1
|
-Aryl-2(trifluoromethyl)benzo[][1,8]naphthyridin-4(1)-one as Convenient Platform to Design High Photostable and Long-Lived Dyad Fluorophore with Potential Application in Live-Cell Imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Alessa H, Saber AL, Althakafy JT. Up-to-date studies regarding the determination of melatonin by chromatographic methods. Arch Pharm (Weinheim) 2021; 355:e2100378. [PMID: 34842297 DOI: 10.1002/ardp.202100378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Melatonin is an indolic compound that has been reported in the literature to exist in human-based samples, vertebrates, vegetables, fruits, and pharmaceutical products. Melatonin is considered a dietary supplement and can regulate circadian rhythms, although it has not been classified as a drug by the US Food and Drug Administration. Several analytical methods have been used for its detection. This study aimed to summarize the recent outcomes of the chromatographic methods such as electrophoretic methods, gas chromatography, and liquid chromatography, which have been used for the determination of melatonin in the last three decades, with the focus on gas chromatography and high-performance liquid chromatography methods.
Collapse
Affiliation(s)
- Hussain Alessa
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amr L Saber
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jalal T Althakafy
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Fan W, Li G, Zhang X, Wang Y, Wang C, Xu B, Guo X, Li H. The role of melatonin and Tryptophan-5-hydroxylase-1 in different abiotic stressors in Apis cerana cerana. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104180. [PMID: 33309689 DOI: 10.1016/j.jinsphys.2020.104180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/20/2023]
Abstract
Tryptophan-5-hydroxylase-1 (T5H-1) is the rate-limiting enzyme in the biosynthesis of serotonin, which is involved in the biosynthesis of melatonin (Mel). Mel, a biological hormone, plays crucial roles in stressors tolerance, such as cold, hot, Ultraviolet (UV) and pesticide tolerance. However, the direct correlation between T5H-1 and Mel and the underlying mechanism in organisms remains elusive. Mel-mediated cold tolerance was studied extensively in plants and somewhat in insects, including bees. The present study isolated the Mel synthesis gene T5H-1 from Apis cerana cerana for the first time. qRT-PCR analysis indicated that AccT5H-1 played vital roles during some adverse conditions, including 4 °C, 8 °C, 10 °C, 45 °C, UV, cyhalothrin, abamectin, paraquat and bifenthrin exposure. Knockdown of AccT5H-1 using RNA interference (RNAi) technology upregulated most antioxidant genes. Additionally, an enzyme activity assay revealed higher contents of Malondialdehyde (MDA) and Hydrogen peroxide (H2O2), lower content of Vitamin C (VC), and higher activities of Glutathione S-transferase (GST), Superoxide dismutase (SOD), Catalase (CAT) and Peroxidase (POD) in the AccT5H-1 silenced group than the control group. These results suggest that AccT5H-1 is involved in the response to different oxidative stressors in A. cerana cerana. The survival rate of A. cerana cerana exposed to low temperature treatment revealed that the optimal concentration of Mel in the diet was 10 µg/mL. We also found that the antioxidant enzyme (GST, SOD, POD and CAT) concentrations at 10 µg/mL Mel increased to different degrees, and the content of oxidizing substances (MDA and H2O2) decreased, the content of VC increased, and the content of substances that promote cold resistance (glycerol and glycogen) increased. Mel increased the resistance of A. cerana cerana exposed to low temperatures. The expression of AccT5H-1 decreased after the feeding of exogenous Mel to bees. These results provide a reference for other insect studies on Mel and T5H-1.
Collapse
Affiliation(s)
- Wenyan Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
4
|
Nisembaum LG, Martin P, Fuentes M, Besseau L, Magnanou E, McCormick SD, Falcón J. Effects of a temperature rise on melatonin and thyroid hormones during smoltification of Atlantic salmon, Salmo salar. J Comp Physiol B 2020; 190:731-748. [PMID: 32880666 DOI: 10.1007/s00360-020-01304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022]
Abstract
Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na+/K+-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature. Both provide reliable information, to which fish have adapted for thousands of years, that allows deciphering daily and calendar time. Here we studied the impact of different photoperiod (natural, sustained winter solstice) and temperature (natural, ~ + 4° C) combinations, on gill NKA, plasma free triiodothyronine (T3) and thyroxine (T4), and melatonin (MEL; the time-keeping hormone), throughout smoltification. We also studied the impact of temperature history on pineal gland MEL production in vitro. The spring increase in gill NKA was less pronounced in smolts kept under sustained winter photoperiod and/or elevated temperature. Plasma thyroid hormone levels displayed day-night variations, which were affected by elevated temperature, either independently from photoperiod (decrease in T3 levels) or under natural photoperiod exclusively (increase in T4 nocturnal levels). Nocturnal MEL secretion was potentiated by the elevated temperature, which also altered the MEL profile under sustained winter photoperiod. Temperature also affected pineal MEL production in vitro, a response that depended on previous environmental acclimation of the organ. The results support the view that the salmon pineal is a photoperiod and temperature sensor, highlight the complexity of the interaction of these environmental factors on the endocrine system of S. salar, and indicate that climate change might compromise salmon's time "deciphering" during smoltification, downstream migration and seawater residence.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Michael Fuentes
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Stephen D McCormick
- S.O. Conte Anadromous Fish Research Laboratory, U.S. Geological Survey, Leetown Science Center, Turners Falls, MA, USA
| | - Jack Falcón
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS 7208, UPMC, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris Cedex, France
| |
Collapse
|
5
|
Rzepka-Migut B, Paprocka J. Melatonin-Measurement Methods and the Factors Modifying the Results. A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1916. [PMID: 32183489 PMCID: PMC7142625 DOI: 10.3390/ijerph17061916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023]
Abstract
Melatonin plays an important role in regulating the sleep-wake cycle and adaptation to environmental changes. Concentration measurements in bioliquids such as serum/plasma, saliva and urine are widely used to assess peripheral rhythm. The aim of the study was to compare methods and conditions of determinations carried out with the identification of factors potentially affecting the measurements obtained. We have identified a group of modifiable and unmodifiable factors that facilitate data interpretation. Knowledge of modifiers allows you to carefully plan the test protocol and then compare the results. There is no one universal sampling standard, because the choice of method and biofluid depends on the purpose of the study and the research group.
Collapse
Affiliation(s)
- Beata Rzepka-Migut
- Department of Pediatric Neurology and Pediatrics, St. Queen Jadwiga’s Regional Clinical Hospital No 2 Rzeszów, 35-301 Rzeszów, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
6
|
Affiliation(s)
- David J. Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Research Building, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Escrivá L, Manyes L, Barberà M, Martínez-Torres D, Meca G. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:48-53. [PMID: 26778054 DOI: 10.1016/j.jinsphys.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Melatonin is a hormone mainly involved in the regulation of circadian and seasonal rhythms in both invertebrates and vertebrates. Despite the identification of melatonin in many insects, its involvement in the insect seasonal response remains unclear. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for melatonin analysis in aphids (Acyrthosiphon pisum) for the first time. After comparing two different procedures and five extraction solvents, a sample preparation procedure with a mixture of methanol/water (50:50) was selected for melatonin extraction. The method was validated by analyzing melatonin recovery at three spiked concentrations (5, 50 and 100 pg/mg) and showed satisfactory recoveries (75-110%), and good repeatability, expressed as relative standard deviation (<10%). Limits of detection (LOD) and quantitation (LOQ) were 1 pg/mg and 5 pg/mg, respectively. Eight concentration levels were used for constructing the calibration curves which showed good linearity between LOQ and 200 times LOQ. The validated method was successfully applied to 26 aphid samples demonstrating its usefulness for melatonin determination in insects. This is -to our knowledge- the first identification of melatonin in aphids by LC-MS/MS.
Collapse
Affiliation(s)
- Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Miquel Barberà
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - David Martínez-Torres
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Guiseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
8
|
Oyama T, Negishi E, Onigahara H, Kusano N, Miyoshi Y, Mita M, Nakazono M, Ohtsuki S, Ojida A, Lindner W, Hamase K. Design and synthesis of a novel pre-column derivatization reagent with a 6-methoxy-4-quinolone moiety for fluorescence and tandem mass spectrometric detection and its application to chiral amino acid analysis. J Pharm Biomed Anal 2015; 116:71-9. [DOI: 10.1016/j.jpba.2015.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023]
|
9
|
OYAMA T, NAGAI R, FUJIMOTO M, KONISHI R, MITA M, UEZONO K, ZAITSU K, HAMASE K. Development of a Fully-automated On-line Oxidation Column-switching HPLC System for the Determination of Endogenous Melatonin in Human Clinical Samples. ANAL SCI 2015; 31:1129-35. [DOI: 10.2116/analsci.31.1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tsubasa OYAMA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Rie NAGAI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Mayumi FUJIMOTO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ryoko KONISHI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kiyoshi ZAITSU
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
10
|
Han H, Miyoshi Y, Oyama T, Konishi R, Mita M, Hamase K. Enantioselective micro-2D-HPLC determination of aspartic acid in the pineal glands of rodents with various melatonin contents. J Sep Sci 2011; 34:2847-53. [DOI: 10.1002/jssc.201100609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/23/2022]
|
11
|
de Almeida EA, Di Mascio P, Harumi T, Warren Spence D, Moscovitch A, Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Measurement of melatonin in body fluids: standards, protocols and procedures. Childs Nerv Syst 2011; 27:879-91. [PMID: 21104186 PMCID: PMC3128751 DOI: 10.1007/s00381-010-1278-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. DATA IDENTIFICATION A search of the English-language literature (Medline) and a systematic review of published articles were carried out. STUDY SELECTION Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. DATA EXTRACTION The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). RESULTS OF DATA SYNTHESIS Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. CONCLUSIONS Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis.
Collapse
Affiliation(s)
- Eduardo Alves de Almeida
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, Rua Cristóvão Colombo 2265, CEP 15054-000 São José do Rio Preto, SP Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, USP Av. Prof. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP Brazil
| | - Tatsuo Harumi
- Department of Anatomy, Asahikawa Medical College, Nishikagura, Asahikawa Japan
| | | | - Adam Moscovitch
- Sleep and Fatigue Institute, 106 Codsell Ave, Toronto, ON Canada M3H 3W1
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Daniel P. Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON Canada M5T 1R8
| | | |
Collapse
|
12
|
Kim YJ, Yoon YH, Park WJ. Supply of Tryptophan and Tryptamine Influenced the Formation of Melatonin in Viola Plants. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.2.328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Saber AL. Novel Potentiometric Sensors for Determination of Melatonin and Oxomemazine in Biological Samples and in Pharmaceutical Formulations. ELECTROANAL 2010. [DOI: 10.1002/elan.201000293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Gómez-Corvera A, Cerrillo I, Molinero P, Naranjo MC, Lardone PJ, Sanchez-Hidalgo M, Carrascosa-Salmoral MP, Medrano-Campillo P, Guerrero JM, Rubio A. Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains. J Pineal Res 2009; 47:15-22. [PMID: 19522737 DOI: 10.1111/j.1600-079x.2009.00683.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated two pineal melatonin deficient mice described in the literature, i.e., C57BL/6 and Swiss mice, as animal models for studying the immunomodulatory action of melatonin. Plasma melatonin levels in C57BL/6 and Swiss strains were detectable, but lower than levels in control C3H/HENHSD mice. Since these strains are suppose to be pineal melatonin deficient an extrapineal melatonin synthesis may contribute to plasma levels. Regarding cells and tissues from the immune system, all of them were found to synthesize melatonin although at low levels. N-acetyltransferase (AANAT) mRNA was also amplified in order to analyze the alternative splicing between exons 3-4 described for pineal C57BL/6 mice which generates an inclusion of a pseudoexon of 102 bp. For the pineal gland, both the wild type and the mutant isoforms were present in all mice strains although in different proportions. We observed a predominant wild type AANAT mature RNA in thymus, spleen and bone marrow cells. Peripheral blood mononuclear cells (PBMC) culture shown an evident AANAT amplification in all strains studied. Although the bands detected were less intense in melatonin deficient mice, the amplification almost reached the control cell intensity after stimulation with phytohemaglutinin (PHA). In summary, melatonin detection and AANAT mRNA expression in inbred and outbred mice clearly indicate that different cells and tissues from the immune system are able to synthesize melatonin. Thus, the pineal defect seems not to be generalized to all tissues, suggesting that other cells may compensate the low pineal melatonin production contributing to the measurable plasma melatonin level.
Collapse
Affiliation(s)
- Araceli Gómez-Corvera
- Department of Medical Biochemistry and Molecular Biology, The School of Medicine, University of Seville, Seville, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pape C, Teschke M, Meyer B. Melatonin and its possible role in mediating seasonal metabolic changes of Antarctic krill, Euphausia superba. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:426-34. [DOI: 10.1016/j.cbpa.2008.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
16
|
Iizuka H, Someya K, Yajima T. Hemin-mediated fluorometric determination of melatonin by high-performance liquid chromatography. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Natishan TK. Recent Developments of Achiral HPLC Methods in Pharmaceuticals Using Various Detection Modes. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120030603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Theresa K. Natishan
- a Merck & Co., Inc., Merck Research Laboratories , RY818‐C215, P.O. Box 2000, Rahway , New Jersey , 07065 , USA
| |
Collapse
|
18
|
Mekhloufi J, Vitrac H, Yous S, Duriez P, Jore D, Gardès-Albert M, Bonnefont-Rousselot D. Quantification of the water/lipid affinity of melatonin and a pinoline derivative in lipid models. J Pineal Res 2007; 42:330-7. [PMID: 17439549 DOI: 10.1111/j.1600-079x.2007.00423.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study assessed the location of melatonin (N-acetyl-5-methoxytryptamine) and of a pinoline derivative (GWC22) [6-ethyl-1-(3-methoxyphenyl)-2-propyl-1,2,3,4-tetrahydro-beta-carboline], when present in lipid assemblies such as linoleate micelles, phosphatidylcholine liposomes or low density lipoproteins (LDL). The efficiency of radical scavenging by these compounds is highly dependent on their partitioning between the lipidic and aqueous phases. We determined the proportion of melatonin or GWC22 in the aqueous and lipid phases of each system (concentrations of the antioxidants ranging between 3 x 10(-5) and 10(-4) m) by assaying melatonin or GWC22 by HPLC/UV detection, or by fluorescence for melatonin in micelles. Our results show that melatonin and GWC22 were preferentially located in the aqueous phase of micelles (68.4% and 59.0%, respectively), whereas only 30.5% of melatonin and 39.0% of GWC22 were found in the lipid phase. By contrast, in phosphatidylcholine liposomes, both compounds were essentially present in the lipid phase (73.5% for melatonin and 79.1% for GWC22, versus 25.9% and 19.5% in the aqueous phase, respectively). In the case of LDL, 99.9% of the melatonin added was found in the methanol/water extracting phase containing phospholipids, unesterified cholesterol and apolipoprotein B100. The partitioning of melatonin and GWC22 in linoleate micelles gave new insights on the marked protective effect of GWC22 towards radiation-induced lipid peroxidation and allowed us to determine more accurately the lower limit values of the reaction rate constants of the two molecules studied with lipid peroxyl radicals, i.e. k(LOO.+melatonin)) >or= 9.0 x 10(4)m(-1)s(-1) and k(LOO.+GWC22) >or= 3.5 x 10(5)m(-1)s(-1).
Collapse
Affiliation(s)
- Jamila Mekhloufi
- Laboratoire de Chimie-Physique, UFR Biomédicale des Saints-Pères, Université Paris 5, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Ali I, Aboul‐Enein HY, Gupta VK. Analysis of Melatonin in Dosage Formulation by Capillary Electrophoresis. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070601093861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Imran Ali
- a National Institute of Hydrology , Roorkee, India
| | | | - V. K. Gupta
- c Department of Chemistry , Indian Institute of Technology , Roorkee, India
| |
Collapse
|
20
|
Egoshi K, Oka T, Yamashita H. Quantitative Analysis of Melatonin in Raw Milk by HPLC. J JPN SOC FOOD SCI 2007. [DOI: 10.3136/nskkk.54.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Abstract
Melatonin, the chief secretory product of the vertebrate pineal gland is also known to occur in numerous photoautotrophic organisms. The indoleamine is suspected to act as a transducer of photoperiodic information and/or to participate in antioxidative protection. In higher plants and other photoautotrophic organisms, contradictory results for melatonin content for samples from the same species show that further improvement of methods for reliable quantification is required. In the present study, melatonin was quantified in tomatoes, ginger and the marine green macroalga, Ulva lactuca, after extraction with three different extraction methods based on ether, acetone or perchloric acid. Melatonin was determined by enzyme-linked immunosorbent assay (ELISA) in high-performance liquid chromatography (HPLC)-purified extracts. The same HPLC system used for purification of extracts was used for parallel quantifications after derivatization of melatonin under alkaline conditions in the presence of hydrogen peroxide (HPLC-PD). Both quantification methods gave similar results with a high correlation [f(x) = 0.99x + 3.01; R(2) = 0.99]. In ginger, the melatonin concentration was below 5 pg/g (fresh weight, f.w.), whereas in tomatoes about 1200 pg/g (f.w.) were found, and in the green alga, U. lactuca, approximately 12 pg/g (f.w.). Taking into account the recovery rates for synthetic melatonin added prior to extraction, no substantial differences were observed in melatonin quantification between different extraction methods. The demonstrated methods based on HPLC purification and subsequent quantification by ELISA and HPLC-PD allow highly sensitive melatonin determinations in diverse photoautotrophic organisms with a low risk of overestimations by false-positive results.
Collapse
Affiliation(s)
- Carsten Pape
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | |
Collapse
|
22
|
Todoroki K, Ishimaru K, Yoshida H, Yoshitake T, Nohta H, Yamaguchi M. Simultaneous Liquid Chromatographic Measurement of Melatonin and Related Indoles through Post-column Electrochemical Demethylation and Fluorescence Derivatization. ANAL SCI 2006; 22:281-6. [PMID: 16512423 DOI: 10.2116/analsci.22.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper we describe a highly sensitive and selective liquid chromatographic method for the determination of 5-methoxyindoles (5-methoxyindole-3-acetic acid, 5-methoxytryptamine, 5-methoxytryptophol, and melatonin) using a post-column technique involving electrolytic demethylation followed by fluorescence derivatization with benzylamine. We separated these compounds within 30 min by reversed-phase liquid chromatography using acetate buffer (pH 6.5)-acetonitrile-methanol [8:1:1 (v/v); isocratic elution] and then demethylated them, using a commercial coulometric system, to give the corresponding 5-hydroxyindoles. Next, we converted the 5-hydroxyindole products into fluorescent derivatives by their reactions with benzylamine in the presence of potassium hexacyanoferrate(III). We detected the derivatives spectrofluorometrically at 480 nm upon excitation at 345 nm. The detection limits (signal-to-noise ratio = 3) of the 5-methoxyindoles were in the range from 12 to 93 fmol per 20-microL injection.
Collapse
Affiliation(s)
- Kenichiro Todoroki
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Pobozy E, Michalski A, Sotowska-Brochocka J, Trojanowicz M. Determination of melatonin and its precursors and metabolites using capillary electrophoresis with UV and fluorometric detection. J Sep Sci 2005; 28:2165-72. [PMID: 16318213 DOI: 10.1002/jssc.200500095] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A micellar electrokinetic chromatography method has been developed for simultaneous determination of melatonin and its precursors and metabolites. A 20 mM borate buffer pH 9.5 with 50 mM SDS served as the electrolyte. Tryptophan, 5-methoxyindoleacetic acid, 6-hydroxymelatonin, melatonin, serotonin, and 5-methoxytryptamine were baseline separated in less than 13 min. The limits of detection for UV detection and fluorometric detection based on native fluorescence of analytes were at the sub-ppm level. The proposed method with UV detection was applied to melatonin content control in pharmaceutical tablets with a precision expressed as RSD (n = 7) = 1.6%. For biological samples extraction with chloroform and ethyl acetate was examined. With ethyl acetate and chloroform recoveries of 87.2% and 82.1% melatonin, respectively, were obtained from plasma samples. The recovery of melatonin from spiked urine samples was 80.0% for ethyl acetate and 82.5% for chloroform. Fluorometric detection provides about two-fold improvement over UV in the detection of melatonin and minor improvements for three other analytes, but is much poorer than UV for tryptophan and 6-hydroxymelatonin in applied conditions.
Collapse
Affiliation(s)
- Ewa Pobozy
- Department of Chemistry, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
24
|
Hirano J, Hamase K, Fukuda H, Tomita T, Zaitsu K. Novel stable fluorophore, 6-methoxy-4-quinolone, with strong fluorescence in wide pH range of aqueous media, and its application as a fluorescent labeling reagent. J Chromatogr A 2004; 1059:225-31. [PMID: 15628146 DOI: 10.1016/j.chroma.2004.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
6-Methoxy-4-quinolone (6-MOQ, 1), an oxidation product derived from 5-methoxyindole-3-acetic acid, is a novel fluorophore, which has several useful characteristics for biomedical analysis. Compound 1 has strong fluorescence with a large Stokes' shift in aqueous media, and the maximum fluorescence excitation and emission wavelengths are 243 nm and 374 nm, respectively. The molar absorptivity at the maximum excitation wavelength and fluorescence quantum yield in aqueous 10% (v/v) methanol are 32 600 L mol(-1) cm(-1) and 0.38, respectively. The fluorescence intensity of 1 is scarcely affected by changing the medium pH, showing strong fluorescence from pH 2.0 to 11.0. In addition, 1 is highly stable against light and heat, and no degradation was observed at 60 degrees C for 3 days with exposure to daylight. As a fluorescent labeling reagent, [(6-methoxy-4-oxo-1,4-dihydroquinolin-3-yl)methyl]amine (6-MOQ-NH2, 2) was synthesized, and determination of carboxylic acids was demonstrated; 50 pmol of standard propionic acid and isobutyric acid were derivatized, and the obtained S/N ratios for 10 fmol (injection amount) of these two acids were 206 and 164, respectively.
Collapse
Affiliation(s)
- Junzo Hirano
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|