1
|
Ramos MLM, Barrinha A, Araújo GRDS, Alves V, Andrade IBD, Corrêa-Junior D, Motta MCM, Almeida-Paes R, Frases S. Photodynamic therapy reduces viability, enhances itraconazole activity, and impairs mitochondrial physiology of Sporothrix brasiliensis. Microbes Infect 2025; 27:105440. [PMID: 39557358 DOI: 10.1016/j.micinf.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Sporothrix brasiliensis is the main agent of sporotrichosis in Brazil, with few therapeutic options. This study aimed to investigate the in vitro efficacy of photodynamic therapy using a diode laser (InGaAIP) in combination with the photosensitizer methylene blue against S. brasiliensis yeasts. Additionally, we evaluated the underexplored mitochondrial activity of S. brasiliensis and the impact of laser treatment on the fungal mitochondrial aspects post-treatment. Three strains of S. brasiliensis were used, including a non-wild-type strain to itraconazole. Yeast viability was determined by counting colony-forming units. For a comprehensive analysis of irradiated versus non-irradiated cells, we assessed combined therapy with itraconazole, scanning electron microscopy of cells, and mitochondrial activity. The latter included high-resolution respirometry, membrane potential analysis, and reactive oxygen species production. Methylene blue combined with photodynamic therapy inhibited the growth of the isolates, including the non-wild-type strain to itraconazole. Photodynamic therapy induced the production of reactive oxygen species, which negatively affected mitochondrial function, resulting in decreased membrane potential and cell death. Photodynamic therapy altered the ultrastructure and mitochondrial physiology of S. brasiliensis, suggesting a new therapeutic approach for sporotrichosis caused by this species.
Collapse
Affiliation(s)
- Mariana Lucy Mesquita Ramos
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Deng S, Sibley LD. Function of the alternative electron transport chain in the Cryptosporidium parvum mitosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616074. [PMID: 39605695 PMCID: PMC11601642 DOI: 10.1101/2024.10.01.616074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cryptosporidium parvum and C. hominis possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome. This pathway relies on an alternative oxidase (AOX) and type II NADH dehydrogenase (NDH2), which also exists in plants, some fungi, and several protozoan parasites. To examine this model, we determined the location and function of AOX and NDH2 in C. parvum. Surprisingly, we observed that NDH2 was localized to parasite surface membranes instead of the mitosome. Furthermore, a Δndh2 knockout (KO) strain was readily obtained, indicating that this protein is not essential for parasite growth. Although, AOX exhibited a mitosome-like staining pattern, we readily obtained an Δaox knockout strain, indicating that AOX is also dispensable for parasite growth. The growth of the Δaox strain was inhibited by the AOX inhibitors SHAM and 8-HQ to the same extent as wild type, indicating that AOX is not the target of these inhibitors in C. parvum. Collectively, our studies indicate that NDH2 and AOX are non-essential genes in C. parvum, necessitating an alternative mechanism for maintaining the mitosome membrane potential. Importance Cryptosporidiosis is the leading cause of diarrhea in young children and immunocompromised individuals, particularly AIDS/HIV patients. The only FDA approved drug against cryptosporidiosis, nitazoxanide, has limited effectivity in immunocompromised patients and is not approved for usage in children under 1 year old. Genomic analysis and previous studies proposed an alternative respiration pathway involving alternative oxidase (AOX) and type II NAD(P)H dehydrogenase (NDH2), which are thought to generate the mitosome membrane potential in C. parvum. Additionally, AOX and NDH2 were nominated as potential drug targets, based on their absence in mammalian hosts and sensitivity of parasite growth to known inhibitors of AOX. However, our study demonstrated that NDH2 is not localized in mitosome, AOX non-essential for parasite growth, and knockout lines lacking this enzyme are equally sensitive to AOX inhibitors. These findings indicate that AOX and NDH2 are not ideal candidates for future drug development against cryptosporidiosis and force a re-evaluation for models of how the mitosome generate its membrane potential.
Collapse
Affiliation(s)
- Silu Deng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Reyes-Rosario D, Pardo JP, Guerra-Sánchez G, Vázquez-Meza H, López-Hernández G, Matus-Ortega G, González J, Baeza M, Romero-Aguilar L. Analysis of the Respiratory Activity in the Antarctic Yeast Rhodotorula mucilaginosa M94C9 Reveals the Presence of Respiratory Supercomplexes and Alternative Elements. Microorganisms 2024; 12:1931. [PMID: 39458241 PMCID: PMC11509550 DOI: 10.3390/microorganisms12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The respiratory activities of mitochondrial complexes I, II, and IV were analyzed in permeabilized Rhodotorula mucilaginosa cells and isolated mitochondria, and the kinetic parameters K0.5 and Vmax were obtained. No difference in substrate affinities were found between mitochondria and permeabilized cells. The activities of the components of the mitochondrial respiratory chain of the Antarctic yeast R. mucilaginosa M94C9 were identified by in-gel activity and SDS-PAGE. The mitochondria exhibited activity for the classical components of the electron transport chain (Complexes I, II, III, and IV), and supercomplexes were formed by a combination of the respiratory complexes I, III, and IV. Unfortunately, the activities of the monomeric and dimeric forms of the F1F0-ATP synthase were not revealed by the in-gel assay, but the two forms of the ATP synthase were visualized in the SDS-PAGE. Furthermore, two alternative pathways for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate dehydrogenase. In addition, an NADPH dehydrogenase and a lactate cytochrome b2 dehydrogenase were found. The residual respiratory activity following cyanide addition suggests the presence of an alternative oxidase in cells.
Collapse
Affiliation(s)
- Daniel Reyes-Rosario
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Georgina López-Hernández
- Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Mexico City C.P. 11340, Mexico
| | - Genaro Matus-Ortega
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| |
Collapse
|
4
|
Osorio-Guarin JA, Higgins J, Toloza-Moreno DL, Di Palma F, Enriquez Valencia AL, Riveros Munévar F, De Vega JJ, Yockteng R. Genome-wide association analyses using multilocus models on bananas (Musa spp.) reveal candidate genes related to morphology, fruit quality, and yield. G3 (BETHESDA, MD.) 2024; 14:jkae108. [PMID: 38775627 PMCID: PMC11304972 DOI: 10.1093/g3journal/jkae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 08/09/2024]
Abstract
Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.
Collapse
Affiliation(s)
- Jaime Andrés Osorio-Guarin
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
| | - Janet Higgins
- Earlham Institute, Norwich Research Park, NR4 7UZ Norwich, UK
| | - Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
| | | | - Ayda Lilia Enriquez Valencia
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Palmira, Valle del Cauca 763533, Colombia
| | - Fernando Riveros Munévar
- Facultad de Psicología y Ciencias del Comportamiento, Universidad de La Sabana, Chía, Cundinamarca 250001, Colombia
| | - José J De Vega
- Earlham Institute, Norwich Research Park, NR4 7UZ Norwich, UK
| | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, Muséum National d´Histoire Naturelle, Paris, Ile 75005, France
| |
Collapse
|
5
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
6
|
Martviset P, Thanongsaksrikul J, Geadkaew-Krenc A, Chaimon S, Glab-Ampai K, Chaibangyang W, Sornchuer P, Srimanote P, Ruangtong J, Prathaphan P, Taechadamrongtham T, Torungkitmangmi N, Sanannam B, Gordon CN, Thongsepee N, Pankao V, Chantree P. Production and immunological characterization of the novel single-chain variable fragment (scFv) antibodies against the epitopes on Opisthorchis viverrini cathepsin F (OvCatF). Acta Trop 2024; 254:107199. [PMID: 38552996 DOI: 10.1016/j.actatropica.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Opisthorchis viverrini infection is a significant health problem in several countries, especially Southeast Asia. The infection causes acute gastro-hepatic symptoms and also long-term infection leading to carcinogenesis of an aggressive bile duct cancer (cholangiocarcinoma; CCA). Hence, the early diagnosis of O. viverrini infection could be the way out of this situation. Still, stool examination by microscopic-based methods, the current diagnostic procedure is restricted by low parasite egg numbers in the specimen and unprofessional laboratorians. The immunological procedure provides a better chance for diagnosis of the infection. Hence, this study aims to produce single-chain variable fragment (scFv) antibodies for use as a diagnostic tool for O. viverrini infection. METHODS This study uses phage display technologies to develop the scFv antibodies against O. viverrini cathepsin F (OvCatF). The OvCatF-deduced amino acid sequence was analyzed and predicted for B-cell epitopes used for short peptide synthesis. The synthetic peptides were used to screen the phage library simultaneously with OvCatF recombinant protein (rOvCatF). The potentiated phages were collected, rescued, and reassembled in XL1-blue Escherichia coli (E. coli) as a propagative host. The positive clones of phagemids were isolated, and the single-chain variable (scFv) fragments were sequenced, computationally predicted, and molecular docked. The complete scFv fragments were digested from the phagemid, subcloned into the pOPE101 expression vector, and expressed in XL1-blue E. coli. Indirect ELISA and Western analysis were used to verify the detection efficiency. RESULTS The scFv phages specific to OvCatF were successfully isolated, subcloned, and produced as a recombinant protein. The recombinant scFv antibodies were purified and refolded to make functional scFv. The evaluation of specific recognition of the particular epitopes and detection limit results by both computational and laboratory performances demonstrated that all three recombinant scFv antibodies against OvCatF could bind specifically to rOvCatF, and the lowest detection concentration in this study was only one hundred nanograms. CONCLUSION Our produced scFv antibodies will be the potential candidates for developing a practical diagnostic procedure for O. viverrini infection in humans in the future.
Collapse
Affiliation(s)
- Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, Thailand; Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Studies in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Studies in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Salisa Chaimon
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kantaphon Glab-Ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanlapa Chaibangyang
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, Thailand
| | - Potjanee Srimanote
- Graduate Studies in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, Thailand
| | - Parisa Prathaphan
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | | | - Nattaya Torungkitmangmi
- Graduate Program in Biochemistry and Molecular Biology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Bumpenporn Sanannam
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | | | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, Thailand; Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Viriya Pankao
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand; Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, Thailand; Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
7
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Nevarez-Lopez CA, Muhlia-Almazan A, Gamero-Mora E, Sanchez-Paz A, Sastre-Velasquez CD, Lopez-Martinez J. The branched mitochondrial respiratory chain from the jellyfish Stomolophus sp2 as a probable adaptive response to environmental changes. J Bioenerg Biomembr 2024; 56:101-115. [PMID: 38231368 DOI: 10.1007/s10863-023-09999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
During their long evolutionary history, jellyfish have faced changes in multiple environmental factors, to which they may selectively fix adaptations, allowing some species to survive and inhabit diverse environments. Previous findings have confirmed the jellyfish's ability to synthesize large ATP amounts, mainly produced by mitochondria, in response to environmental challenges. This study characterized the respiratory chain from the mitochondria of the jellyfish Stomolophus sp2 (previously misidentified as Stomolophus meleagris). The in-gel activity from isolated jellyfish mitochondria confirmed that the mitochondrial respiratory chain contains the four canonical complexes I to IV and F0F1-ATP synthase. Specific additional activity bands, immunodetection, and mass spectrometry identification confirmed the occurrence of four alternative enzymes integrated into a branched mitochondrial respiratory chain of Stomolophus sp2: an alternative oxidase and three dehydrogenases (two NADH type II enzymes and a mitochondrial glycerol-3-phosphate dehydrogenase). The analysis of each transcript sequence, their phylogenetic relationships, and each protein's predicted models confirmed the mitochondrial alternative enzymes' identity and specific characteristics. Although no statistical differences were found among the mean values of transcript abundance of each enzyme in the transcriptomes of jellyfish exposed to three different temperatures, it was confirmed that each gene was expressed at all tested conditions. These first-time reported enzymes in cnidarians suggest the adaptative ability of jellyfish's mitochondria to display rapid metabolic responses, as previously described, to maintain energetic homeostasis and face temperature variations due to climate change.
Collapse
Affiliation(s)
- C A Nevarez-Lopez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A Muhlia-Almazan
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| | - E Gamero-Mora
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A Sanchez-Paz
- Laboratorio de Virologia, Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, Hermosillo, Sonora, 83106, Mexico
| | - C D Sastre-Velasquez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - J Lopez-Martinez
- Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), PO BOX 349, Guaymas, Sonora, 85465, Mexico
| |
Collapse
|
9
|
Bui THD, Labedzka-Dmoch K. RetroGREAT signaling: The lessons we learn from yeast. IUBMB Life 2024; 76:26-37. [PMID: 37565710 DOI: 10.1002/iub.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
Collapse
Affiliation(s)
- Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial genome diversity across the subphylum Saccharomycotina. Front Microbiol 2023; 14:1268944. [PMID: 38075892 PMCID: PMC10701893 DOI: 10.3389/fmicb.2023.1268944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. Methods By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Results Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. Discussion As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
- Biology Department, Villanova University, Villanova, PA, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Wolters JF, LaBella AL, Opulente DA, Rokas A, Hittinger CT. Mitochondrial Genome Diversity across the Subphylum Saccharomycotina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551029. [PMID: 37577532 PMCID: PMC10418067 DOI: 10.1101/2023.07.28.551029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic life depends on the functional elements encoded by both the nuclear genome and organellar genomes, such as those contained within the mitochondria. The content, size, and structure of the mitochondrial genome varies across organisms with potentially large implications for phenotypic variance and resulting evolutionary trajectories. Among yeasts in the subphylum Saccharomycotina, extensive differences have been observed in various species relative to the model yeast Saccharomyces cerevisiae, but mitochondrial genome sampling across many groups has been scarce, even as hundreds of nuclear genomes have become available. By extracting mitochondrial assemblies from existing short-read genome sequence datasets, we have greatly expanded both the number of available genomes and the coverage across sparsely sampled clades. Comparison of 353 yeast mitochondrial genomes revealed that, while size and GC content were fairly consistent across species, those in the genera Metschnikowia and Saccharomyces trended larger, while several species in the order Saccharomycetales, which includes S. cerevisiae, exhibited lower GC content. Extreme examples for both size and GC content were scattered throughout the subphylum. All mitochondrial genomes shared a core set of protein-coding genes for Complexes III, IV, and V, but they varied in the presence or absence of mitochondrially-encoded canonical Complex I genes. We traced the loss of Complex I genes to a major event in the ancestor of the orders Saccharomycetales and Saccharomycodales, but we also observed several independent losses in the orders Phaffomycetales, Pichiales, and Dipodascales. In contrast to prior hypotheses based on smaller-scale datasets, comparison of evolutionary rates in protein-coding genes showed no bias towards elevated rates among aerobically fermenting (Crabtree/Warburg-positive) yeasts. Mitochondrial introns were widely distributed, but they were highly enriched in some groups. The majority of mitochondrial introns were poorly conserved within groups, but several were shared within groups, between groups, and even across taxonomic orders, which is consistent with horizontal gene transfer, likely involving homing endonucleases acting as selfish elements. As the number of available fungal nuclear genomes continues to expand, the methods described here to retrieve mitochondrial genome sequences from these datasets will prove invaluable to ensuring that studies of fungal mitochondrial genomes keep pace with their nuclear counterparts.
Collapse
Affiliation(s)
- John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Abigail L. LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC, 28223, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
12
|
Zhu Q, Li M, Lu W, Wang Y, Li X, Cheng J. Transcriptomic Modulation Reveals the Specific Cellular Response in Chinese Sea Bass ( Lateolabrax maculatus) Gills under Salinity Change and Alkalinity Stress. Int J Mol Sci 2023; 24:ijms24065877. [PMID: 36982950 PMCID: PMC10056482 DOI: 10.3390/ijms24065877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Salinity and alkalinity are among the important factors affecting the distribution, survival, growth and physiology of aquatic animals. Chinese sea bass (Lateolabrax maculatus) is an important aquaculture fish species in China that can widely adapt to diverse salinities from freshwater (FW) to seawater (SW) but moderately adapt to highly alkaline water (AW). In this study, juvenile L. maculatus were exposed to salinity change (SW to FW) and alkalinity stress (FW to AW). Coordinated transcriptomic responses in L. maculatus gills were investigated and based on the weighted gene co-expression network analysis (WGCNA), 8 and 11 stress-responsive modules (SRMs) were identified for salinity change and alkalinity stress, respectively, which revealed a cascade of cellular responses to oxidative and osmotic stress in L. maculatus gills. Specifically, four upregulated SRMs were enriched with induced differentially expressed genes (DEGs) for alkalinity stress, mainly corresponding to the functions of "extracellular matrix" and "anatomical structure", indicating a strong cellular response to alkaline water. Both "antioxidative activity" and "immune response" functions were enriched in the downregulated alkaline SRMs, which comprised inhibited alkaline specific DEGs, revealing the severely disrupted immune and antioxidative functions under alkalinity stress. These alkaline-specific responses were not revealed in the salinity change groups with only moderately inhibited osmoregulation and induced antioxidative response in L. maculatus gills. Therefore, the results revealed the diverse and correlated regulation of the cellular process and stress response in saline-alkaline water, which may have arisen through the functional divergence and adaptive recruitment of the co-expression genes and will provide vital insights for the development of L. maculatus cultivation in alkaline water.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Moli Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Yapeng Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xujian Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
13
|
Production and Immunological Characterization of scFv Specific to Epitope of Opisthorchis viverrini Rhophilin-Associated Tail Protein 1-like (OvROPN1L). Trop Med Infect Dis 2023; 8:tropicalmed8030160. [PMID: 36977161 PMCID: PMC10055880 DOI: 10.3390/tropicalmed8030160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: Opisthorchis viverrini is a significant health problem in the Mekong subregion of Southeast Asia, causing aggressive cholangiocarcinoma. Current diagnostic procedures do not cover early diagnosis and low infection. Hence, an effective diagnostic tool is still required. Immunodiagnosis seems promising, but attempts to generate monoclonal antibodies have not yet been successful. This study aims to develop a single-chain variable antibody fragment (scFv) against Rhophilin-associated tail protein 1-like (ROPN1L), the sperm-specific antigen of adult O. viverrini, which has not been reported elsewhere. (2) Methods: The target epitope for phage screening was L3-Q13 of OvROPN1L, which showed the highest antigenicity to human opisthorchiasis analyzed in a previous study. This peptide was commercially synthesized and used for phage library screening. The isolated phage was produced in a bacterial expression system and tested for specificity in vitro and in silico. (3) Results: One of fourteen phages, named scFv anti-OvROPN1L-CL19, significantly bound to rOvROPN1L compared with non-infected hamster fecal extracts. This phage clone was successfully produced and purified using Ni-NTA chromatography. Indirect ELISA demonstrated that scFv anti-OvROPN1L-CL19 has a high reactivity with O. viverrini-infected hamster fecal extracts (12 wpi, n = 6) in comparison with non-infected hamster fecal extracts (0 wpi, n = 6), while the polyclonal rOvROPN1L antibodies did not show such a difference. Molecular modeling and docking confirmed our in vitro findings. (4) Conclusion: scFv anti-OvROPN1L-CL19 could be used as an effective material for developing O. viverrini-immunodiagnostic procedures in the future.
Collapse
|
14
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Ženíšková K, Grechnikova M, Sutak R. Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri. Front Cell Dev Biol 2022; 10:853463. [PMID: 35478954 PMCID: PMC9035749 DOI: 10.3389/fcell.2022.853463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Although copper is an essential nutrient crucial for many biological processes, an excessive concentration can be toxic and lead to cell death. The metabolism of this two-faced metal must be strictly regulated at the cell level. In this study, we investigated copper homeostasis in two related unicellular organisms: nonpathogenic Naegleria gruberi and the “brain-eating amoeba” Naegleria fowleri. We identified and confirmed the function of their specific copper transporters securing the main pathway of copper acquisition. Adjusting to different environments with varying copper levels during the life cycle of these organisms requires various metabolic adaptations. Using comparative proteomic analyses, measuring oxygen consumption, and enzymatic determination of NADH dehydrogenase, we showed that both amoebas respond to copper deprivation by upregulating the components of the branched electron transport chain: the alternative oxidase and alternative NADH dehydrogenase. Interestingly, analysis of iron acquisition indicated that this system is copper-dependent in N. gruberi but not in its pathogenic relative. Importantly, we identified a potential key protein of copper metabolism of N. gruberi, the homolog of human DJ-1 protein, which is known to be linked to Parkinson’s disease. Altogether, our study reveals the mechanisms underlying copper metabolism in the model amoeba N. gruberi and the fatal pathogen N. fowleri and highlights the differences between the two amoebas.
Collapse
|
16
|
Efficiency of the Stool-PCR Test Targeting NADH Dehydrogenase ( Nad) Subunits for Detection of Opisthorchis viverrini Eggs. J Trop Med 2021; 2021:3957545. [PMID: 34912461 PMCID: PMC8668355 DOI: 10.1155/2021/3957545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Opisthorchis viverrini infection is the major parasitic infection problem in Southeast Asian countries, and long-term infection will lead to cholangiocarcinoma (CCA), the bile duct cancer. The early diagnosis of O. viverrini infection may interrupt the progression of the opisthorchiasis and other related illnesses, especially CCA. The current diagnostic procedure is stool examination by microscope-based methods such as direct smear and concentration techniques but it is limited by low parasite egg numbers. The molecular diagnosis prompts the chance to evaluate the light infection with low number of parasite eggs but is currently inconvenient for routine use due to special equipment requirement and unstable sensitivities. Our present study aims to establish the efficiency of OvNad subunits, the mitochondrial gene, for introducing as a potential diagnostic target by conventional PCR, the cheapest and easiest molecular procedure. A total of 166 stool samples were investigated microscopically by the PBS-ethyl acetate concentration technique (PECT); 75 samples were O. viverrini positive with 28 samples that were positive with single parasite (hookworm, A. lumbricoides, S. stercoralis, Taenia spp., and T. trichiura), 11 samples were with mixed infection, and 52 samples were without parasite detection. The detection limits of OvNad subunits were evaluated in artificially spiked samples containing 0, 1, 5, 10, 20, 50, and 100 Ov-eggs. The result suggested that the best detection efficacy was of OvNad5 that had exact detection limits at only 5 eggs. In the PCR amplification of OvNad subunits, there exist 100% specificities with varied sensitivities from 64%, 88%, 80%, and 100% of OvNad1, OvNad2, OvNad4, and OvNad5, respectively. OvNad subunits were amplified specifically without cross reactivity with the other collected parasites. Our study established that OvNad subunits, especially OvNad5, are the potent candidates for PCR amplification of stool containing Ov-eggs with high confidential sensitivity, specificity, PPV, and NPV even in the light infection that would be a benefit for developing as a routine diagnosis of O. viverrini infection.
Collapse
|
17
|
Warnsmann V, Meisterknecht J, Wittig I, Osiewacz HD. Aging of Podospora anserina Leads to Alterations of OXPHOS and the Induction of Non-Mitochondrial Salvage Pathways. Cells 2021; 10:cells10123319. [PMID: 34943827 PMCID: PMC8699231 DOI: 10.3390/cells10123319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jana Meisterknecht
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proc Natl Acad Sci U S A 2021; 118:2103803118. [PMID: 34654744 DOI: 10.1073/pnas.2103803118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.
Collapse
|
19
|
Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A 2021; 118:e2106950118. [PMID: 34548399 PMCID: PMC8488679 DOI: 10.1073/pnas.2106950118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Zenezeni Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
da Veiga Moreira J, Jolicoeur M, Schwartz L, Peres S. Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Sci Rep 2021; 11:878. [PMID: 33441687 PMCID: PMC7807019 DOI: 10.1038/s41598-020-79577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Yarrowia lipolytica is a non-conventional yeast with promising industrial potentials for lipids and citrate production. It is also widely used for studying mitochondrial respiration due to a respiratory chain like those of mammalian cells. In this study we used a genome-scale model (GEM) of Y. lipolytica metabolism and performed a dynamic Flux Balance Analysis (dFBA) algorithm to analyze and identify metabolic levers associated with citrate optimization. Analysis of fluxes at stationary growth phase showed that carbon flux derived from glucose is rewired to citric acid production and lipid accumulation, whereas the oxidative phosphorylation (OxPhos) shifted to the alternative respiration mode through alternative oxidase (AOX) protein. Simulations of optimized citrate secretion flux resulted in a pronounced lipid oxidation along with reactive oxygen species (ROS) generation and AOX flux inhibition. Then, we experimentally challenged AOX inhibition by adding n-Propyl Gallate (nPG), a specific AOX inhibitor, on Y. lipolytica batch cultures at stationary phase. Our results showed a twofold overproduction of citrate (20.5 g/L) when nPG is added compared to 10.9 g/L under control condition (no nPG addition). These results suggest that ROS management, especially through AOX activity, has a pivotal role on citrate/lipid flux balance in Y. lipolytica. All taken together, we thus provide for the first time, a key for the understanding of a predominant metabolic mechanism favoring citrate overproduction in Y. lipolytica at the expense of lipids accumulation.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Mario Jolicoeur
- grid.183158.60000 0004 0435 3292Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Ecole Polytechnique de Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC Canada
| | - Laurent Schwartz
- grid.50550.350000 0001 2175 4109Assistance Publique des Hôpitaux de Paris, 149 avenue Victoria, 75004 Paris, France
| | - Sabine Peres
- grid.4444.00000 0001 2112 9282LRI, Université Paris-Saclay, CNRS, 91405 Orsay, France ,grid.503376.4MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
21
|
Juergens H, Hakkaart XDV, Bras JE, Vente A, Wu L, Benjamin KR, Pronk JT, Daran-Lapujade P, Mans R. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha. Appl Environ Microbiol 2020; 86:e00678-20. [PMID: 32471916 PMCID: PMC7376551 DOI: 10.1128/aem.00678-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The thermotolerant yeast Ogataea parapolymorpha (formerly Hansenula polymorpha) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O2 consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type O. parapolymorpha strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h-1, both O. parapolymorpha strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations.IMPORTANCE Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory Ogataea parapolymorpha under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of O. parapolymorpha at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.
Collapse
Affiliation(s)
- Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jildau E Bras
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - André Vente
- DSM Biotechnology Center, Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
22
|
Sweetman C, Miller TK, Booth NJ, Shavrukov Y, Jenkins CL, Soole KL, Day DA. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars. Int J Mol Sci 2020; 21:E3844. [PMID: 32481694 PMCID: PMC7312301 DOI: 10.3390/ijms21113844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide SA 5001, Australia; (T.K.M.); (N.J.B.); (Y.S.); (C.L.D.J.); (K.L.S.); (D.A.D.)
| | | | | | | | | | | | | |
Collapse
|
23
|
Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA, Lagarrigue S, Caudal A, Vergnes L, Murphy AN, Karamanlidis G, Tian R, Reue K, Wanagat J, Sacks H, Amati F, Darley-Usmar VM, Liesa M, Divakaruni AS, Stiles L, Shirihai OS. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39:e104073. [PMID: 32432379 PMCID: PMC7327496 DOI: 10.15252/embj.2019104073] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi‐site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90–95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ilan Y Benador
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Gloria A Benavides
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sylviane Lagarrigue
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arianne Caudal
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Laurent Vergnes
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Karen Reue
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Wanagat
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, Division of Geriatrics, University of California, Los Angeles, CA, USA
| | - Harold Sacks
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Victor M Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Gupta SK, Angara RK, Yousuf S, Reddy CG, Ranjan A. Ectopic Expression of Rv0023 Mediates Isoniazid/Ethionamide Tolerance via Altering NADH/NAD + Levels in Mycobacterium smegmatis. Front Microbiol 2020; 11:3. [PMID: 32117088 PMCID: PMC7020754 DOI: 10.3389/fmicb.2020.00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/03/2020] [Indexed: 02/01/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) accounts for nearly 1.2 million deaths per annum worldwide. Due to the emergence of multidrug-resistant (MDR) Mtb strains, TB, a curable and avertable disease, remains one of the leading causes of morbidity and mortality. Isoniazid (INH) is a first-line anti-TB drug while ethionamide (ETH) is used as a second-line anti-TB drug. INH and ETH resistance develop through a network of genes involved in various biosynthetic pathways. In this study, we identified Rv0023, an Mtb protein belonging to the xenobiotic response element (XRE) family of transcription regulators, which has a role in generating higher tolerance toward INH and ETH in Mycobacterium smegmatis (Msmeg). Overexpression of Rv0023 in Msmeg leads to the development of INH- and ETH-tolerant strains. The strains expressing Rv0023 have a higher ratio of NADH/NAD+, and this physiological event is known to play a crucial role in the development of INH/ETH co-resistance in Msmeg. Gene expression analysis of some target genes revealed reduction in the expression of the ndh gene, but no direct interaction was observed between Rv0023 and the ndh promoter region. Rv0023 is divergently expressed to Rv0022c (whiB5) and we observed a direct interaction between the recombinant Rv0023 protein with the upstream region of Rv0022c, confirmed using reporter constructs of Msmeg. However, we found no indication that this interaction might play a role in the development of INH/ETH drug tolerance.
Collapse
Affiliation(s)
- Shailesh Kumar Gupta
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rajendra Kumar Angara
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Suhail Yousuf
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
26
|
Dinh HV, Suthers PF, Chan SHJ, Shen Y, Xiao T, Deewan A, Jagtap SS, Zhao H, Rao CV, Rabinowitz JD, Maranas CD. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab Eng Commun 2019; 9:e00101. [PMID: 31720216 PMCID: PMC6838544 DOI: 10.1016/j.mec.2019.e00101] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880's metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism's metabolic capabilities. Predictions of genotype-phenotype relations were improved through manual curation of gene-protein-reaction rules for 543 reactions leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall, iRhto1108 reproduced R. toruloides's utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model's fidelity in guiding engineering interventions, the OptForce procedure was applied on iRhto1108 for triacylglycerol overproduction. Suggested interventions recapitulated many of the previous successful implementations of genetic modifications and put forth a few new ones.
Collapse
Affiliation(s)
- Hoang V. Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Sujit S. Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| |
Collapse
|
27
|
Kant R, Tyagi K, Ghosh S, Jha G. Host Alternative NADH:Ubiquinone Oxidoreductase Serves as a Susceptibility Factor to Promote Pathogenesis of Rhizoctonia solani in Plants. PHYTOPATHOLOGY 2019; 109:1741-1750. [PMID: 31179856 DOI: 10.1094/phyto-02-19-0055-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytopathogens have evolved mechanisms to utilize host genes (commonly known as susceptibility factors) to promote their pathogenesis. Rhizoctonia solani is a highly destructive fungal pathogen of various plants, including rice. We previously reported rice genes that were differentially regulated during R. solani pathogenesis. In this study, we analyzed the role of tomato homologs of two rice genes, isoflavone reductase (IFR) and alternative NADH:ubiquinone oxidoreductase (NUOR), as potential susceptibility factors for R. solani. Virus-induced gene silencing of NUOR in tomato resulted in compromised susceptibility against R. solani, whereas IFR-silenced plants demonstrated susceptibility similar to that of control plants. NUOR silencing in tomato led to homogenous accumulation of reactive oxygen species (optimum range) upon R. solani infection. In addition, the expression and enzyme activity of some host defense and antioxidant genes was enhanced, whereas H2O2 content, lipid peroxidation, and electrolyte leakage were reduced in NUOR-silenced plants. Similarly, transient silencing of OsNUOR provided tolerance against R. solani infection in rice. Overall, the data presented in this study suggest that NUOR serves as a host susceptibility factor to promote R. solani pathogenesis.
Collapse
Affiliation(s)
- Ravi Kant
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kriti Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
28
|
Xue YP, Kao MC, Lan CY. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Sci Rep 2019; 9:13694. [PMID: 31548559 PMCID: PMC6757105 DOI: 10.1038/s41598-019-50114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant fungal pathogens is becoming increasingly serious due to overuse of antifungals. Antimicrobial peptides have potent activity against a broad spectrum of pathogens, including fungi, and are considered a potential new class of antifungals. In this study, we examined the activities of the newly designed peptides P-113Du and P-113Tri, together with their parental peptide P-113, against the human fungal pathogen Candida albicans. The results showed that these peptides inhibit mitochondrial complex I, specifically NADH dehydrogenase, of the electron transport chain. Moreover, P-113Du and P-113Tri also block alternative NADH dehydrogenases. Currently, most inhibitors of the mitochondrial complex I are small molecules or artificially-designed antibodies. Here, we demonstrated novel functions of antimicrobial peptides in inhibiting the mitochondrial complex I of C. albicans, providing insight in the development of new antifungal agents.
Collapse
Affiliation(s)
- Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
29
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
30
|
Vamshi Krishna K, Venkata Mohan S. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Front Microbiol 2019; 10:880. [PMID: 31133996 PMCID: PMC6513898 DOI: 10.3389/fmicb.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.
Collapse
Affiliation(s)
- K Vamshi Krishna
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
31
|
Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion 2019; 45:7-17. [DOI: 10.1016/j.mito.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
|
32
|
Antos-Krzeminska N, Jarmuszkiewicz W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2018; 170:21-37. [PMID: 30553126 DOI: 10.1016/j.protis.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/11/2023]
Abstract
Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
33
|
Matuz-Mares D, Matus-Ortega G, Cárdenas-Monroy C, Romero-Aguilar L, Villalobos-Rocha JC, Vázquez-Meza H, Guerra-Sánchez G, Peña-Díaz A, Pardo JP. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus Ustilago maydis. FEBS Open Bio 2018; 8:1267-1279. [PMID: 30221129 PMCID: PMC6134880 DOI: 10.1002/2211-5463.12475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
Type 2 alternative NADH dehydrogenases (NDH‐2) participate indirectly in the generation of the electrochemical proton gradient by transferring electrons from NADH and NADPH into the ubiquinone pool. Due to their structural simplicity, alternative NADH dehydrogenases have been proposed as useful tools for gene therapy of cells with defects in the respiratory complex I. In this work, we report the presence of three open reading frames, which correspond to NDH‐2 genes in the genome of Ustilago maydis. These three genes were constitutively transcribed in cells cultured in YPD and minimal medium with glucose, ethanol, or lactate as carbon sources. Proteomic analysis showed that only two of the three NDH‐2 were associated with isolated mitochondria in all culture media. Oxygen consumption by permeabilized cells using NADH or NADPH was different for each condition, opening the possibility of posttranslational regulation. We confirmed the presence of both external and internal NADH dehydrogenases, as well as an external NADPH dehydrogenase insensitive to calcium. Higher oxygen consumption rates were observed during the exponential growth phase, suggesting that the activity of NADH and NADPH dehydrogenases is coupled to the dynamics of cell growth.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Genaro Matus-Ortega
- Departamento de Genética Molecular Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad de México México
| | - Christian Cárdenas-Monroy
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Lucero Romero-Aguilar
- Bioquímica de hongos Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México
| | | | - Héctor Vázquez-Meza
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Guadalupe Guerra-Sánchez
- Bioquímica de hongos Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México
| | - Antonio Peña-Díaz
- Departamento de Genética Molecular Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad de México México
| | - Juan Pablo Pardo
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
34
|
Abstract
The balance between reactive oxygen species and reactive nitrogen species production by the host and stress response by fungi is a key axis of the host-pathogen interaction. This review will describe emerging themes in fungal pathogenesis underpinning this axis.
Collapse
Affiliation(s)
- Adilia Warris
- Medical Research Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
36
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Trevijano-Contador N, Rossi SA, Alves E, Landín-Ferreiroa S, Zaragoza O. Capsule Enlargement in Cryptococcus neoformans Is Dependent on Mitochondrial Activity. Front Microbiol 2017; 8:1423. [PMID: 28824559 PMCID: PMC5534456 DOI: 10.3389/fmicb.2017.01423] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans is an environmental encapsulated yeast that behaves as an opportunistic pathogen in immunocompromised individuals. The capsule is the main virulence factor of this pathogen. This structure is highly dynamic, and it can change its size and structure according to the environmental conditions. During infection, C. neoformans significantly enlarges the size of the capsule by the addition of new polysaccharide. It is believed that capsule growth is an energy-cost process, but this aspect has never been addressed. In this work, we have evaluated the role of mitochondrial activity on capsule growth using specific inhibitors of the electron respiratory chain. We observed that capsule growth was impaired in the presence of inhibitors of the respiratory chain as salicylhydroxamic acid or antimycin A. Furthermore, capsule growth correlated with an increase of the mitochondrial membrane potential and higher production of reactive oxygen species. Our results confirm that capsule growth depends on mitochondrial activity, and open new insights to understand the regulation of this process.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Suelen A Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Elisabete Alves
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Santiago Landín-Ferreiroa
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
38
|
Hao MS, Rasmusson AG. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases. PHYSIOLOGIA PLANTARUM 2016; 157:338-351. [PMID: 27079180 DOI: 10.1111/ppl.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
39
|
Salewski J, Batista AP, Sena FV, Millo D, Zebger I, Pereira MM, Hildebrandt P. Substrate-Protein Interactions of Type II NADH:Quinone Oxidoreductase from Escherichia coli. Biochemistry 2016; 55:2722-34. [PMID: 27109164 DOI: 10.1021/acs.biochem.6b00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and responsible for the maintenance of NADH/NAD(+) balance in cells. NDH-2s are the only enzymes with NADH dehydrogenase activity present in the respiratory chain of many pathogens, and thus, they were proposed as suitable targets for antimicrobial therapies. In addition, NDH-2s were also considered key players for the treatment of complex I-related neurodegenerative disorders. In this work, we explored substrate-protein interaction in NDH-2 from Escherichia coli (EcNDH-2) combining surface-enhanced infrared absorption spectroscopic studies with electrochemical experiments, fluorescence spectroscopy assays, and quantum chemical calculations. Because of the specific stabilization of substrate complexes of EcNDH-2 immobilized on electrodes, it was possible to demonstrate the presence of two distinct substrate binding sites for NADH and the quinone and to identify a bound semiprotonated quinol as a catalytic intermediate.
Collapse
Affiliation(s)
- Johannes Salewski
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Diego Millo
- Biomolecular Spectroscopy/LaserLaB Amsterdam, Vrije Universiteit Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ingo Zebger
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa , Av. da República EAN, P-2780-157 Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
40
|
UCPs, at the interface between bioenergetics and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2443-56. [PMID: 27091404 DOI: 10.1016/j.bbamcr.2016.04.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
Abstract
The first member of the uncoupling protein (UCP) family, brown adipose tissue uncoupling protein 1 (UCP1), was identified in 1976. Twenty years later, two closely related proteins, UCP2 and UCP3, were described in mammals. Homologs of these proteins exist in other organisms, including plants. Uncoupling refers to a deterioration of energy conservation between substrate oxidation and ADP phosphorylation. Complete energy conservation loss would be fatal but fine-tuning can be beneficial for processes such as thermogenesis, redox control, and prevention of mitochondrial ROS release. The coupled/uncoupled state of mitochondria is related to the permeability of the inner membrane and the proton transport mediated by activated UCPs underlies the uncoupling activity of these proteins. Proton transport by UCP1 is activated by fatty acids and this ensures thermogenesis. In vivo in absence of this activation UCP1 remains inhibited with no transport activity. A similar situation now seems unlikely for UCP2 and UCP3 and while activation of their proton transport has been described its physiological relevance remains uncertain and their influence can be envisaged as a result of another transport pathway that takes place in the absence of activation. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
41
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
42
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Vorburger T, Nedielkov R, Brosig A, Bok E, Schunke E, Steffen W, Mayer S, Götz F, Möller HM, Steuber J. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:473-82. [PMID: 26721205 DOI: 10.1016/j.bbabio.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.
Collapse
Affiliation(s)
- Thomas Vorburger
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Ruslan Nedielkov
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alexander Brosig
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Eva Bok
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Emina Schunke
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Wojtek Steffen
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Sonja Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany.
| |
Collapse
|
44
|
Sena FV, Batista AP, Catarino T, Brito JA, Archer M, Viertler M, Madl T, Cabrita EJ, Pereira MM. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Mol Microbiol 2015; 98:272-88. [PMID: 26172206 DOI: 10.1111/mmi.13120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/02/2023]
Abstract
A prerequisite for any rational drug design strategy is understanding the mode of protein-ligand interaction. This motivated us to explore protein-substrate interaction in Type-II NADH:quinone oxidoreductase (NDH-2) from Staphylococcus aureus, a worldwide problem in clinical medicine due to its multiple drug resistant forms. NDHs-2 are involved in respiratory chains and recognized as suitable targets for novel antimicrobial therapies, as these are the only enzymes with NADH:quinone oxidoreductase activity expressed in many pathogenic organisms. We obtained crystal and solution structures of NDH-2 from S. aureus, showing that it is a dimer in solution. We report fast kinetic analyses of the protein and detected a charge-transfer complex formed between NAD(+) and the reduced flavin, which is dissociated by the quinone. We observed that the quinone reduction is the rate limiting step and also the only half-reaction affected by the presence of HQNO, an inhibitor. We analyzed protein-substrate interactions by fluorescence and STD-NMR spectroscopies, which indicate that NADH and the quinone bind to different sites. In summary, our combined results show the presence of distinct binding sites for the two substrates, identified quinone reduction as the rate limiting step and indicate the establishment of a NAD(+)-protein complex, which is released by the quinone.
Collapse
Affiliation(s)
- Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Martin Viertler
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München Neuherberg and Biomolecular NMR- Spectroscopy, Medical University of Graz, 8010, Graz, Austria.,Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr.4, 85747, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München Neuherberg and Biomolecular NMR- Spectroscopy, Medical University of Graz, 8010, Graz, Austria.,Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Eurico J Cabrita
- REQUIMTE, UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
45
|
Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:272-9. [PMID: 26114222 DOI: 10.1016/j.jphotobiol.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/27/2015] [Accepted: 06/18/2015] [Indexed: 11/23/2022]
Abstract
The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers.
Collapse
|
46
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
47
|
Characterization of oxidative phosphorylation enzymes inEuglena gracilisand its white mutant strainWgmZOflL. FEBS Lett 2015; 589:687-94. [DOI: 10.1016/j.febslet.2015.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
|
48
|
Löser C, Urit T, Keil P, Bley T. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Appl Microbiol Biotechnol 2014; 99:1131-44. [PMID: 25487884 DOI: 10.1007/s00253-014-6098-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.
Collapse
Affiliation(s)
- Christian Löser
- Institute of Food Technology and Bioprocess Engineering, TU Dresden, 01062, Dresden, Germany,
| | | | | | | |
Collapse
|
49
|
Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). BIORESOURCE TECHNOLOGY 2014; 174:24-32. [PMID: 25463778 DOI: 10.1016/j.biortech.2014.09.142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 05/12/2023]
Abstract
This study aimed to evaluate the potential lipid accumulation of an oleaginous Chlorella protothecoides by combination cultivation mode of nitrogen (N) and phosphorus (P). Under co-deficiency of N and P, the largest lipid content (55.8%) was accomplished in C. protothecoides, which was higher than either sole P-deficiency (32.77%) or N-deficiency (52.5%), or co-repletion of N and P (control) (22.17%). However, the highest lipid productivity (224.14mg/L/day) with combination mode of N-deficiency and P-repletion represented 1.19-3.70-fold more than that of control, P-deficiency/limitation, and co-deficiency of N and P, respectively. This indicating N-deficiency plus P-repletion was a promising lipid trigger to motivate lipid accumulation in C. protothecoides cells. Further, difference gel electrophoresis (DIGE)-based proteomics was employed to reveal the molecular pathways associated with lipid biosynthesis. These results provide the foundation to develop engineering strategies targeting lipid productivity for industrial production of microalgae-based biodiesel.
Collapse
Affiliation(s)
- Yuqin Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China.
| | - Fangxin Han
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Hua Xu
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jinxiu Mu
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Di Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Bo Feng
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Hongyan Zeng
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
50
|
Steuber J, Halang P, Vorburger T, Steffen W, Vohl G, Fritz G. Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae. Biol Chem 2014; 395:1389-99. [DOI: 10.1515/hsz-2014-0204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/09/2014] [Indexed: 11/15/2022]
Abstract
Abstract
Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na+ gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na+-dependent transport processes and describe the central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), a primary Na+ pump, in maintaining a Na+-motive force. The Na+-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na+ across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na+-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.
Collapse
|