1
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
2
|
Kretschmer M, Damoo D, Sun S, Lee CWJ, Croll D, Brumer H, Kronstad J. Organic acids and glucose prime late-stage fungal biotrophy in maize. Science 2022; 376:1187-1191. [PMID: 35679407 DOI: 10.1126/science.abo2401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many plant-associated fungi are obligate biotrophs that depend on living hosts to proliferate. However, little is known about the molecular basis of the biotrophic lifestyle, despite the impact of fungi on the environment and food security. In this work, we show that combinations of organic acids and glucose trigger phenotypes that are associated with the late stage of biotrophy for the maize pathogen Ustilago maydis. These phenotypes include the expression of a set of effectors normally observed only during biotrophic development, as well as the formation of melanin associated with sporulation in plant tumors. U. maydis and other hemibiotrophic fungi also respond to a combination of carbon sources with enhanced proliferation. Thus, the response to combinations of nutrients from the host may be a conserved feature of fungal biotrophy.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Djihane Damoo
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sherry Sun
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christopher W J Lee
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Jiang Z, Cui Z, Zhu Z, Liu Y, Tang YJ, Hou J, Qi Q. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:145. [PMID: 34176501 PMCID: PMC8237505 DOI: 10.1186/s13068-021-01996-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Succinic acid (SA) is a crucial metabolic intermediate and platform chemical. Development of biobased processes to achieve sustainable SA production has attracted more and more attention in biotechnology industry. Yarrowia lipolytica has a strong tricarboxylic acid cycle and tolerates low pH conditions, thus making it a potential platform for SA production. However, its SA titers in glucose media remain low. RESULTS In this study, we screened mitochondrial carriers and C4-dicarboxylic acid transporters to enhance SA secretion in Y. lipolytica. PGC62-SYF-Mae strain with efficient growth and SA production was constructed by optimizing SA biosynthetic pathways and expressing the transporter SpMae1. In fed-batch fermentation, this strain produced 101.4 g/L SA with a productivity of 0.70 g/L/h and a yield of 0.37 g/g glucose, which is the highest SA titer achieved using yeast, with glucose as the sole carbon resource. CONCLUSION Our results indicated that transporter engineering is a powerful strategy to achieve the efficient secretion of SA in Y. lipolytica, which will promote the industrial production of bio-based SA.
Collapse
Affiliation(s)
- Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ziwei Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
4
|
Abstract
Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.
Collapse
Affiliation(s)
- J J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| | - E R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
5
|
Zhu P, Wang H, Zeng Q. Comparative transcriptome reveals the response of oriental river prawn (Macrobrachium nipponense) to sulfide toxicity at molecular level. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105700. [PMID: 33285378 DOI: 10.1016/j.aquatox.2020.105700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Piel MS, Masscheleyn S, Bouillaud F, Moncoq K, Miroux B. Structural models of mitochondrial uncoupling proteins obtained in DPC micelles are not functionally relevant. FEBS J 2020; 288:3024-3033. [DOI: 10.1111/febs.15629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mathilde S. Piel
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Sandrine Masscheleyn
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | | | - Karine Moncoq
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Bruno Miroux
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| |
Collapse
|
7
|
Sanchez G, Linde SC, Coolon JD. Genome-wide effect of tetracycline, doxycycline and 4-epidoxycycline on gene expression in Saccharomyces cerevisiae. Yeast 2020; 37:389-396. [PMID: 32726865 PMCID: PMC7540071 DOI: 10.1002/yea.3515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Tetracycline (Tet) and derivative chemicals (e.g., doxycycline or Dox) have gained widespread recognition for their antibiotic properties since their introduction in the late 1970s, but recent work with these chemicals in the lab has shifted to include multiple techniques in all genetic model systems for the precise control of gene expression. The most widely used Tet‐modulated methodology is the Tet‐On/Tet‐Off gene expression system. Tet is generally considered to have effects specific to bacteria; therefore, it should have few off‐target effects when used in eukaryotic systems, and a previous study in the yeast Saccharomyces cerevisiae found that Dox had no effect on genome‐wide gene expression as measured by microarray. In contrast, another study found that the use of Dox in common cell lines and several model organisms led to mitonuclear protein imbalance, suggesting an inhibitory role of Dox in eukaryotic mitochondria. Recently, a new Dox derivative, 4‐epidoxycycline (4‐ED) was developed that was shown to have less off‐target consequences on mitochondrial health. To determine the best tetracycline family chemical to use for gene expression control in S. cerevisiae, we performed RNA sequencing (RNA‐seq) on yeast grown on standard medium compared with growth on media supplemented with Tet, Dox or 4‐ED. We found each caused dozens of genes to change expression, with Dox eliciting the greatest expression responses, suggesting that the specific tetracycline used in experiments should be tailored to the specific gene(s) of interest when using the Tet‐On/Tet‐Off system to reduce the consequences of confounding off‐target responses.
Collapse
Affiliation(s)
- Guadalupe Sanchez
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Samuel C Linde
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
8
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|
9
|
Mitochondrial Citrate Transporters CtpA and YhmA Are Required for Extracellular Citric Acid Accumulation and Contribute to Cytosolic Acetyl Coenzyme A Generation in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2019; 85:AEM.03136-18. [PMID: 30737343 DOI: 10.1128/aem.03136-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Aspergillus luchuensis mut. kawachii (A. kawachii) produces a large amount of citric acid during the process of fermenting shochu, a traditional Japanese distilled spirit. In this study, we characterized A. kawachii CtpA and YhmA, which are homologous to the yeast Saccharomyces cerevisiae mitochondrial citrate transporters Ctp1 and Yhm2, respectively. CtpA and YhmA were purified from A. kawachii and reconstituted into liposomes. The proteoliposomes exhibited only counterexchange transport activity; CtpA transported citrate using countersubstrates, especially cis-aconitate and malate, whereas YhmA transported citrate using a wider variety of countersubstrates, including citrate, 2-oxoglutarate, malate, cis-aconitate, and succinate. Disruption of ctpA and yhmA caused deficient hyphal growth and conidium formation with reduced mycelial weight-normalized citrate production. Because we could not obtain a ΔctpA ΔyhmA strain, we constructed an S-tagged ctpA (ctpA-S) conditional expression strain in the ΔyhmA background using the Tet-On promoter system. Knockdown of ctpA-S in ΔyhmA resulted in a severe growth defect on minimal medium with significantly reduced acetyl coenzyme A (acetyl-CoA) and lysine levels, indicating that double disruption of ctpA and yhmA leads to synthetic lethality; however, we subsequently found that the severe growth defect was relieved by addition of acetate or lysine, which could remedy the acetyl-CoA level. Our results indicate that CtpA and YhmA are mitochondrial citrate transporters involved in citric acid production and that transport of citrate from mitochondria to the cytosol plays an important role in acetyl-CoA biogenesis in A. kawachii IMPORTANCE Citrate transport is believed to play a significant role in citrate production by filamentous fungi; however, details of the process remain unclear. This study characterized two citrate transporters from Aspergillus luchuensis mut. kawachii Biochemical and gene disruption analyses showed that CtpA and YhmA are mitochondrial citrate transporters required for normal hyphal growth, conidium formation, cytosolic acetyl-CoA synthesis, and citric acid production. The characteristics of fungal citrate transporters elucidated in this study will help expand our understanding of the citrate production mechanism and facilitate the development and optimization of industrial organic acid fermentation processes.
Collapse
|
10
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
11
|
Role of GTPases in the Regulation of Mitochondrial Dynamics in Alzheimer's Disease and CNS-Related Disorders. Mol Neurobiol 2018; 56:4530-4538. [PMID: 30338485 DOI: 10.1007/s12035-018-1397-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Data obtained from several studies have shown that mitochondria are involved and play a central role in the progression of several distinct pathological conditions. Morphological alterations and disruptions on the functionality of mitochondria may be related to metabolic and energy deficiency in neurons in a neurodegenerative disorder. Several recent studies demonstrate the linkage between neurodegeneration and mitochondrial dynamics in the spectrum of a promising era called precision mitochondrial medicine. In this review paper, an analysis of the correlation between mitochondria, Alzheimer's disease, and other central nervous system (CNS)-related disorders like the Parkinson's disease and the autism spectrum disorder is under discussion. The role of GTPases like the mfn1, mfn2, opa1, and dlp1 in mitochondrial fission and fusion is also under investigation, influencing mitochondrial population and leading to oxidative stress and neuronal damage.
Collapse
|
12
|
Porcelli V, Vozza A, Calcagnile V, Gorgoglione R, Arrigoni R, Fontanesi F, Marobbio CMT, Castegna A, Palmieri F, Palmieri L. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1249-1258. [PMID: 30297026 DOI: 10.1016/j.bbabio.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vozza
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Valeria Calcagnile
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Gorgoglione
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlo M T Marobbio
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Alessandra Castegna
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.
| |
Collapse
|
13
|
Scarcia P, Agrimi G, Germinario L, Ibrahim A, Rottensteiner H, Palmieri F, Palmieri L. In Saccharomyces cerevisiae grown in synthetic minimal medium supplemented with non-fermentable carbon sources glutamate is synthesized within mitochondria. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0687-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
15
|
Zhou X, Paredes JA, Krishnan S, Curbo S, Karlsson A. The mitochondrial carrier SLC25A10 regulates cancer cell growth. Oncotarget 2016; 6:9271-83. [PMID: 25797253 PMCID: PMC4496216 DOI: 10.18632/oncotarget.3375] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of cell metabolism is critical for the growth properties of cancer cells. The purpose of this study was to understand the role of substrate transport across the mitochondrial membrane to sustain the metabolic shift and redox defense in cancer cells. Mitochondrial carrier SLC25A10 is up-regulated in a variety of tumors and is involved in regulating intracellular levels of reactive oxygen species. We show that knockdown of SLC25A10 in A549 cells changed the growth properties to a less malignant phenotype and casued increased glutamine dependency and sensitivity to oxidative stress. The metabolic alteration was linked to an energy metabolic shift from glycolysis to mitochondrial oxidative phosphorylation illustrated by increased expression of glutamate dehydrogenase, decreased expression of lactate dehydrogenase due to down-regulation of hypoxia inducible factor 1α. We identified effects on NADPH production linked to the growth changes observed in SLC25A10 knockdown cells, demonstrated by decreased NADPH production in cells deprived of glutamine. The contribution of SLC25A10 to reprogram cell metabolism and to regulate cell growth suggests SLC25A10 as a novel target for anti-cancer strategies.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - João A Paredes
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
16
|
Whittaker JW. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease. Arch Biochem Biophys 2015; 592:20-6. [PMID: 26619753 DOI: 10.1016/j.abb.2015.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
The importance of the vitamin B6-derived pyridoxal cofactor for human health has been established through more than 70 years of intensive biochemical research, revealing its fundamental roles in metabolism. B6 deficiency, resulting from nutritional limitation or impaired uptake from dietary sources, is associated with epilepsy, neuromuscular disease and neurodegeneration. Hereditary disorders of B6 processing are also known, and genetic defects in pathways involved in transport of B6 into the cell and its transformation to the pyridoxal-5'-phosphate enzyme cofactor can contribute to cardiovascular disease by interfering with homocysteine metabolism and the biosynthesis of vasomodulatory polyamines. Compared to the processes involved in cellular uptake and processing of the B6 vitamers, trafficking of the PLP cofactor across intracellular membranes is very poorly understood, even though the availability of PLP within subcellular compartments (particularly the mitochondrion) may have important health implications. The aim of this review is to concisely summarize the state of current knowledge of intracellular trafficking of PLP and to identify key directions for future research.
Collapse
Affiliation(s)
- James W Whittaker
- Institute of Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
17
|
Jungreuthmayer C, Ruckerbauer DE, Gerstl MP, Hanscho M, Zanghellini J. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs. PLoS One 2015; 10:e0129840. [PMID: 26091045 PMCID: PMC4475075 DOI: 10.1371/journal.pone.0129840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/13/2015] [Indexed: 01/12/2023] Open
Abstract
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.
Collapse
Affiliation(s)
- Christian Jungreuthmayer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
- * E-mail: (CJ); (JZ)
| | - David E. Ruckerbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Matthias P. Gerstl
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Michael Hanscho
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
| | - Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU
- * E-mail: (CJ); (JZ)
| |
Collapse
|
18
|
Monné M, Miniero DV, Daddabbo L, Palmieri L, Porcelli V, Palmieri F. Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids 2015; 47:1763-77. [PMID: 26002808 DOI: 10.1007/s00726-015-1990-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
Abstract
Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly in the mitochondrial matrix and to provide basic amino acids for mitochondrial translation. In the liver, human ORC1 catalyzes the citrulline/ornithine exchange across the mitochondrial inner membrane, which is required for the urea cycle. Human ORC1, ORC2, and SLC25A29 are likely to be involved in the biosynthesis and transport of arginine, which can be used as a precursor for the synthesis of NO, agmatine, polyamines, creatine, glutamine, glutamate, and proline, as well as in the degradation of basic amino acids. BAC1 and BAC2 are implicated in some processes similar to those of their human counterparts and in nitrogen and amino acid metabolism linked to stress conditions and the development of plants. Ort1p is involved in the biosynthesis of arginine and polyamines in yeast.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Monné M, Palmieri F. Antiporters of the mitochondrial carrier family. CURRENT TOPICS IN MEMBRANES 2014; 73:289-320. [PMID: 24745987 DOI: 10.1016/b978-0-12-800223-0.00008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them. The structure of the bovine ADP/ATP carrier consists of a six-transmembrane α-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy; Department of Sciences, University of Basilicata, Potenza, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| |
Collapse
|
20
|
Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, Guiard B, Warscheid B, van der Laan M. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 2014; 289:27352-27362. [PMID: 25124039 DOI: 10.1074/jbc.m114.556498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.
Collapse
Affiliation(s)
- Carola S Mehnert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Sandra G Schrempp
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Lioba Kochbeck
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Bettina Warscheid
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Martin van der Laan
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and.
| |
Collapse
|
21
|
Whittaker MM, Whittaker JW. Expression and purification of recombinant Saccharomyces cerevisiae mitochondrial carrier protein YGR257Cp (Mtm1p). Protein Expr Purif 2013; 93:77-86. [PMID: 24184947 DOI: 10.1016/j.pep.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/11/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
The Saccharomyces cerevisiae mitochondrial carrier YGR257Cp (Mtm1p) is an integral membrane protein that plays an essential role in mitochondrial iron homeostasis and respiratory functions, but its carrier substrate has not previously been identified. Large amounts of pure protein are required for biochemical characterization, including substrate screening. Functional complementation of a Saccharomyces knockout by expression of TwinStrep tagged YGR257Cp demonstrates that an affinity tag does not interfere with protein function, but the expression level is very low. Heterologous expression in Pichia pastoris improves the yield but the product is heterogeneous. Expression has been screened in several Escherichia coli hosts, optimizing yield by modifying induction conditions and supplementing with rare tRNAs to overcome codon bias in the eukaryotic gene. Detection of an additional N-terminal truncation product in E. coli reveals the presence of a secondary intracistronic translation initiation site, which can be eliminated by silent mutagenesis of an alternative (Leu) initiation codon, resulting in production of a single, full-length polypeptide (∼30% of the total protein) as insoluble inclusion bodies. Purified inclusion bodies were successfully refolded and affinity purified, yielding approximately 40mg of pure, soluble product per liter of culture. Refolded YGR257Cp binds pyridoxal 5'-phosphate tightly (KD<1μM), supporting a new hypothesis that the mitochondrial carrier YGR237Cp and its homologs function as high affinity PLP transporters in mitochondria, providing the first evidence for this essential transport function in eukaryotes.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | | |
Collapse
|
22
|
Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Curr Genet 2013; 59:197-206. [PMID: 24114446 PMCID: PMC3824880 DOI: 10.1007/s00294-013-0413-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae several nutrient transporters have been identified that possess an additional function as nutrient receptor. These transporters are induced when yeast cells are starved for their substrate, which triggers entry into stationary phase and acquirement of a low protein kinase A (PKA) phenotype. Re-addition of the lacking nutrient triggers exit from stationary phase and sudden activation of the PKA pathway, the latter being mediated by the nutrient transceptors. At the same time, the transceptors are ubiquitinated, endocytosed and sorted to the vacuole for breakdown. Investigation of the signaling function of the transceptors has provided a new read-out and new tools for gaining insight into the functionality of transporters. Identification of amino acid residues that bind co-transported ions in symporters has been challenging because the inactivation of transport by site-directed mutagenesis is not conclusive with respect to the cause of the inactivation. The discovery of nontransported agonists of the signaling function in transceptors has shown that transport is not required for signaling. Inactivation of transport with maintenance of signaling in transceptors supports that a true proton-binding residue was mutagenised. Determining the relationship between transport and induction of endocytosis has also been challenging, since inactivation of transport by mutagenesis easily causes loss of all affinity for the substrate. The use of analogues with different combinations of transport and signaling capacities has revealed that transport, ubiquitination and endocytosis can be uncoupled in several unexpected ways. The results obtained are consistent with transporters undergoing multiple substrate-induced conformational changes, which allow interaction with different accessory proteins to trigger specific downstream events.
Collapse
|
23
|
Ray D, Ye P. Characterization of the metabolic requirements in yeast meiosis. PLoS One 2013; 8:e63707. [PMID: 23675502 PMCID: PMC3650881 DOI: 10.1371/journal.pone.0063707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The diploid yeast Saccharomyces cerevisiae undergoes mitosis in glucose-rich medium but enters meiosis in acetate sporulation medium. The transition from mitosis to meiosis involves a remarkable adaptation of the metabolic machinery to the changing environment to meet new energy and biosynthesis requirements. Biochemical studies indicate that five metabolic pathways are active at different stages of sporulation: glutamate formation, tricarboxylic acid cycle, glyoxylate cycle, gluconeogenesis, and glycogenolysis. A dynamic synthesis of macromolecules, including nucleotides, amino acids, and lipids, is also observed. However, the metabolic requirements of sporulating cells are poorly understood. In this study, we apply flux balance analyses to uncover optimal principles driving the operation of metabolic networks over the entire period of sporulation. A meiosis-specific metabolic network is constructed, and flux distribution is simulated using ten objective functions combined with time-course expression-based reaction constraints. By systematically evaluating the correlation between computational and experimental fluxes on pathways and macromolecule syntheses, the metabolic requirements of cells are determined: sporulation requires maximization of ATP production and macromolecule syntheses in the early phase followed by maximization of carbohydrate breakdown and minimization of ATP production in the middle and late stages. Our computational models are validated by in silico deletion of enzymes known to be essential for sporulation. Finally, the models are used to predict novel metabolic genes required for sporulation. This study indicates that yeast cells have distinct metabolic requirements at different phases of meiosis, which may reflect regulation that realizes the optimal outcome of sporulation. Our meiosis-specific network models provide a framework for an in-depth understanding of the roles of enzymes and reactions, and may open new avenues for engineering metabolic pathways to improve sporulation efficiency.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Biological Systems Engineering, Washington State University, Pullman, Washington, United States of America
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
Quek NCH, Matthews JH, Bloor SJ, Jones DA, Bircham PW, Heathcott RW, Atkinson PH. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 9:2125-33. [DOI: 10.1039/c3mb70056a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Hildenbeutel M, Theis M, Geier M, Haferkamp I, Neuhaus HE, Herrmann JM, Ott M. The membrane insertase Oxa1 is required for efficient import of carrier proteins into mitochondria. J Mol Biol 2012; 423:590-9. [PMID: 22846909 DOI: 10.1016/j.jmb.2012.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 11/27/2022]
Abstract
Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady-state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.
Collapse
Affiliation(s)
- Markus Hildenbeutel
- Division of Cell Biology, University of Kaiserslautern, Erwin-Schrödinger Strasse 13, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. FRONTIERS IN PLANT SCIENCE 2012; 3:2. [PMID: 22639632 PMCID: PMC3355725 DOI: 10.3389/fpls.2012.00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Mitochondria play a key role in respiration and energy production and are involved in multiple eukaryotic but also in several plant specific metabolic pathways. Solute carriers in the inner mitochondrial membrane connect the internal metabolism with that of the surrounding cell. Because of their common basic structure, these transport proteins affiliate to the mitochondrial carrier family (MCF). Generally, MCF proteins consist of six membrane spanning helices, exhibit typical conserved domains and appear as homodimers in the native membrane. Although structurally related, MCF proteins catalyze the specific transport of various substrates, such as nucleotides, amino acids, dicarboxylates, cofactors, phosphate or H(+). Recent investigations identified MCF proteins also in several other cellular compartments and therefore their localization and physiological function is not only restricted to mitochondria. MCF proteins are a characteristic feature of eukaryotes and bacterial genomes lack corresponding sequences. Therefore, the evolutionary origin of MCF proteins is most likely associated with the establishment of mitochondria. It is not clear whether the host cell, the symbiont, or the chimerical organism invented the ancient MCF sequence. Here, we try to explain the establishment of different MCF proteins and focus on the characteristics of members from plants, in particular from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Technische Universität KaiserslauternKaiserslautern, Germany
- *Correspondence: Ilka Haferkamp, Biologie, Zelluläre Physiologie/Membrantransport, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 22, 67653 Kaiserslautern, Germany. e-mail:
| | | |
Collapse
|
27
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
28
|
Lim CH, Hamazaki T, Braun EL, Wade J, Terada N. Evolutionary genomics implies a specific function of Ant4 in mammalian and anole lizard male germ cells. PLoS One 2011; 6:e23122. [PMID: 21858006 PMCID: PMC3155547 DOI: 10.1371/journal.pone.0023122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Most vertebrates have three paralogous genes with identical intron-exon structures and a high degree of sequence identity that encode mitochondrial adenine nucleotide translocase (Ant) proteins, Ant1 (Slc25a4), Ant2 (Slc25a5) and Ant3 (Slc25a6). Recently, we and others identified a fourth mammalian Ant paralog, Ant4 (Slc25a31), with a distinct intron-exon structure and a lower degree of sequence identity. Ant4 was expressed selectively in testis and sperm in adult mammals and was indeed essential for mouse spermatogenesis, but it was absent in birds, fish and frogs. Since Ant2 is X-linked in mammalian genomes, we hypothesized that the autosomal Ant4 gene may compensate for the loss of Ant2 gene expression during male meiosis in mammals. Here we report that the Ant4 ortholog is conserved in green anole lizard (Anolis carolinensis) and demonstrate that it is expressed in the anole testis. Further, a degenerate DNA fragment of putative Ant4 gene was identified in syntenic regions of avian genomes, indicating that Ant4 was present in the common amniote ancestor. Phylogenetic analyses suggest an even more ancient origin of the Ant4 gene. Although anole lizards are presumed male (XY) heterogametic, like mammals, copy numbers of the Ant2 as well as its neighboring gene were similar between male and female anole genomes, indicating that the anole Ant2 gene is either autosomal or located in the pseudoautosomal region of the sex chromosomes, in contrast to the case to mammals. These results imply the conservation of Ant4 is not likely simply driven by the sex chromosomal localization of the Ant2 gene and its subsequent inactivation during male meiosis. Taken together with the fact that Ant4 protein has a uniquely conserved structure when compared to other somatic Ant1, 2 and 3, there may be a specific advantage for mammals and lizards to express Ant4 in their male germ cells.
Collapse
Affiliation(s)
- Chae Ho Lim
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Takashi Hamazaki
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Edward L. Braun
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Juli Wade
- Neuroscience Program, Department of Psychology, Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - Naohiro Terada
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Teplova VV, Belosludtsev KN, Belosludtseva NV, Holmuhamedov EL. Role of mitochondria in hepatotoxicity of ethanol. Biophysics (Nagoya-shi) 2010; 55:951-958. [DOI: 10.1134/s0006350910060114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
|
30
|
Holmuhamedov EL, Czerny C, Lovelace G, Beeson CC, Baker T, Johnson CB, Pediaditakis P, Teplova VV, Tikunov A, MacDonald J, Lemasters JJ. Role of voltage-dependent anion channels of the mitochondrial outer membrane in regulation of cell metabolism. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: Physiological investigation and transcriptome analysis. Biotechnol J 2010; 5:1016-27. [DOI: 10.1002/biot.201000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Jarmuszkiewicz W, Woyda-Ploszczyca A, Antos-Krzeminska N, Sluse FE. Mitochondrial uncoupling proteins in unicellular eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:792-9. [PMID: 20026010 DOI: 10.1016/j.bbabio.2009.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/27/2009] [Accepted: 12/03/2009] [Indexed: 11/29/2022]
Abstract
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species.
Collapse
Affiliation(s)
- Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | | | | | | |
Collapse
|
33
|
Luévano-Martínez LA, Moyano E, de Lacoba MG, Rial E, Uribe-Carvajal S. Identification of the mitochondrial carrier that provides Yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:81-8. [PMID: 19766093 DOI: 10.1016/j.bbabio.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/02/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
Abstract
Uncoupling proteins (UCPs) are mitochondrial carriers distributed throughout the eukaryotic kingdoms. While genes coding for UCPs have been identified in plants and animals, evidences for the presence of UCPs in fungi and protozoa are only functional. Here, it is reported that in the yeast Yarrowia lipolytica there is a fatty acid-promoted and GDP-sensitive uncoupling activity indicating the presence of a UCP. The uncoupling activity is higher in the stationary phase than in the mid-log growth phase. The in silico search on the Y. lipolytica genome led to the selection of two genes with the highest homology to the UCP family, XM_503525 and XM_500457. By phylogenetic analysis, XP_503525 was predicted to be an oxaloacetate carrier while XP_500457 would be a dicarboxylate carrier. Each of these two genes was cloned and heterologously expressed in Saccharomyces cerevisiae and the resulting phenotype was analyzed. The transport activity of the two gene products confirmed the phylogenetic predictions. In addition, only mitochondria isolated from yeasts expressing XP_503525 showed bioenergetic properties characteristic of a UCP: the proton conductance was increased by linoleic acid and inhibited by GDP. It is concluded that the XM_503525 gene from Y. lipolytica encodes for an oxaloacetate carrier although, remarkably, it also displays an uncoupling activity stimulated by fatty acids and inhibited by nucleotides.
Collapse
Affiliation(s)
- Luis A Luévano-Martínez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
34
|
Protein transport machineries for precursor translocation across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:52-9. [DOI: 10.1016/j.bbamcr.2008.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
35
|
Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M, Caubet SD, di Rago JP. Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:186-99. [PMID: 18620007 DOI: 10.1016/j.bbamcr.2008.06.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 01/09/2023]
Abstract
In mammals, the majority of cellular ATP is produced by the mitochondrial F1F(O)-ATP synthase through an elaborate catalytic mechanism. While most subunits of this enzymatic complex are encoded by the nuclear genome, a few essential components are encoded in the mitochondrial genome. The biogenesis of this multi-subunit enzyme is a sophisticated multi-step process that is regulated on levels of transcription, translation and assembly. Defects that result in diminished abundance or functional impairment of the F1F(O)-ATP synthase can cause a variety of severe neuromuscular disorders. Underlying mutations have been identified in both the nuclear and the mitochondrial DNA. The pathogenic mechanisms are only partially understood. Currently, the therapeutic options are extremely limited. Alternative methods of treatment have however been proposed, but still encounter several technical difficulties. The application of novel scientific approaches promises to deepen our understanding of the molecular mechanisms of the ATP synthase, unravel novel therapeutic pathways and improve the unfortunate situation of the patients suffering from such diseases.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires, CNRS-Université Bordeaux2, Bordeaux 33077, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol Cell Biol 2008; 28:4251-60. [PMID: 18458057 DOI: 10.1128/mcb.02216-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.
Collapse
|
37
|
Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2007; 32:322-34. [PMID: 18056784 DOI: 10.1152/physiolgenomics.00160.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Production and excretion of acids are balanced to maintain systemic acid-base homeostasis. During metabolic acidosis (MA) excess acid accumulates and is removed from the body, a process achieved, at least in part, by increasing renal acid excretion. This acid-secretory process requires the concerted regulation of metabolic and transport pathways, which are only partially understood. Chronic MA causes also morphological remodeling of the kidney. Therefore, we characterized transcriptional changes in mammalian kidney during MA to gain insights into adaptive pathways. Total kidney RNA from control and 2- and 7-days NH(4)Cl treated mice was subjected to microarray gene profiling. We identified 4,075 transcripts significantly (P < 0.05) regulated after 2 and/or 7 days of treatment. Microarray results were confirmed by qRT-PCR. Analysis of candidate genes revealed that a large group of regulated transcripts was represented by different solute carrier transporters, genes involved in cell growth, proliferation, apoptosis, water homeostasis, and ammoniagenesis. Pathway analysis revealed that oxidative phosphorylation was the most affected pathway. Interestingly, the majority of acutely regulated genes after 2 days, returned to normal values after 7 days suggesting that adaptation had occurred. Besides these temporal changes, we detected also differential regulation of selected genes (SNAT3, PEPCK, PDG) between early and late proximal tubule. In conclusion, the mammalian kidney responds to MA by temporally and spatially altering the expression of a large number of genes. Our analysis suggests that many of these genes may participate in various processes leading to adaptation and restoration of normal systemic acid-base and electrolyte homeostasis.
Collapse
Affiliation(s)
- Marta Nowik
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|
39
|
Tehlivets O, Scheuringer K, Kohlwein SD. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:255-70. [PMID: 16950653 DOI: 10.1016/j.bbalip.2006.07.004] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 12/30/2022]
Abstract
Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria
| | | | | |
Collapse
|
40
|
Falconi M, Chillemi G, Di Marino D, D'Annessa I, Morozzo della Rocca B, Palmieri L, Desideri A. Structural dynamics of the mitochondrial ADP/ATP carrier revealed by molecular dynamics simulation studies. Proteins 2006; 65:681-91. [PMID: 16988954 DOI: 10.1002/prot.21102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier has been recently crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). In the crystal structure, the six-transmembrane helix bundle that defines the nucleotide translocation pathway is closed on the matrix side due to sharp kinks in the odd-numbered helices. The closed conformation is further sealed by the loops protruding into the matrix that interact through an intricate network of charge-pairs. To gain insight into its structural dynamics we performed molecular dynamics (MD) simulation studies of the ADP/ATP carrier with and without its cocrystallized inhibitor. The two trajectories sampled a conformational space around two different configurations characterized by distinct salt-bridge networks with a significant shift from inter- to intrarepeat bonding on the matrix side in the absence of CATR. Analysis of the geometrical parameters defining the transmembrane helices showed that even-numbered helices can undergo a face rotation, whereas odd-numbered helices can undergo a change in the wobble angle with a conserved proline acting as molecular hinge. Our results provide new information on the dynamical properties of the ADP/ATP carrier and for the first time yield a detailed picture of a stable carrier conformation in absence of the inhibitor.
Collapse
Affiliation(s)
- M Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N. A Role for Tim21 in Membrane-Potential-Dependent Preprotein Sorting in Mitochondria. Curr Biol 2006; 16:2271-6. [PMID: 17113393 DOI: 10.1016/j.cub.2006.10.025] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/20/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
The mitochondrial inner membrane harbors complexes of the respiratory chain and translocase complexes for preproteins. The membrane potential generated by the respiratory chain is essential for ATP production by the mitochondrial ATP synthase and as a driving force for protein import. It is generally believed that the preprotein translocases just use the membrane potential without getting into physical contact with respiratory-chain complexes. Here, we show that the presequence translocase interacts with the respiratory chain. Tim21, a specific subunit of the sorting-active presequence translocase , recruits proton-pumping respiratory-chain complexes and stimulates preprotein insertion. Thus, the presequence translocase cooperates with the respiratory chain and promotes membrane-potential-dependent protein sorting into the inner mitochondrial membrane. These findings suggest a new coupling mechanism in an energy-transducing membrane.
Collapse
Affiliation(s)
- Martin van der Laan
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:1249-62. [PMID: 16844075 DOI: 10.1016/j.bbabio.2006.05.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Culotta VC, Yang M, O'Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:747-58. [PMID: 16828895 PMCID: PMC1633718 DOI: 10.1016/j.bbamcr.2006.05.003] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 12/25/2022]
Abstract
Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.
Collapse
Affiliation(s)
- Valeria Cizewski Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
44
|
Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N, Rehling P. Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane. Science 2006; 312:1523-6. [PMID: 16763150 DOI: 10.1126/science.1127628] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.
Collapse
Affiliation(s)
- Michael Meinecke
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. The C-terminal TPR Domain of Tom70 Defines a Family of Mitochondrial Protein Import Receptors Found only in Animals and Fungi. J Mol Biol 2006; 358:1010-22. [PMID: 16566938 DOI: 10.1016/j.jmb.2006.02.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/15/2022]
Abstract
In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.
Collapse
Affiliation(s)
- Nickie C Chan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
46
|
Marobbio C, Di Noia M, Palmieri F. Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization. Biochem J 2006; 393:441-6. [PMID: 16194150 PMCID: PMC1360694 DOI: 10.1042/bj20051284] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyrimidine (deoxy)nucleoside triphosphates are required in mitochondria for the synthesis of DNA and the various types of RNA present in these organelles. In Saccharomyces cerevisiae, these nucleotides are synthesized outside the mitochondrial matrix and must therefore be transported across the permeability barrier of the mitochondrial inner membrane. However, no protein has ever been found to be associated with this transport activity. In the present study, Rim2p has been identified as a yeast mitochondrial pyrimidine nucleotide transporter. Rim2p (replication in mitochondria 2p) is a member of the mitochondrial carrier protein family having some special features. The RIM2 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes and its transport properties and kinetic parameters were characterized. It transported the pyrimidine (deoxy)nucleoside tri- and di-phosphates and, to a lesser extent, pyrimidine (deoxy)nucleoside monophosphates, by a counter-exchange mechanism. Transport was saturable, with an apparent K(m) of 207 microM for TTP, 404 microM for UTP and 435 microM for CTP. Rim2p was strongly inhibited by mercurials, bathophenanthroline, tannic acid and Bromocresol Purple, and partially inhibited by bongkrekic acid. Furthermore, the Rim2p-mediated heteroexchanges, TTP/TMP and TTP/TDP, are electroneutral and probably H+-compensated. The main physiological role of Rim2p is proposed to be to transport (deoxy)pyrimidine nucleoside triphosphates into mitochondria in exchange for intramitochondrially generated (deoxy)pyrimidine nucleoside monophosphates.
Collapse
Affiliation(s)
- Carlo Marya Thomas Marobbio
- *Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Antonietta Di Noia
- *Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- *Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
- †CNR Institute of Biomembranes and Bioenergetics, Via Orabona 4, 70125 Bari, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 2006; 3:9-13. [PMID: 16399500 DOI: 10.1016/j.cmet.2005.12.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/28/2005] [Accepted: 12/05/2005] [Indexed: 11/19/2022]
Abstract
The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nuclear and mitochondrial genomes essential for optimal assembly and function of the system. We describe the current understanding of the metabolic consequences of pathological OXPHOS defects, based on analyses of patients and of genetically engineered model systems. Understanding the metabolic consequences of OXPHOS disease is of key importance for elucidating pathogenic mechanisms, guiding diagnosis and developing therapies.
Collapse
Affiliation(s)
- Jan A Smeitink
- Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Zara V, Ferramosca A, Papatheodorou P, Palmieri F, Rassow J. Import of rat mitochondrial citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import receptor Tom20 and inhibits membrane translocation. J Cell Sci 2005; 118:3985-95. [PMID: 16129883 DOI: 10.1242/jcs.02526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria contain a family of related carrier proteins that mediate transport of metabolites across the mitochondrial inner membrane. All members of this family are synthesized in the cytosol. We characterized the interactions of newly synthesized rat citrate carrier (CIC) precursor protein (pCIC) with the components of the mitochondrial protein import machinery. pCIC contains both a positively charged presequence of 13 amino acids and internal targeting sequences. We found that the pCIC presequence does not interfere with the import pathway and merely acts as an internal chaperone in the cytosol. Under conditions of increased ionic strength, the pCIC presequence binds to the import receptor Tom20 and accumulates at the mitochondrial surface, thereby delaying pCIC translocation across the mitochondrial outer membrane. Similarly, the presequence of the bovine phosphate carrier (PiC) precursor protein (pPiC) is arrested at the mitochondrial surface when salt concentrations are elevated. We conclude that presequences can only act as mediators of mitochondrial protein import if they allow rapid release from import receptor sites. Release from receptors sites may be rate-limiting in translocation.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, I-73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
49
|
Trotter PJ, Adamson AL, Ghrist AC, Rowe L, Scott LR, Sherman MP, Stites NC, Sun Y, Tawiah-Boateng MA, Tibbetts AS, Wadington MC, West AC. Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast. Arch Biochem Biophys 2005; 442:21-32. [PMID: 16140254 DOI: 10.1016/j.abb.2005.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/22/2005] [Accepted: 07/23/2005] [Indexed: 11/27/2022]
Abstract
Utilization of fatty acids such as oleic acid as sole carbon source by the yeast Saccharomyces cerevisiae requires coordinated function of peroxisomes, where the fatty acids are degraded, and the mitochondria, where oxidation is completed. We identified two mitochondrial oxodicarboxylate transporters, Odc1p and Odc2p, as important in efficient utilization of oleic acid in yeast [Tibbetts et al., Arch. Biochem. Biophys. 406 (2002) 96-104]. Yet, the growth phenotype of odc1delta odc2delta strains indicated that additional transporter(s) were also involved. Here, we identify two putative transporter genes, YMC1 and YMC2, as able to suppress the odc1delta odc2delta growth phenotype. The mRNA levels for both are elevated in the presence of glycerol or oleic acid, as compared to glucose. Ymc1p and Ymc2p are localized to the mitochondria in oleic acid-grown cells. Deletion of all four transporters (quad mutant) prevents growth on oleic acid as sole carbon source, while growth on acetate is retained. It is known that the glutamate-sensitive retrograde signaling pathway is important for upregulation of peroxisomal function in response to oleic acid and the oxodicarboxylate alpha-ketoglutarate is transported out of the mitochondria for synthesis of glutamate. So, citric acid cycle function and glutamate synthesis were examined in transporter mutants. The quad mutant has significantly decreased citrate synthase activity and whole cell alpha-ketoglutarate levels, while isocitrate dehydrogenase activity is unaffected and glutamate dehydrogenase activity is increased 10-fold. Strains carrying only two or three transporter deletions exhibit intermediate affects. 13C NMR metabolic enrichment experiments confirm a defect in glutamate biosynthesis in the quad mutant and, in double and triple mutants, suggest increased cycling of the glutamate backbone in the mitochondria before export. Taken together these studies indicate that these four transporters have overlapping activity, and are important not only for utilization of oleic acid, but also for glutamate biosynthesis.
Collapse
Affiliation(s)
- Pamela J Trotter
- Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Culotta VC, Yang M, Hall MD. Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:1159-65. [PMID: 16002642 PMCID: PMC1168969 DOI: 10.1128/ec.4.7.1159-1165.2005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Valeria Cizewski Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Room E7626, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|