1
|
Luo Y, Tang R, Huang Y. Differences in structure, antioxidant capacity and gut microbiota modulation of red raspberry pectic polysaccharides extracted by different methods. Food Res Int 2025; 211:116474. [PMID: 40356136 DOI: 10.1016/j.foodres.2025.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Red raspberries are associated with various health benefits, with pectic polysaccharides as their primary component and potential key contributor to these effects. This study aimed to evaluate the antioxidant and prebiotic potential of four red raspberry pectic polysaccharides (RP)-EN-RP (enzyme-assisted extraction), AC-RP (acid-assisted extraction), AL-RP (alkali-assisted extraction), and US-RP (ultrasound-assisted extraction)-and to elucidate the relationship between their structure and function. AC-RP and US-RP contained higher proportions of homogalacturonan (HG) at 50.92 % and 53.10 %, respectively, while EN-RP and AL-RP exhibited higher proportions of rhamnogalacturonan-I (RG-I) at 63.89 % and 43.37 %, respectively. All four polysaccharides demonstrated significant antioxidant and prebiotic properties. AL-RP exhibited the strongest DPPH radical scavenging activity, while US-RP showed the highest hydroxyl radical scavenging ability. These pectic polysaccharides were highly fermentable, significantly modulating gut microbiota composition and promoting the production of propionic acid, particularly EN-RP and AL-RP. Compared to the blank group, RP intervention significantly enriched Bacteroides, Phocaeicola, Bifidobacterium, Limosilactobacillus, and Paraprevotella. Carbohydrate-active enzyme genes in metagenomes revealed that glycoside hydrolases played a vital role in the degradation and utilization of red raspberry polysaccharides. Furthermore, correlation analysis indicated that a higher RG-I proportion and an elevated Rha/GalA ratio enhanced the abundance of certain beneficial microbial species and increased propionic acid production. These findings advance the understanding of the structure-function relationship of natural pectic polysaccharides and highlight their potential for tailoring gut microbiota and promoting health through precise dietary interventions.
Collapse
Affiliation(s)
- You Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Ruling Tang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yongguang Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Lu Y, Rai R, Nitin N. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Food Res Int 2023; 173:113384. [PMID: 37803721 DOI: 10.1016/j.foodres.2023.113384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
Collapse
Affiliation(s)
- Yixing Lu
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA.
| | - Rewa Rai
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA.
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Ho QN, Fettweis M, Spencer KL, Lee BJ. Flocculation with heterogeneous composition in water environments: A review. WATER RESEARCH 2022; 213:118147. [PMID: 35149367 DOI: 10.1016/j.watres.2022.118147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.
Collapse
Key Words
- AB, Alcian Blue
- CBB, Coomassie Brilliant Blue
- CSPs, Coomassie stainable particles
- DOM, Dissolved organic matter
- ENPs, Engineered nanoparticles
- EPS, Extracellular polymeric substances
- FA, Fulvic acids
- Flocculation
- HA, Humic acids
- HS, Humic substances
- Heterogeneous composition
- Hm, Humin
- LB-EPS, Loosely bound EPS
- MPs, Microplastics
- Microplastics
- OM, Organic matter
- OWFs, Offshore wind farms
- Organic matter
- POM, Particulate organic matter
- SPM, Suspended particulate matter
- Suspended particle matter
- TB-EPS, Tightly bound EPS
- TEP, Transparent exopolymer particles
- TOC, Total organic carbon
Collapse
Affiliation(s)
- Que Nguyen Ho
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Bruxelles, Belgium
| | - Kate L Spencer
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Byung Joon Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea.
| |
Collapse
|
4
|
Genzer JL, Kamalanathan M, Bretherton L, Hillhouse J, Xu C, Santschi PH, Quigg A. Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification. PLoS One 2020; 15:e0235473. [PMID: 32634146 PMCID: PMC7340286 DOI: 10.1371/journal.pone.0235473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T. pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal EPS (< 0.7 μm to > 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.
Collapse
Affiliation(s)
- Jennifer L. Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Laura Bretherton
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Peter H. Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
5
|
Kamalanathan M, Doyle SM, Xu C, Achberger AM, Wade TL, Schwehr K, Santschi PH, Sylvan JB, Quigg A. Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions. mSystems 2020; 5:e00290-20. [PMID: 32291350 PMCID: PMC7159900 DOI: 10.1128/msystems.00290-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Microbial heterotopic metabolism in the ocean is fueled by a supply of essential nutrients acquired via exoenzymes catalyzing depolymerization of high-molecular-weight compounds. Although the rates of activity for a variety of exoenzymes across various marine environments are well established, the factors regulating the production of these exoenzymes, and to some extent their correlation with microbial community composition, are less known. This study focuses on addressing these challenges using a mesocosm experiment that compared a natural seawater microbial community (control) and exposed (to oil) treatment. Exoenzyme activities for β-glucosidase, leucine aminopeptidase (LAP), and lipase were significantly correlated with dissolved nutrient concentrations. We measured correlations between carbon- and nitrogen-acquiring enzymes (β-glucosidase/lipase versus LAP) and found that the correlation of carbon-acquiring enzymes varies with the chemical nature of the available primary carbon source. Notably, a strong correlation between particulate organic carbon and β-glucosidase activity demonstrates their polysaccharide depolymerization in providing the carbon for microbial growth. Last, we show that exoenzyme activity patterns are not necessarily correlated with prokaryotic community composition, suggesting a redundancy of exoenzyme functions among the marine microbial community and substrate availability. This study provides foundational work for linking exoenzyme function with dissolved organic substrate and downstream processes in marine systems.IMPORTANCE Microbes release exoenzymes into the environment to break down complex organic matter and nutrients into simpler forms that can be assimilated and utilized, thereby addressing their cellular carbon, nitrogen, and phosphorus requirements. Despite its importance, the factors associated with the synthesis of exoenzymes are not clearly defined, especially for the marine environment. Here, we found that exoenzymes associated with nitrogen and phosphorus acquisition were strongly correlated with inorganic nutrient levels, while those associated with carbon acquisition depended on the type of organic carbon available. We also show a linear relationship between carbon- and nitrogen-acquiring exoenzymes and a strong correlation between microbial biomass and exoenzymes, highlighting their significance to microbial productivity. Last, we show that changes in microbial community composition are not strongly associated with changes in exoenzyme activity profiles, a finding which reveals a redundancy of exoenzyme activity functions among microbial community. These findings advance our understanding of previously unknown factors associated with exoenzyme production in the marine environment.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Shawn M Doyle
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Amanda M Achberger
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
| | - Kathy Schwehr
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Xu C, Lin P, Zhang S, Sun L, Xing W, Schwehr KA, Chin WC, Wade TL, Knap AH, Hatcher PG, Yard A, Jiang C, Quigg A, Santschi PH. The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133626. [PMID: 31377363 DOI: 10.1016/j.scitotenv.2019.133626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.
Collapse
Affiliation(s)
- Chen Xu
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA.
| | - Peng Lin
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Saijin Zhang
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Luni Sun
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Wei Xing
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Kathleen A Schwehr
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Wei-Chun Chin
- Bioengineering, University of California at Merced, Merced, CA 95343, USA
| | - Terry L Wade
- Dept. of Oceanography, Texas A & M University, College Station, TX 77843, USA
| | - Anthony H Knap
- Dept. of Oceanography, Texas A & M University, College Station, TX 77843, USA
| | - Patrick G Hatcher
- Dept. of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Alexandra Yard
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Christine Jiang
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Dept. of Oceanography, Texas A & M University, College Station, TX 77843, USA; Dept. of Marine Biology, Texas A & M University at Galveston, Galveston, TX 77553, USA
| | - Peter H Santschi
- Dept. of Marine Science, Texas A & M University at Galveston, Galveston, TX 77553, USA; Dept. of Oceanography, Texas A & M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10. ENVIRONMENTS 2018. [DOI: 10.3390/environments5060063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Kantar C, Demiray H, Dogan NM, Dodge CJ. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. CHEMOSPHERE 2011; 82:1489-95. [PMID: 21272912 DOI: 10.1016/j.chemosphere.2011.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/31/2010] [Accepted: 01/02/2011] [Indexed: 05/06/2023]
Abstract
Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.
Collapse
Affiliation(s)
- Cetin Kantar
- Mersin University, Faculty of Engineering, Department of Environmental Engineering, Mersin, Turkey.
| | | | | | | |
Collapse
|
9
|
The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol 2011. [DOI: 10.1007/s00300-011-0961-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Xiong SL, Li AL, Huang N. Recent Advances in the Bioactivities and Structural Analysis of Chondroitin Sulfate. ADVANCED MATERIALS RESEARCH 2010; 152-153:399-407. [DOI: 10.4028/www.scientific.net/amr.152-153.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Recent research data on chondroitin sulfate have suggested that they have many new biological functions such as anti-atherogenesis, anticoagulation, prevention and cure of arthritis, protection and repair of neuron during CNS development, morphogenesis and cell division. They are widely applied to functional food, clinical medicine and biomaterial. However, these bioactivities and applications are dependent on their fine structure with different monosaccharide unit and sulfation patterns. This review provides information on intimate relationship between these biological functions and the structure. Moreover, we overviewed the newly analytical methods about the composition and fine structure of them, including chromatometry, high performance liquid chromatography, mass spectrum and nuclear magnetic resonance before and after enzymolysis.
Collapse
Affiliation(s)
| | - An Lin Li
- Southwest University of Science and Technology
| | - Ni Huang
- Southwest University of Science and Technology
| |
Collapse
|
11
|
Xu C, Santschi PH, Schwehr KA, Hung CC. Optimized isolation procedure for obtaining strongly actinide binding exopolymeric substances (EPS) from two bacteria (Sagittula stellata and Pseudomonas fluorescens Biovar II). BIORESOURCE TECHNOLOGY 2009; 100:6010-6021. [PMID: 19574036 DOI: 10.1016/j.biortech.2009.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/09/2008] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
Different chemical extractants (NaCl, EDTA, HCl and NaOH) and physical methods (ultrasonication and heating) were examined by their efficacies of extracting "attached" exopolymeric substances (EPS) secreted by marine bacterium Sagittula stellata (SS) and terrestrial bacterium Pseudomonas fluorescens Biovar II (PF). Extraction by 0.5 N HCl for 3 h was best for SS while extraction by 0.05 N NaCl for 3-5 h was regarded as optimal for PF. Improvements in EPS purification included a pre-diafiltration step to remove the broth material and reduce the solution volume, thus the usage of ethanol, and time. The EPS harvested at the optimal time and purified by the improved method were enriched in polysaccharides, with smaller amounts of proteins, thus having amphiphilic properties. Isoelectric focusing of (234)Th or (240)Pu labeled EPS showed both actinides were strongly bound to macromolecules with low pI, similar to reported marine or soil colloidal natural organic matter (NOM).
Collapse
Affiliation(s)
- Chen Xu
- Laboratory for Oceanographic and Environmental Research, Departments of Oceanography and Marine Sciences, Texas A&M University, 5007 Avenue U, Galveston, TX 77551, United States.
| | | | | | | |
Collapse
|
12
|
Binding of Pu(IV) to galacturonic acid and extracellular polymeric substances (EPS) fromShewanella putrefaciens, Clostridium sp. andPseudomonas fluorescens. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2008.1562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThe conditional stability constants for trace-level concentrations of Pu(IV) complexing with galacturonic acid and EPS, isolated from axenicClostridiumsp.,P. fluorescensandShewanella putrefaciensCN32 cultures, were determined at pH 4 and an ionic strength of 0.1 M NaCl using an ion-exchange technique. The analysis of ion-exchange data with Schubert´s technique indicates that the Pu binding by galacturonic acid and EPS fromClostridiumsp. andS. putrefacienscan be described based on the formation of 1:1 Pu(IV)-ligand complexes. However, the accurate description of Pu binding by EPS fromP. fluorescensrequires postulation of a mixture of 1:1/1:2 complexes between Pu(IV) and ligands under the experimental conditions studied.The results from the ion-exchange experiments were also modeled based on a non-electrostatic, discrete ligand approach in which bacterial EPS is conceptualized as being composed of a suite of monoprotic acids, HLi, of arbitrarily-assigned pKa(i) values (e.g., 4, 6 and 8). The examination of ion-exchange data in a chemical model suggested that only the pKa4 (L1) and 6 (L2) ligands are sufficient to accurately simulate the Pu(IV)/EPS binding, implying that carboxylic groups in EPS are the primary binding sites for complexing with Pu(IV) under the experimental conditions examined. The affinity of EPS for complexing Pu(IV) decreases in the order ofClostridiumsp.>S. putrefaciens>P. fluorescensalthough the concentrations of carboxylic groups in EPS decrease in the order ofP. fluorescens>S. putrefaciens>Clostridiumsp. This discrepancy may be due to differences in binding affinities between Na+ion in solution and EPS ligands. AtI=0.1 M, models demonstrated that the EPS fromP. fluorescensexhibits a much stronger affinity for the Na+ion compared to ligands from other EPS; therefore, the deprotonated carboxylic sites of EPS fromP. fluorescensare hypothesized to be mostly bound by Na+in solution.
Collapse
|
13
|
Grzybowski W. Terrestrial humic substances induce photodegradation of polysaccharides in the aquatic environment. Photochem Photobiol Sci 2009; 8:1361-3. [DOI: 10.1039/b9pp00038k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Xu C, Santschi PH, Zhong JY, Hatcher PG, Francis AJ, Dodge CJ, Roberts KA, Hung CC, Honeyman BD. Colloidal cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:8211-8217. [PMID: 19068796 DOI: 10.1021/es801348t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Relatively recently, inorganic colloids have been invoked to reconcile the apparent contradictions between expectations based on classical dissolved-phase Pu transport and field observations of "enhanced" Pu mobility (Kersting et al. Nature 1999, 397, 56-59). A new paradigm for Pu transport is mobilization and transport via biologically produced ligands. This study for the first time reports a new finding of Pu being transported, at sub-pM concentrations, by a cutin-like natural substance containing siderophore-like moieties and virtually all mobile Pu. Most likely, Pu is complexed by chelating groups derived from siderophores that are covalently bound to a backbone of cutin-derived soil degradation products, thus revealing the history of initial exposure to Pu. Features such as amphiphilicity and small size make this macromolecule an ideal collector for actinides and other metals and a vector for their dispersal. Cross-linking to the hydrophobic domains (e.g., by polysaccharides) gives this macromolecule high mobility and a means of enhancing Pu transport. This finding provides a new mechanism for Pu transport through environmental systems that would not have been predicted by Pu transport models.
Collapse
Affiliation(s)
- C Xu
- Laboratory for Oceanographic and Environmental Research (LOER), Department of Oceanography Sciences, Texas A&M University, Galveston, Texas 77551, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydr Polym 2005. [DOI: 10.1016/j.carbpol.2005.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|