiated TGF-β-resistant SMAD3-/- (129/Sv) mice and double-knockout SMAD3-/- Fancd2-/- (129/Sv) mice treated daily with TGF-β receptor antagonist, LY364947, still displayed abscopal bone marrow suppression, implicating a non-TGF-β mechanism. Thus, amelioration of both local normal tissue radiosensitivity and distant marrow suppression by intraoral administration of JP4-039 in Fancg-/- and Fanca-/- mice supports a clinical trial of this locally administered normal tissue radioprotector and mitigator during head and neck irradiation in FA patients.
Collapse
Affiliation(s)
- John Willis
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael W Epperly
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Song Li
- b Departments of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peter Wipf
- c Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kalindi Parmar
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Eva Guinan
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Justin Steinman
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Joel S Greenberger
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
32
|
TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 2017; 18:ijms18102157. [PMID: 29039786 PMCID: PMC5666838 DOI: 10.3390/ijms18102157] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor β (TGF-β) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-β by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-β signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.
Collapse
|
33
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
34
|
El-Tanbouly DM, Wadie W, Sayed RH. Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice. Toxicol Appl Pharmacol 2017. [DOI: 10.1016/j.taap.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Aschner Y, Downey GP. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:647-55. [PMID: 26796672 DOI: 10.1165/rcmb.2015-0391tr] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we review the biology and physiological importance of transforming growth factor-β (TGF-β) to homeostasis in the respiratory system, its importance to innate and adaptive immune responses in the lung, and its pathophysiological role in various chronic pulmonary diseases including pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. The TGF-β family is responsible for initiation of the intracellular signaling pathways that direct numerous cellular activities including proliferation, differentiation, extracellular matrix synthesis, and apoptosis. When TGF-β signaling is dysregulated or essential control mechanisms are unbalanced, the consequences of organ and tissue dysfunction can be profound. The complexities and myriad checkpoints built into the TGF-β signaling pathways provide attractive targets for the treatment of these disease states, many of which are currently being investigated. This review focuses on those aspects of TGF-β biology that are most relevant to pulmonary diseases and that hold promise as novel therapeutic targets.
Collapse
Affiliation(s)
- Yael Aschner
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Gregory P Downey
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and.,2 Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado; and.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and.,4 Departments of Pediatrics, and.,5 Biomedical Research, National Jewish Health, Denver, Colorado
| |
Collapse
|
36
|
Carthy JM. TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. J Cell Physiol 2017; 233:98-106. [PMID: 28247933 DOI: 10.1002/jcp.25879] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
The myofibroblast is a highly specialized cell type that plays a critical role during normal tissue wound healing, but also contributes pathologically to chronic inflammatory conditions such as fibrosis and cancer. As fibrotic conditions continue to be a major burden to the public health system, novel therapies that target the function of myofibroblasts may show promise in the clinic. The cytokine transforming growth factor β (TGFβ) is the most potent known inducer of myofibroblast differentiation and thus represents a powerful target to modify myofibroblast function during disease. This review focuses on our current understanding of the key signaling pathways activated by TGFβ during myofibroblast differentiation.
Collapse
Affiliation(s)
- Jonathon M Carthy
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
37
|
de Andrade CBV, Ramos IPR, de Moraes ACN, do Nascimento ALR, Salata C, Goldenberg RCDS, de Carvalho JJ, de Almeida CEV. Radiotherapy-Induced Skin Reactions Induce Fibrosis Mediated by TGF-β1 Cytokine. Dose Response 2017; 15:1559325817705019. [PMID: 28507463 PMCID: PMC5415163 DOI: 10.1177/1559325817705019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose: This study aimed to investigate radiation-induced lesions on the skin in an experimental animal model. Methods and Materials: Cutaneous wounds were induced in Wistar rats by 4 MeV energy electron beam irradiation, using a dose rate of 240 cGy/min, for 3 different doses (10 Gy, 40 Gy, and 60 Gy). The skin was observed 5, 10, and 25 days (D) after ionizing radiation exposition. Results: Infiltrate inflammatory process was observed in D5 and D10, for the 40 Gy and 60 Gy groups, and a progressive increase of transforming growth factor β1 is associated with this process. It could also be noted a mischaracterization of collagen fibers at the high-dose groups. Conclusion: It was observed that the lesions caused by ionizing radiation in rats were very similar to radiodermatitis in patients under radiotherapy treatment. Advances in Knowledge: This study is important to develop strategies to prevent radiation-induced skin reactions.
Collapse
Affiliation(s)
- Cherley Borba Vieira de Andrade
- Radiological Sciences Laboratory, Department of Biophysics and Biometry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.,Translational Endocrinology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Isalira Peroba Rezende Ramos
- Center Structural Biology and Bio-imaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Lúcia Rosa do Nascimento
- Ultrastructure Laboratory and Tissue Biology, Department of Histology and Embriology (UERJ), Rio de Janeiro, RJ, Brazil
| | - Camila Salata
- Radiological Sciences Laboratory, Department of Biophysics and Biometry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jorge José de Carvalho
- Ultrastructure Laboratory and Tissue Biology, Department of Histology and Embriology (UERJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Eduardo Veloso de Almeida
- Radiological Sciences Laboratory, Department of Biophysics and Biometry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Wang J, Wang Y, Han J, Mei H, Yu D, Ding Q, Zhang T, Wu G, Peng G, Lin Z. Metformin Attenuates Radiation-Induced Pulmonary Fibrosis in a Murine Model. Radiat Res 2017; 188:105-113. [PMID: 28437189 DOI: 10.1667/rr14708.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While radiotherapy continues to be a major cancer treatment option, its dose-limiting side effects, such as pulmonary fibrosis, severely impair the quality of life in these patients. In this study, we evaluated the radioprotective effects of metformin, a commonly used biguanide antidiabetic medication, in a murine model of pulmonary damage. Sprague Dawley® rats received whole lung 20 Gy irradiation with or without metformin treatment. Computed tomography (CT) was performed and Hounsfield units (HU) were determined during the observation period. Histological analysis and evaluation of fibrosis/inflammatory markers by Western blot were performed at 12 weeks postirradiation. CCK-8 and colony formation assays were used to explore the effects of metformin on non-small cell lung cancer cells A549 and H460. Results of this study showed that metformin reduced radiological and histological signs of fibrosis, inflammatory infiltration, alterations to alveolar structures and radiation-induced HU lung density. In addition, metformin was found to significantly decrease collagen 1a and TGF-β expression and inhibit p-Smad2 and p-Smad3 expression compared to that of the irradiated group alone. Moreover, metformin reduced A549 and H460 cell growth and clonogenic survival. In conclusion, metformin exerted a protective effect on normal tissues from radiation-induced pulmonary injury, and shows promise as a radioprotective agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jian Wang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Wang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Han
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Mei
- b Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan Yu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Ding
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Peng
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenyu Lin
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 2017; 292:10465-10489. [PMID: 28389562 DOI: 10.1074/jbc.m116.752451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFβ1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFβ1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFβ1. TGFβ1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFβ1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFβ1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFβRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFβ1-stimulated CD44V6/ERK/EGR1 signaling.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Roger R Markwald
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vincent C Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - William Dowling
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425.,the College of Charleston, Charleston, South Carolina 29424
| | | | | | - Gyada Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Perrella
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
40
|
Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, Mailloux AW, Zhang L, Wang X, Budhathoki A, Pradhan K, Rapaport F, Wang H, Shao Z, Ren X, Steidl U, Levine RL, Zhao ZJ, Verma A, Epling-Burnette PK. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight 2017; 2:e90932. [PMID: 28405618 DOI: 10.1172/jci.insight.90932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.
Collapse
Affiliation(s)
- Lanzhu Yue
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Matthias Bartenstein
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Wanke Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wanting Tina Ho
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ying Han
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Cem Murdun
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adam W Mailloux
- Translational Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Anjali Budhathoki
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Kith Pradhan
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Franck Rapaport
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Ross L Levine
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | | |
Collapse
|
41
|
Liu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med 2017; 13:2123-2128. [PMID: 28565818 PMCID: PMC5443237 DOI: 10.3892/etm.2017.4246] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a major form of heart disease that leads to immediate cardiomyocyte death due to ischemia and eventually fibrosis and scar formation and further dysfunction of myocardium and heart failure. Extracellular matrix (ECM) production and tissue repair is conducted by myofibroblasts, which are formed from the normal quiescent cardiac fibroblasts following transformational changes, through the active participation of transforming growth factor β (TGFβ) and its signaling pathways. TGFβ appears to be a ‘Master of all trades’, with respect to cardiac fibrosis, as it can promote cardiomyocyte apoptosis and cardiac hypertrophy. TGFβ signaling involves its binding to TGFβ receptor type II (TGFβRII), which recruits TGFβ receptor type I (TGFβRI), which are also known as activin receptor-like kinase (ALK) in five different isoforms. In canonical signaling pathways, ALK5 activates Smads 2 and 3, and ALK1 activates Smads 1 and 5. These pairs of Smads form a corresponding complex and then bind to Smad 4, to translocate into the nucleus, where transcriptional reprogramming is carried out to promote myofibroblast formation and ECM production, eventually leading to cardiac fibrosis. TGFβ levels are elevated in MI, thereby aggravating the myocardial injury further. Several microRNAs are involved in the regulation of TGFβ signaling at different steps, affecting different components. Therapeutic targeting of TGFβ signaling at ALK1-5 receptor activity level has met with limited success and extensive research is needed to develop therapies based on the components of TGFβ signaling pathway, for instance cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Guangwang Liu
- Institute of Orthopedics, Soochow University, Soochow, Jiangsu 215006, P.R. China.,Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Chao Ma
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Huilin Yang
- Institute of Orthopedics, Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
42
|
Purohit T, Qin Z, Quan C, Lin Z, Quan T. Smad3-dependent CCN2 mediates fibronectin expression in human skin dermal fibroblasts. PLoS One 2017; 12:e0173191. [PMID: 28267785 PMCID: PMC5340390 DOI: 10.1371/journal.pone.0173191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/16/2017] [Indexed: 01/12/2023] Open
Abstract
The potential involvement of connective tissue growth factor (CCN2/CTGF) in extracellular matrix (ECM) production is recognized. However, the role CCN2 in fibronectin (FN) gene expression has remained incompletely understood and even controversial. Here we report that CCN2 is absolutely necessary for FN expression in primary human skin dermal fibroblasts, the major cells responsible for ECM production in skin. Gain- and loss-of-function approaches demonstrate that CCN2 is an essential component of FN expression in both basal and stimulation by TGF-β signaling, the major regulator of FN expression. CCN2 is significantly induced by Smad3, a critical mediator of TGF-β signaling. CCN2 acts as a downstream mediator of TGF-β/Smad signaling and acting synergistically with TGF-β to regulate FN gene expression. Finally, we observed that CCN2 and FN predominantly expressed in the dermis of normal human skin, stromal tissues of skin squamous cell carcinoma (SCC), and simultaneously induced in wounded human skin in vivo. These findings provide evidence that CCN2 is responsible for mediating the stimulatory effects of TGF-β/Smad on FN gene expression, and attenuation of CCN2 expression may benefit to reduce fibrotic ECM microenvironment in disease skin.
Collapse
Affiliation(s)
- Trupta Purohit
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Chunji Quan
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
43
|
Zhao Y, Wang L, Huang Q, Jiang Y, Wang J, Zhang L, Tian Y, Yang H. Radiosensitization of Non-Small Cell Lung Cancer Cells by Inhibition of TGF-β1 Signaling With SB431542 Is Dependent on p53 Status. Oncol Res 2017; 24:1-7. [PMID: 27178816 PMCID: PMC7838670 DOI: 10.3727/096504016x14570992647087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although medically inoperable patients with stage I non-small cell lung cancer cells (NSCLC) are often treated with stereotactic body radiation therapy, its efficacy can be compromised due to poor radiosensitivity of cancer cells. Inhibition of transforming growth factor-β1 (TGF-β1) using LY364947 and LY2109761 has been demonstrated to radiosensitize cancer cells such as breast cancer, glioblastoma, and lung cancer. Our previous results have demonstrated that another potent and selective inhibitor of TGF-β1 receptor kinases, SB431542, could radiosensitize H460 cells both in vitro and in vivo. In the present study, we investigated whether SB431542 could radiosensitize other NSCLC cell lines, trying to explore the potential implication of this TGF-β1 inhibitor in radiotherapy for NSCLC patients. The results showed that A549 cells were significantly radiosensitized by SB431542, whereas no radiosensitizing effect was observed in H1299 cells. Interestingly, both H460 and A549 cells have wild-type p53, while H1299 cells have deficient p53. To study whether the radiosensitizing effect of SB431542 was associated with p53 status of cancer cells, the p53 of H460 cells was silenced using shRNA transfection. Then it was found that the radiosensitizing effect of SB431542 on H460 cells was not observed in H460 cells with silenced p53. Moreover, X-irradiation caused rapid Smad2 activation in H460 and A549 cells but not in H1299 and H460 cells with silenced p53. The Smad2 activation postirradiation could be abolished by SB431542. This may explain the lack of radiosensitizing effect of SB431542 in H1299 and H460 cells with silenced p53. Thus, we concluded that the radiosensitizing effect of inhibition of TGF-β1 signaling in NSCLC cells by SB431542 was p53 dependent, suggesting that using TGF-β1 inhibitor in radiotherapy may be more complicated than previously thought and may need further investigation.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-40854-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Brand RM, Epperly MW, Stottlemyer JM, Skoda EM, Gao X, Li S, Huq S, Wipf P, Kagan VE, Greenberger JS, Falo LD. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage. J Invest Dermatol 2016; 137:576-586. [PMID: 27794421 DOI: 10.1016/j.jid.2016.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/15/2023]
Abstract
Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J Mark Stottlemyer
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin M Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiang Gao
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
46
|
Wang X, Feng S, Fan J, Li X, Wen Q, Luo N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem Pharmacol 2016; 116:200-9. [DOI: 10.1016/j.bcp.2016.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
|
47
|
Eosinophilic Esophagitis-Associated Chemical and Mechanical Microenvironment Shapes Esophageal Fibroblast Behavior. J Pediatr Gastroenterol Nutr 2016; 63:200-9. [PMID: 26727658 PMCID: PMC4929044 DOI: 10.1097/mpg.0000000000001100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is an immune-mediated allergic disease characterized by progressive esophageal dysmotility and fibrotic stricture associated with chronic esophageal fibroblast activation. It remains unknown how esophageal fibroblasts respond to EoE-relevant matrix stiffness or inflammatory cytokines. METHODS Immunofluorescence was used to evaluate α-smooth muscle actin (α-SMA) expression in endoscopic esophageal biopsies. Primary esophageal fibroblasts from adult and pediatric patients with or without EoE were exposed to transforming growth factor (TGF)β to determine gene expression, collagen-matrix contractility, and cytoskeletal organization. The influence of matrix stiffness upon fibroblast behavior was assessed on the engineered surface of polyacrylamide gels with varying stiffness. Fibroblast traction forces were measured using microfabricated-post-array-detectors. RESULTS EoE esophageal fibroblasts had enhanced α-SMA expression. TGFβ not only stimulated enhanced fibroblast-specific gene expression but also promoted fibroblast-mediated collagen-matrix contraction, despite disease state or age of patients as the origin of cells. Unlike conventional monolayer cell, culture conditions using plastic surface (1 GPa) that activates fibroblasts constitutively, our engineered platforms recapitulating physiologically relevant stiffness (1-20 kPa) revealed that matrix stiffness defines the extent of α-SMA expression, intracellular collagen fibril organization, SMAD3 phosphorylation, and fibroblast traction force. CONCLUSIONS Matrix stiffness may critically influence TGFβ-mediated gene expression and functions of esophageal fibroblasts ex vivo independent of age and disease conditions. These findings provide a novel insight into the pathogenesis of fibrostenotic disease in EoE.
Collapse
|
48
|
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol 2016; 8:8/5/a021873. [PMID: 27141051 DOI: 10.1101/cshperspect.a021873] [Citation(s) in RCA: 945] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor-β (TGF-β) is the prototype of the TGF-β family of growth and differentiation factors, which is encoded by 33 genes in mammals and comprises homo- and heterodimers. This review introduces the reader to the TGF-β family with its complexity of names and biological activities. It also introduces TGF-β as the best-studied factor among the TGF-β family proteins, with its diversity of roles in the control of cell proliferation and differentiation, wound healing and immune system, and its key roles in pathology, for example, skeletal diseases, fibrosis, and cancer.
Collapse
Affiliation(s)
- Masato Morikawa
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Park JH, Ryu SH, Choi EK, Ahn SD, Park E, Choi KC, Lee SW. SKI2162, an inhibitor of the TGF-β type I receptor (ALK5), inhibits radiation-induced fibrosis in mice. Oncotarget 2016; 6:4171-9. [PMID: 25686821 PMCID: PMC4414180 DOI: 10.18632/oncotarget.2878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/08/2014] [Indexed: 01/16/2023] Open
Abstract
Here we demonstrated that SKI2162, a small-molecule inhibitor of the TGF-β type I receptor (ALK5), prevented radiation-induced fibrosis (RIF) in mice. SKI2162 inhibited phosphorylation of Smad and induction of RIF-related genes in vitro. In RIF a mouse model, SKI2162 reduced late skin reactions and leg-contracture without jeopardizing the acute skin reaction. Irradiation of mouse tissue increased COL1A2 mRNA levels, and topical administration of SKI2162 significantly inhibited this effect. Thus, these findings support that SKI2162 has potential value as novel RIF-protective agent, and could be candidate for clinical trials.
Collapse
Affiliation(s)
- Jin-hong Park
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung-Hee Ryu
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Euisun Park
- Life Science Research Center, SK Chemicals, Seongnam-si, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
50
|
AL-Onazi AS, AL-Rasheed NM, Attia HA, AL-Rasheed NM, Ahmed RM, AL-Amin MA, Poizat C. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways. J Pharm Pharmacol 2016; 68:219-32. [DOI: 10.1111/jphp.12504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
Abstract
Abstract
Objective
To investigate whether ruboxistaurin (a selective PKC-β inhibitor) mediates renoprotective effect via interference with TGF-β1/Smad-GRAP cross-signalling.
Method
Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (55 mg/kg). Then, the diabetic rats were treated with ruboxistaurin (10 mg/kg, p.o) for 6 weeks. Valsartan (15 mg/kg, p.o) was used as a positive control. After 6 weeks of treatment, diabetic nephropathy biomarkers were assessed. TGF-β1, Smad2, and Smad3 mRNA and protein levels were detected using qPCR and western blot analysis.
Key findings
Data showed that serum creatinine, kidney/body weight ratio and urinary albumin excretion significantly increased in diabetic rats. These changes were significantly attenuated by treatment with ruboxistaurin. A significant up-regulation of TGF-β1, Smad2 and Smad3 mRNA expression was observed in diabetic rats, which was alleviated by administration of ruboxistaurin. Furthermore, immunoblotting showed a significant improvement in protein levels of TGF-β1 (P < 0.01), Smad2/3 (P < 0.01) and p-Smad3 (P < 0.001) in diabetic rats treated with ruboxistaurin compared to untreated. Importantly, the reduction in GRAP protein expression in diabetic kidney was prevented by treatment with ruboxistaurin.
Conclusion
These data suggest that the renoprotective effect of ruboxistaurin is possibly due to down-regulation of TGF-β1/Smad pathway and normalization of GRAP protein expression.
Collapse
Affiliation(s)
- Asma S AL-Onazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M AL-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nawal M AL-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raeesa M Ahmed
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maha A AL-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|