1
|
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021; 9:biomedicines9050489. [PMID: 33946782 PMCID: PMC8145363 DOI: 10.3390/biomedicines9050489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.
Collapse
|
2
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Jamali MAM, Gopalasingam CC, Johnson RM, Tosha T, Muramoto K, Muench SP, Antonyuk SV, Shiro Y, Hasnain SS. The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. IUCRJ 2020; 7:404-415. [PMID: 32431824 PMCID: PMC7201271 DOI: 10.1107/s2052252520003656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer-dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme.
Collapse
Affiliation(s)
- M. Arif M. Jamali
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Chai C. Gopalasingam
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazumasa Muramoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Samar S. Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
4
|
Zinc causes the death of hypoxic astrocytes by inducing ROS production through mitochondria dysfunction. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Cerebral ischemia triggers a cascade of events that contribute to ischemic brain damages. Zinc release and accumulation has been shown to lead to brain cell death following cerebral ischemia. However, the mechanism underlying remains to be elucidated. Our recently published work showed that suppression of mitochondrial-derived reactive oxygen species (ROS) production significantly reduced ischemic stroke related brain damage within 6 h. Herein, we investigated the relationship between zinc accumulation and mitochondrial-derived ROS production in astrocytes after 3-h hypoxia. We found that inhibition of mitochondrial-derived ROS significantly decreased total amount of ROS generation and cell death in primary astrocytes during hypoxia when zinc was overload. In contrast, the inhibition of NADPH oxidase-derived ROS had less of an effect. Our results also showed that zinc and mitochondria were colocalized in hypoxic astrocytes. Moreover, extracellular zinc addition caused zinc accumulation in the mitochondria and decreased mitochondrial membrane potential, leading to mitochondria dysfunction. These findings provide a novel mechanism that zinc accumulation contributes to hypoxia-induced astrocytes death by disrupting mitochondria function, following cerebral ischemia.
Collapse
|
5
|
Meyer M, Kovács AD, Pearce DA. Decreased sensitivity of palmitoyl protein thioesterase 1-deficient neurons to chemical anoxia. Metab Brain Dis 2017; 32:275-279. [PMID: 27722792 PMCID: PMC5335868 DOI: 10.1007/s11011-016-9919-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 01/12/2023]
Abstract
Infantile CLN1 disease, also known as infantile neuronal ceroid lipofuscinosis, is a fatal childhood neurodegenerative disorder caused by mutations in the CLN1 gene. CLN1 encodes a soluble lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1), and it is still unclear why neurons are selectively vulnerable to the loss of PPT1 enzyme activity in infantile CLN1 disease. To examine the effects of PPT1 deficiency on several well-defined neuronal signaling and cell death pathways, different toxic insults were applied in cerebellar granule neuron cultures prepared from wild type (WT) and palmitoyl protein thioesterase 1-deficient (Ppt1 -/- ) mice, a model of infantile CLN1 disease. Glutamate uptake inhibition by t-PDC (L-trans-pyrrolidine-2,4-dicarboxylic acid) or Zn2+-induced general mitochondrial dysfunction caused similar toxicity in WT and Ppt1 -/- cultures. Ppt1 -/- neurons, however, were more sensitive to mitochondrial complex I inhibition by MPP+ (1-methyl-4-phenylpyridinium), and had significantly decreased sensitivity to chemical anoxia induced by the mitochondrial complex IV inhibitor, sodium azide. Our results indicate that PPT1 deficiency causes alterations in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Meredith Meyer
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, Sioux Falls, SD, 57104, USA
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
6
|
Francia F, Malferrari M, Lanciano P, Steimle S, Daldal F, Venturoli G. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q o site of bacterial cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1796-1806. [PMID: 27550309 DOI: 10.1016/j.bbabio.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Pascal Lanciano
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Steimle
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
7
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK, Song IS, Xu Z, Kwon HY, Kang SC, Sohn EH, Ko KS, Rhee BD, Kim N, Han J. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:389-99. [PMID: 26330751 PMCID: PMC4553398 DOI: 10.4196/kjpp.2015.19.5.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn(2+)) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn(2+) activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn(2+) levels are largely regulated by metallothioneins (MTs), Zn(2+) importers (ZIPs), and Zn(2+) transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn(2+). However, these regulatory actions of Zn(2+) are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn(2+) levels, Zn(2+)-mediated signal transduction, impacts of Zn(2+) on ion channels and mitochondrial metabolism, and finally, the implications of Zn(2+) in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn(2+).
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - Su Jin Noh
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Julius Ryan Pronto
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Yu Jeong Jeong
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Hyoung Kyu Kim
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - In Sung Song
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tainjin 300070, P.R. China
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medio-bio Science (SIMS), Soonchunhyang University, Cheonan 336-745, Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam 461-701, Korea
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 245-711, Korea
| | - Kyung Soo Ko
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Byoung Doo Rhee
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Nari Kim
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Jin Han
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| |
Collapse
|
9
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
ZnO nanoparticles impose a panmetabolic toxic effect along with strong necrosis, inducing activation of the envelope stress response in Salmonella enterica serovar Enteritidis. Antimicrob Agents Chemother 2015; 59:3317-28. [PMID: 25801570 DOI: 10.1128/aac.00363-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity. Using the global proteome approach, we report that a great majority (79%) of the altered proteins in biofilms formed by Salmonella enterica serovar Enteritidis were downregulated, whereas a much smaller fraction (21%) of proteins were upregulated. Intriguingly, all downregulated proteins were enzymes involved in a wide range of the central metabolic pathways, including translation; amino acid biosynthetic pathways; nucleobase, nucleoside, and nucleotide biosynthetic processes; ATP synthesis-coupled proton transport; the pentose phosphate shunt; and carboxylic acid metabolic processes, indicating that ZnO NPs exert a panmetabolic toxic effect on this prokaryotic organism. In addition to their panmetabolic toxicity, ZnO NPs induced profound changes in cell envelope morphology, imposing additional necrotic effects and triggering the envelope stress response of Salmonella serovar Enteritidis. The envelope stress response effect activated periplasmic chaperones and proteases, transenvelope complexes, and regulators, thereby facilitating protection of this prokaryotic organism against ZnO NPs.
Collapse
|
11
|
Schulte M, Mattay D, Kriegel S, Hellwig P, Friedrich T. Inhibition of Escherichia coli respiratory complex I by Zn(2+). Biochemistry 2014; 53:6332-9. [PMID: 25238255 DOI: 10.1021/bi5009276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples NADH oxidation and quinone reduction with the translocation of protons across the membrane. Complex I exhibits a unique L shape with a peripheral arm extending in the aqueous phase and a membrane arm embedded in the lipid bilayer. Both arms have a length of ∼180 Å. The electron transfer reaction is catalyzed by a series of cofactors in the peripheral arm, while the membrane arm catalyzes proton translocation. We used the inhibition of complex I by zinc to shed light on the coupling of the two processes, which is not yet understood. Enzyme kinetics revealed the presence of two high-affinity binding sites for Zn(2+) that are attributed to the proton translocation pathways in the membrane arm. Electrochemically induced Fourier transform infrared difference spectroscopy demonstrated that zinc binding involves at least two protonated acidic residues. Electron paramagnetic resonance spectroscopy showed that one of the cofactors is only partially reduced by NADH in the presence of Zn(2+). We conclude that blocking the proton channels in the membrane arm leads to a partial block of the electron transfer in the peripheral arm, indicating the long-range coupling between both processes.
Collapse
Affiliation(s)
- Marius Schulte
- Institut für Biochemie, Albert-Ludwigs-Universität , 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Sirajuddin S, Barupala D, Helling S, Marcus K, Stemmler TL, Rosenzweig AC. Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem 2014; 289:21782-94. [PMID: 24942740 PMCID: PMC4118136 DOI: 10.1074/jbc.m114.581363] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/11/2014] [Indexed: 11/06/2022] Open
Abstract
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO.
Collapse
Affiliation(s)
- Sarah Sirajuddin
- From the Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Dulmini Barupala
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, and
| | - Stefan Helling
- the Medical Proteome Center, Department of Functional Proteomics, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Katrin Marcus
- the Medical Proteome Center, Department of Functional Proteomics, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Timothy L Stemmler
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, and
| | - Amy C Rosenzweig
- From the Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208,
| |
Collapse
|
13
|
Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, Yu CA. Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1278-94. [PMID: 23201476 PMCID: PMC3593749 DOI: 10.1016/j.bbabio.2012.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023]
Abstract
The cytochrome bc1 complex (bc1) is the mid-segment of the cellular respiratory chain of mitochondria and many aerobic prokaryotic organisms; it is also part of the photosynthetic apparatus of non-oxygenic purple bacteria. The bc1 complex catalyzes the reaction of transferring electrons from the low potential substrate ubiquinol to high potential cytochrome c. Concomitantly, bc1 translocates protons across the membrane, contributing to the proton-motive force essential for a variety of cellular activities such as ATP synthesis. Structural investigations of bc1 have been exceedingly successful, yielding atomic resolution structures of bc1 from various organisms and trapped in different reaction intermediates. These structures have confirmed and unified results of decades of experiments and have contributed to our understanding of the mechanism of bc1 functions as well as its inactivation by respiratory inhibitors. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T. Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:769-78. [DOI: 10.1016/j.bbabio.2013.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
|
15
|
Berry EA, De Bari H, Huang LS. Unanswered questions about the structure of cytochrome bc1 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1258-77. [PMID: 23624176 DOI: 10.1016/j.bbabio.2013.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
Abstract
X-ray crystal structures of bc1 complexes obtained over the last 15 years have provided a firm structural basis for our understanding of the complex. For the most part there is good agreement between structures from different species, different crystal forms, and with different inhibitors bound. In this review we focus on some of the remaining unexplained differences, either between the structures themselves or the interpretations of the structural observations. These include the structural basis for the motion of the Rieske iron-sulfur protein in response to inhibitors, a possible conformational change involving tyrosine132 of cytochrome (cyt) b, the presence of cis-peptides at the beginnings of transmembrane helices C, E, and H, the structural insight into the function of the so-called "Core proteins", different modelings of the retained signal peptide, orientation of the low-potential heme b, and chirality of the Met ligand to heme c1. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
16
|
Hao GF, Wang F, Li H, Zhu XL, Yang WC, Huang LS, Wu JW, Berry EA, Yang GF. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. J Am Chem Soc 2012; 134:11168-76. [PMID: 22690928 DOI: 10.1021/ja3001908] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Effects of heavy metal cations on the mitochondrial ornithine/citrulline transporter reconstituted in liposomes. Biometals 2011; 24:1205-15. [PMID: 21769608 DOI: 10.1007/s10534-011-9479-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/29/2011] [Indexed: 12/15/2022]
Abstract
The effect of heavy metal cations on the mitochondrial ornithine/citrulline transporter was tested in proteoliposomes reconstituted with the protein purified from rat liver. The transport activity was measured as [(3)H]ornithine uptake in proteoliposomes containing internal ornithine (ornithine/ornithine antiport mode) or as [(3)H]ornithine efflux in the absence of external substrate (ornithine/H(+) transport mode). 0.1 mM Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) strongly inhibited (more than 85%) the antiport; whereas Mn(2+), Co(2+) and Ni(2+) inhibited less efficiently (25, 47 and 69%, respectively). The IC(50) values of the transporter for the different metal ions ranged from 0.71 to 350 μM. Co(2+) and Ni(2+) also inhibited the [(3)H]ornithine efflux whereas Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) stimulated the [(3)H]ornithine efflux. The stimulation of the [(3)H]ornithine efflux by Cu(2+) and Cd(2+) (as well as by Pb(2+), Hg(2+) and Zn(2+)) was not prevented by NEM and was reversed by DTE. These features indicated that the inhibition of the antiport was due to the interaction of the Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) with a population of SH groups, of the transporter, responsible for the inhibition of the physiological function; whereas the stimulation of [(3)H]ornithine efflux was due to the induction of a pore-like function of the transporter caused by interaction of cations with a different population of SH groups. Differently, the inhibition of the ornithine transporter by Ni(2+), Co(2+) or Mn(2+) was caused by interaction with the substrate binding site, as indicated by the competitive or mixed inhibition.
Collapse
|
18
|
Lee DW, Khoury YE, Francia F, Zambelli B, Ciurli S, Venturoli G, Hellwig P, Daldal F. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site. Biochemistry 2011; 50:4263-72. [PMID: 21500804 PMCID: PMC3187937 DOI: 10.1021/bi200230e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Youssef El Khoury
- Institut de Chimie, UMR 7177, Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, Université de Strasbourg, 67070 Strasbourg, France
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, University of Bologna, 40127 Bologna, and Center for Magnetic Resonance, University of Florence, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, University of Bologna, 40127 Bologna, and Center for Magnetic Resonance, University of Florence, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Petra Hellwig
- Institut de Chimie, UMR 7177, Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, Université de Strasbourg, 67070 Strasbourg, France
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
19
|
Mulkidjanian AY. Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1858-68. [DOI: 10.1016/j.bbabio.2010.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/14/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
20
|
Atkinson A, Khalimonchuk O, Smith P, Sabic H, Eide D, Winge DR. Mzm1 influences a labile pool of mitochondrial zinc important for respiratory function. J Biol Chem 2010; 285:19450-9. [PMID: 20404342 DOI: 10.1074/jbc.m110.109793] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc is essential for function of mitochondria as a cofactor for several matrix zinc metalloproteins. We demonstrate that a labile cationic zinc component of low molecular mass exists in the yeast mitochondrial matrix. This zinc pool is homeostatically regulated in response to the cellular zinc status. This pool of zinc is functionally important because matrix targeting of a cytosolic zinc-binding protein reduces the level of labile zinc and interferes with mitochondrial respiratory function. We identified a series of proteins that modulate the matrix zinc pool, one of which is a novel conserved mitochondrial protein designated Mzm1. Mutant mzm1Delta cells have reduced total and labile mitochondrial zinc, and these cells are hypersensitive to perturbations of the labile pool. In addition, mzm1Delta cells have a destabilized cytochrome c reductase (Complex III) without any effects on Complexes IV or V. Thus, we have established that a link exists between Complex III integrity and the labile mitochondrial zinc pool.
Collapse
Affiliation(s)
- Aaron Atkinson
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
21
|
Veronesi G, Whitehead SJ, Francia F, Giachini L, Boscherini F, Venturoli G, Cotton NP, Jackson JB. X-ray absorption studies of Zn2+-binding sites in Escherichia coli transhydrogenase and its βH91K mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:494-500. [DOI: 10.1016/j.bbabio.2010.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022]
|
22
|
Giachini L, Veronesi G, Francia F, Venturoli G, Boscherini F. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:41-52. [PMID: 20029110 DOI: 10.1107/s090904950904919x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, non-muffin-tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye-Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.
Collapse
Affiliation(s)
- Lisa Giachini
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
23
|
Whitehead SJ, Iwaki M, Cotton NPJ, Rich PR, Jackson JB. Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1276-88. [PMID: 19505432 DOI: 10.1016/j.bbabio.2009.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated. Of metal ions tested they were effective in the order Pb(2+)>Cu(2+)>Zn(2+)=Cd(2+)>Ni(2+)>Co(2+). The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn(2+)-binding site(s). A mutant in which betaHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn(2+). Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn(2+)-induced FTIR difference spectra of the betaHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that betaHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.
Collapse
|
24
|
A comparison of Zn2+- and Ca2+-triggered depolarization of liver mitochondria reveals no evidence of Zn2+-induced permeability transition. Cell Calcium 2009; 45:447-55. [PMID: 19349076 DOI: 10.1016/j.ceca.2009.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 01/27/2023]
Abstract
Intracellular Zn(2+) toxicity is associated with mitochondrial dysfunction. Zn(2+) depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn(2+)-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn(2+)-induced depolarization with the effects of Ca(2+) in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca(2+) caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg(2+), ADP and cyclosporine A. Zn(2+) also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn(2+)-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca(2+) and Zn(2+) in a calcein-retention assay. Consistent with the well-documented ability of Ca(2+) to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn(2+)-treated mitochondria. Considered together, our results suggest that Ca(2+) and Zn(2+) depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn(2+)-induced depolarization, and that Zn(2+) is not a particularly potent mitochondrial inhibitor.
Collapse
|
25
|
Bell SG, Vallee BL. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chembiochem 2009; 10:55-62. [DOI: 10.1002/cbic.200800511] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Donadelli M, Dalla Pozza E, Scupoli MT, Costanzo C, Scarpa A, Palmieri M. Intracellular zinc increase inhibits p53(-/-) pancreatic adenocarcinoma cell growth by ROS/AIF-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:273-80. [PMID: 18951928 DOI: 10.1016/j.bbamcr.2008.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
We show that treatment with non-toxic doses of zinc in association to the ionophore compound pyrrolidine dithiocarbamate (PDTC) inhibits p53(-/-) pancreatic cancer cell growth much more efficiently than gemcitabine, the gold standard chemotherapeutic agent for pancreatic cancer. Both the metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and the radical scavenger N-acetyl-l-cysteine are able to recover cell growth inhibition by Zn/PDTC, demonstrating that this effect depends on the increased levels of intracellular zinc and of reactive oxygen species (ROS). Zn/PDTC treatment induces a strong apoptotic cell death that is associated to ROS-dependent nuclear translocation of the mitochondrial factor AIF, but not to the regulation of apoptotic genes and caspase activation. Primary fibroblasts are more resistant than pancreatic cancer cells to Zn/PDTC treatment and exhibit a lower basal and Zn/PDTC-induced enhancement of intracellular zinc. We show that Zn/PDTC induces p53 proteasomal degradation and that the proteasome inhibitor MG132 further increases fibroblast growth inhibition by Zn/PDTC, suggesting that p53 degradation plays an important role in fibroblast resistance to Zn/PDTC.
Collapse
Affiliation(s)
- M Donadelli
- Department of Morphological and Biomedical Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
27
|
EXAFS reveals a structural zinc binding site in the bovine NADH-Q oxidoreductase. FEBS Lett 2007; 581:5645-8. [DOI: 10.1016/j.febslet.2007.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/21/2022]
|
28
|
Moltó E, Bonzón-Kulichenko E, Gallardo N, Andrés A. MTPA: A crustacean metallothionein that affects hepatopancreatic mitochondrial functions. Arch Biochem Biophys 2007; 467:31-40. [PMID: 17889825 DOI: 10.1016/j.abb.2007.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/21/2007] [Accepted: 08/15/2007] [Indexed: 11/30/2022]
Abstract
Metallothioneins are cysteine-rich proteins, with a high capacity to bind metallic ions, and for which a precise biological role has not been established. Here we investigated the effects of MTPA, a metallothionein from the lobster Panulirus argus, on mitochondrial oxygen consumption and ROS production. An HPLC-RP-ESI-MS analysis of recombinant MTPA showed that despite its extra Cys, MTPA binds 6 Zn2+ per molecule akin to other crustacean metallothioneins with 18 Cys. The extra Cys is not involved in zinc binding, since its side-chain would be oriented to the outside of the molecule according to a preliminary model of the tridimensional structure of MTPA. MTPA-Zn2+(6) is imported into the hepatopancreatic mitochondria intermembrane space and inhibits mitochondrial oxygen consumption, increasing thereby ROS production. Nevertheless, the stimulation of ROS production by MT-bound Zn2+ is weaker compared to equivalent amounts of free Zn2+, suggesting that MTPA protects against oxidative stress. This constitutes the first report on metallothioneins effects on mitochondrial function in invertebrates and agrees with the results described for mammals, suggesting a connection between metallothioneins and energy metabolism.
Collapse
Affiliation(s)
- Eduardo Moltó
- Biochemistry Section, Faculty of Chemistry, Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
29
|
Giachini L, Francia F, Veronesi G, Lee DW, Daldal F, Huang LS, Berry EA, Cocco T, Papa S, Boscherini F, Venturoli G. X-Ray absorption studies of Zn2+ binding sites in bacterial, avian, and bovine cytochrome bc1 complexes. Biophys J 2007; 93:2934-51. [PMID: 17573435 PMCID: PMC1989705 DOI: 10.1529/biophysj.107.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of Zn2+ has been shown previously to inhibit the ubiquinol cytochrome c oxidoreductase (cyt bc1 complex). X-ray diffraction data in Zn-treated crystals of the avian cyt bc1 complex identified two binding sites located close to the catalytic Qo site of the enzyme. One of them (Zn01) might interfere with the egress of protons from the Qo site to the aqueous phase. Using Zn K-edge x-ray absorption fine-structure spectroscopy, we report here on the local structure of Zn2+ bound stoichiometrically to noncrystallized cyt bc1 complexes. We performed a comparative x-ray absorption fine-structure spectroscopy study by examining avian, bovine, and bacterial enzymes. A large number of putative clusters, built by combining information from first-shell analysis and metalloprotein databases, were fitted to the experimental spectra by using ab initio simulations. This procedure led us to identify the binding clusters with high levels of confidence. In both the avian and bovine enzyme, a tetrahedral ligand cluster formed by two His, one Lys, and one carboxylic residue was found, and this ligand attribution fit the crystallographic Zn01 location of the avian enzyme. In the chicken enzyme, the ligands were the His121, His268, Lys270, and Asp253 residues, and in the homologous bovine enzyme they were the His121, His267, Lys269, and Asp254 residues. Zn2+ bound to the bacterial cyt bc1 complex exhibited quite different spectral features, consistent with a coordination number of 6. The best-fit octahedral cluster was formed by one His, two carboxylic acids, one Gln or Asn residue, and two water molecules. It was interesting that by aligning the crystallographic structures of the bacterial and avian enzymes, this group of residues was found located in the region homologous to that of the Zn01 site. This cluster included the His276, Asp278, Glu295, and Asn279 residues of the cyt b subunit. The conserved location of the Zn2+ binding sites at the entrance of the putative proton release pathways, and the presence of His residues point to a common mechanism of inhibition. As previously shown for the photosynthetic bacterial reaction center, zinc would compete with protons for binding to the His residues, thus impairing their function as proton donors/acceptors.
Collapse
Affiliation(s)
- Lisa Giachini
- Department of Physics, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qin L, Mills DA, Hiser C, Murphree A, Garavito RM, Ferguson-Miller S, Hosler J. Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase. Biochemistry 2007; 46:6239-48. [PMID: 17477548 PMCID: PMC2387241 DOI: 10.1021/bi700173w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jonathan Hosler
- To whom correspondence should be addressed. Telephone: (601) 984-1861. Fax: (601) 984-1501. E-mail:
| |
Collapse
|
31
|
Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S. A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 2007; 104:7881-6. [PMID: 17470809 PMCID: PMC1876541 DOI: 10.1073/pnas.0610031104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase transfers electrons and protons for dioxygen reduction coupled with proton pumping. These electron and proton transfers are tightly coupled with each other for the effective energy transduction by various unknown mechanisms. Here, we report a coupling mechanism by a histidine (His-503) at the entrance of a proton transfer pathway to the dioxygen reduction site (D-pathway) of bovine heart cytochrome c oxidase. In the reduced state, a water molecule is fixed by hydrogen bonds between His-503 and Asp-91 of the D-pathway and is linked via two water arrays extending to the molecular surface. The microenvironment of Asp-91 appears in the x-ray structure to have a proton affinity as high as that of His-503. Thus, Asp-91 and His-503 cooperatively trap, on the fixed water molecule, the proton that is transferred through the water arrays from the molecular surface. On oxidation, the His-503 imidazole plane rotates by 180 degrees to break the hydrogen bond to the protonated water and releases the proton to Asp-91. On reduction, Asp-91 donates the proton to the dioxygen reduction site through the D-pathway. The proton collection controlled by His-503 was confirmed by partial electron transfer inhibition by binding of Zn2+ and Cd2+ to His-503 in the x-ray structures. The estimated Kd for Zn2+ binding to His-503 in the x-ray structure is consistent with the reported Kd for complete proton-pumping inhibition by Zn2+ [Kannt A, Ostermann T, Muller H, Ruitenberg M (2001) FEBS Lett 503:142-146]. These results suggest that His-503 couples the proton transfer for dioxygen reduction with the proton pumping.
Collapse
Affiliation(s)
- Kazumasa Muramoto
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kunio Hirata
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Kyoko Shinzawa-Itoh
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shinji Yoko-o
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Hiroshi Aoyama
- RIKEN Harima Institute, Mikazuki Sayo, Hyogo 679-5148, Japan
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Shinya Yoshikawa
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S. The inhibitory binding site(s) of Zn2+in cytochromecoxidase. FEBS Lett 2007; 581:611-6. [PMID: 17266955 DOI: 10.1016/j.febslet.2007.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.
Collapse
|
33
|
Mulkidjanian AY. Proton translocation by the cytochromebc1complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochem Photobiol Sci 2007; 6:19-34. [PMID: 17200733 DOI: 10.1039/b517522d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
34
|
Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 2006; 281:34803-9. [PMID: 16980308 DOI: 10.1074/jbc.m607389200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.
Collapse
Affiliation(s)
- Mark S Sharpley
- Medical Research Council (MRC) Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | |
Collapse
|
35
|
Abstract
Zinc/cysteine coordination environments in proteins are redox-active. Oxidation of the sulfur ligands mobilizes zinc, while reduction of the oxidized ligands enhances zinc binding, providing redox control over the availability of zinc ions. Some zinc proteins are redox sensors, in which zinc release is coupled to conformational changes that control varied functions such as enzymatic activity, binding interactions, and molecular chaperone activity. Whereas the released zinc ion in redox sensors has no known function, the redox signal is transduced to specific and sensitive zinc signals in redox transducers. Released zinc can bind to sites on other proteins and modulate signal transduction, generation of metabolic energy, mitochondrial function, and gene expression. The paradigm of such redox transducers is the zinc protein metallothionein, which, together with its apoprotein, thionein, functions at a central node in cellular signaling by redistributing cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc signals. In this regard, the transduction of nitric oxide (NO) signals into zinc signals by metallothionein has received particular attention. It appears that redox-inert zinc has been chosen to control some aspects of cellular thiol/disulfide redox metabolism. Tight control of zinc is essential for redox homeostasis because both increases and decreases of cellular zinc elicit oxidative stress. Depending on its availability, zinc can be cytoprotective as a pro-antioxidant or cytotoxic as a pro-oxidant. Any condition with acute or chronic oxidative stress is expected to perturb zinc homeostasis.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, 77555, USA.
| |
Collapse
|
36
|
Mulkidjanian AY. Proton in the well and through the desolvation barrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:415-27. [PMID: 16780789 DOI: 10.1016/j.bbabio.2006.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 11/18/2022]
Abstract
The concept of the membrane proton well was suggested by Peter Mitchell to account for the energetic equivalence of the chemical (DeltapH) and electrical (Deltapsi) components of the proton-motive force. The proton well was defined as a proton-conducting crevice passing down into the membrane dielectric and able to accumulate protons in response to the generation either of Deltapsi or of DeltapH. In this review, the concept of proton well is contrasted to the desolvation penalty of > 500 meV for transferring protons into the membrane core. The magnitude of the desolvation penalty argues against deep proton wells in the energy-transducing enzymes. The shallow DeltapH- and Deltapsi-sensitive proton traps, mechanistically linked to the functional groups in the membrane interior, seem more realistic. In such constructs, the draw of a trapped proton into the membrane core can happen at the expense of some exergonic reaction, e.g., release of another proton from the membrane into the aqueous phase. It is argued that the proton transfer in the ATP synthase and the cytochrome bc complex could proceed in this way.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- A.N. Belozersky Institute of Physico-chemical Biology, Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
37
|
Abstract
A series of metalloprotein complexes embedded in a mitochondrial or bacterial membrane utilize electron transfer reactions to pump protons across the membrane and create an electrochemical potential (DeltamuH+). Current understanding of the principles of electron-driven proton transfer is discussed, mainly with respect to the wealth of knowledge available from studies of cytochrome c oxidase. Structural, experimental, and theoretical evidence supports the model of long-distance proton transfer via hydrogen-bonded water chains in proteins as well as the basic concept that proton uptake and release in a redox-driven pump are driven by charge changes at the membrane-embedded centers. Key elements in the pumping mechanism may include bound water, carboxylates, and the heme propionates, arginines, and associated water above the hemes. There is evidence for an important role of subunit III and proton backflow, but the number and nature of gating mechanisms remain elusive, as does the mechanism of physiological control of efficiency.
Collapse
Affiliation(s)
- Jonathan P. Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216;
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| | - Denise A. Mills
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
38
|
Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA. Zinc ions as cytochrome C oxidase inhibitors: two sites of action. BIOCHEMISTRY (MOSCOW) 2005; 70:128-36. [PMID: 15807649 DOI: 10.1007/s10541-005-0091-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zinc ions are shown to be an efficient inhibitor of mitochondrial cytochrome c oxidase activity, both in the solubilized and the liposome-reconstituted enzyme. The effect of zinc is biphasic. First there occurs rapid interaction of zinc with the enzyme at a site exposed to the aqueous phase corresponding to the mitochondrial matrix. This interaction is fully reversed by EDTA and results in a partial inhibition of the enzyme activity (50-90%, depending on preparation) with an effective K(i) of approximately 10 microM. The rapid effect of zinc is observed with the solubilized enzyme, it vanishes upon incorporation of cytochrome oxidase in liposomes, and it re-appears when proteoliposomes are supplied with alamethicin that makes the membrane permeable to low molecular weight substances. Zinc presumably blocks the entrance of the D-protonic channel opening into the inner aqueous phase. Second, zinc interacts slowly (tens of minutes, hours) with a site of cytochrome oxidase accessible from the outer aqueous phase bringing about complete inhibition of the enzymatic activity. The slow phase is characterized by high affinity of the inhibitor for the enzyme: full inhibition can be achieved upon incubation of the solubilized oxidase for 24 h with zinc concentration as low as 2 microM. The rate of zinc inhibitory action in the slow phase is proportional to Zn(2+) concentration. The slow interaction of zinc with the outer surface of liposome-reconstituted cytochrome oxidase is observed only with the enzyme turning over or in the presence of weak reductants, whereas incubation of zinc with the fully oxidized proteoliposomes does not induce the inhibition. It is shown that zinc ions added to cytochrome oxidase proteoliposomes from the outside inhibit specifically the slow electrogenic phase of proton transfer, coupled to a transition of cytochrome oxidase from the oxo-ferryl to the oxidized state (the F --> O step corresponding to transfer of the 4th electron in the catalytic cycle).
Collapse
Affiliation(s)
- S S Kuznetsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobjevy Gory, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
39
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
40
|
Whitehead SJ, Rossington KE, Hafiz A, Cotton NPJ, Jackson JB. Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase. FEBS Lett 2005; 579:2863-7. [PMID: 15878164 DOI: 10.1016/j.febslet.2005.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation. They must, therefore, interfere specifically with steps involving binding/release of NADP(+)/NADPH: the steps thought to be associated with proton translocation. It is suggested that Zn(2+) and Cd(2+) bind in the proton-transfer pathway and block inter-conversion of states responsible for changing NADP(+)/NADPH binding energy.
Collapse
|
41
|
|
42
|
Dineley KE, Richards LL, Votyakova TV, Reynolds IJ. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 2005; 5:55-65. [PMID: 16060292 DOI: 10.1016/j.mito.2004.11.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Emerging evidence suggests that Zn2+ may impair neuronal metabolism. We examined how Zn2+ affects the activity of isolated brain mitochondria fueled with glutamate + malate, succinate or glycerol 3-phosphate. Submicromolar levels of Zn2+ dissipated membrane potential and inhibited oxygen utilization in all three substrate conditions. Zn(2+)-induced depolarization was reversed by the membrane-impermeant metal chelator, EGTA, and was inhibited by uniporter blockade. Cyclosporin A did not block Zn(2+)-induced depolarization. Added Zn2+ increased accumulation of reactive oxygen species (ROS) in glutamate + malate or glycerol 3-phosphate conditions, but inhibited succinate-supported ROS accumulation. These results show that Zn2+ blocks mitochondrial function in all physiologically relevant substrate conditions.
Collapse
Affiliation(s)
- Kirk E Dineley
- Department of Pharmacology, University of Pittsburgh, W1351 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
43
|
Ostrakhovitch EA, Cherian MG. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 2005; 10:111-21. [PMID: 15711927 DOI: 10.1007/s10495-005-6066-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previous studies revealed that cells may differ in their response to metal stress depending on their p53 status; however, the sequence of events leading to copper-induced apoptosis is still unclear. Exposure of copper (10 and 25 microM) and zinc (10 and 25 microM) caused activation of p53 in ER+/p53+ human epithelial breast cancer MCF7 cells and resulted in up-regulation of p21. Transactivation of p53 in MCF7 cells also led to increase in expression of Bax, proapototic Bcl-2 family member, triggering mitochondrial pore opening, and PIG3 (p53-induced gene 3 product), and also generation of intracellular reactive oxygen species (ROS). The treatment of MCF7 cells with either copper or zinc for 4 h also caused decrease in mitochondrial membrane potential (Delta psi(m)), accompanied by an elevation in the ROS production and redistribution of p53 into mitochondria. The loss of Delta psi(m) was correlated with accumulation of Annexin V positive apoptotic cells. However, the release of apoptosis inducing factor (AIF) and its translocation into nucleus was observed only in MCF7 cells treated with copper. In MDA-MB-231 (ER-/p53-) and MCF7-E6 (ER+/p53-) cells, both p53 and p21 protein levels were not altered in the presence of metals. These cells were resistant to metals, and there was no alteration in Delta psi(m). Copper treatment did not result in accumulation of ROS in these cell lines with an inactive p53 even after exposure to 50 microM of copper for 6 h, indicating a key role for p53 in the ROS generation. Pretreatment of MCF7 cells with p53 inhibitor, pifithrin-alpha, resulted in decrease of copper and zinc induced ROS production to the control level, suppression of both Bax expression and AIF release. Therefore, the activation of p53 seems to play a crucial role in copper and zinc induced generation of ROS in epithelial breast cancer cells, and expression of downstream targets of p53, such as PIG3 and Bax, responsible for increased generation of the intracellular ROS, as well as disruption of mitochondrial integrity. Our data suggest that copper induces apoptosis in MCF-7 cells with no caspases through the depolarization of mitochondrial membrane with release of AIF and its translocation into the nucleus. The results demonstrate that a functional p53 is required for the execution of apoptosis in epithelial cells.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| | | |
Collapse
|
44
|
Giachini L, Francia F, Mallardi A, Palazzo G, Carpenè E, Boscherini F, Venturoli G. Multiple scattering x-ray absorption studies of Zn2+ binding sites in bacterial photosynthetic reaction centers. Biophys J 2004; 88:2038-46. [PMID: 15613631 PMCID: PMC1305256 DOI: 10.1529/biophysj.104.050971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, Q(B). On the basis of x-ray diffraction at 2.5 angstroms resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd(2+) or Zn(2+). Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn(2+) ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn(2+) binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by approximately 2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed.
Collapse
Affiliation(s)
- Lisa Giachini
- Dipartimento di Fisica, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Affourtit C, Moore AL. Purification of the plant alternative oxidase from Arum maculatum: measurement, stability and metal requirement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:181-9. [PMID: 14871496 DOI: 10.1016/j.bbabio.2003.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/03/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
We have purified plant alternative oxidase (AOX) protein from the spadices of thermogenic Arum maculatum (cuckoo pint) to virtual homogeneity. The obtained enzyme fraction exhibits a high specific activity, consuming on average 32 micromol oxygen min(-1) mg(-1), which is completely stable for at least 6 months when the sample is stored at -70 degrees C. This exceptionally stable AOX activity is inhibited approximately 90% (I(50) approximately 10 microM) by 8-hydroxyquinoline (8-OHQ) and also, although to a lesser extent, by other metal chelators such as o-phenanthroline, alpha,alpha'-dipyridyl and EDTA. When inhibited by 8-OHQ, AOX activity is fully restored upon addition of 1.2 mM ferric iron, but neither ferrous iron nor manganese has any effect, whilst zinc decreases activity even further. Furthermore, we have developed a spectrophotometric assay to measure AOX activity in an accurate manner, which will facilitate future steady state and transient kinetic studies. The reliability of this assay is evidenced by retained stability of AOX protein during the course of the reaction, reproducibility of the measured initial rates, an observed 2:1 duroquinol-oxygen stoichiometry and by the fact that, in absolute terms, the measured rates of duroquinone formation and duroquinol disappearance are identical.
Collapse
Affiliation(s)
- Charles Affourtit
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | |
Collapse
|
46
|
Belyaeva EA, Korotkov SM. Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol Appl Pharmacol 2003; 192:56-68. [PMID: 14554103 DOI: 10.1016/s0041-008x(03)00255-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We attempted to discern discrete sites of Cd2+ deleterious action on rat liver mitochondrial function. In particular, EGTA, ADP, and cyclosporin A (potent mitochondrial permeability transition antagonists) affected mainly Cd2+-induced changes in resting state respiration, eliminating its stimulation in KCl medium, while dithiothreitol (DTT, a dithiol reductant) produced its effect both on Cd2+ activation of the basal respiration and Cd2+ depression of uncoupler-stimulated respiration, evoking its restoration. Substantial differences in DTT influence on mitochondrial respiration at low and high [Cd2+] were revealed, namely, an enhanced mitochondrial permeabilization in the presence of saturated [DTT] at high [Cd2+] took place. Besides, DTT only partially reversed Cd2+-induced swelling in NH4NO3 medium when glutamate plus malate or succinate without rotenone was used. Contrarily, DTT produced complete reversal of the swelling of succinate-energized mitochondria when rotenone was present in the medium. In addition, in the presence of rotenone both Cd2+-produced activation of the resting state respiration in KCl medium and Cd2+-induced swelling in sucrose medium of succinate-energized mitochondria were more sensitive to cyclosporin A than the same Cd2+ effects obtained on mitochondria oxidizing succinate (without rotenone) or glutamate plus malate. We have concluded that Cd2+, producing primary mitochondrial dysfunction, acts both as a thiol and Me2+ binding site reagent. Suppositions about possible localization of separate sites of direct Cd2+ effects on mitochondrial function were made.
Collapse
Affiliation(s)
- Elena A Belyaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr44, 194223, St. Petersburg, Russia.
| | | |
Collapse
|
47
|
Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 2003; 85:563-70. [PMID: 12694382 DOI: 10.1046/j.1471-4159.2003.01678.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An increasing body of evidence suggests that high intracellular free zinc promotes neuronal death by inhibiting cellular energy production. A number of targets have been postulated, including complexes of the mitochondrial electron transport chain, components of the tricarboxylic acid cycle, and enzymes of glycolysis. Consequences of cellular zinc overload may include increased cellular reactive oxygen species (ROS) production, loss of mitochondrial membrane potential, and reduced cellular ATP levels. Additionally, zinc toxicity might involve zinc uptake by mitochondria and zinc induction of mitochondrial permeability transition. The present review discusses these processes with special emphasis on their potential involvement in brain injury.
Collapse
Affiliation(s)
- Kirk E Dineley
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
48
|
Belyaeva EA, Glazunov VV, Korotkov SM. Cyclosporin A-sensitive permeability transition pore is involved in Cd(2+)-induced dysfunction of isolated rat liver mitochondria: doubts no more. Arch Biochem Biophys 2002; 405:252-264. [PMID: 12220540 DOI: 10.1016/s0003-9861(02)00400-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is dose-dependent Cd(2+)-evoked swelling of isolated rat liver mitochondria energized by complex I, II, or IV respiratory substrates in sucrose medium in the absence of added Ca(2+) and P(i), which is prevented by Sr(2+). Permeability transition effectors (ADP, CsA, EGTA, RR, DTT, ATR, P(i), and Ca(2+)) affect in a corresponding way Cd(2+)-promoted membrane permeabilization in NH(4)NO(3), KCl, and sucrose media. Maximal depression of Cd(2+)-induced swelling is achieved by simultaneous addition of ADP, Mg(2+), and CsA that produces either synergistic (NH(4)NO(3)) or additive (KCl and sucrose media) action. Sustained activation by low [Cd(2+)] of mitochondrial basal respiration in KCl medium is observed both in the absence and in the presence of rotenone and/or oligomycin but only in the latter case (rotenone+oligomycin) CsA inhibits completely Cd(2+) activation of St 4 respiration and partially reverses DNP-uncoupled respiration depressed by cadmium. Cd(2+) effects are discussed in terms of comparison with those of Zn(2+) and PhAsO.
Collapse
Affiliation(s)
- Elena A Belyaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223, St. Petersburg, Russia.
| | | | | |
Collapse
|
49
|
Mills DA, Schmidt B, Hiser C, Westley E, Ferguson-Miller S. Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem 2002; 277:14894-901. [PMID: 11832490 DOI: 10.1074/jbc.m111922200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like many voltage-sensitive ion pumps, cytochrome c oxidase is inhibited by zinc. Binding of zinc to the outside surface of Rhodobacter sphaeroides cytochrome c oxidase inhibits the enzyme with a K(I) of < or = 5 microm when the enzyme is reconstituted into phospholipid vesicles in the presence of a membrane potential. In the absence of a membrane potential and a pH gradient, millimolar concentrations of zinc are required to inhibit. This differential inhibition causes a dramatic increase in the respiratory control ratio from 6 to 40 for wild-type oxidase. The external zinc inhibition is removed by EDTA and is not competitive with cytochrome c binding but is competitive with protons. Only Cd(2+) of the many metals tested (Mg(2+), Mn(2+), Ca(2+), Ba(2+), Li(2+), Cs(2+), Hg(2+), Ni(2+), Co(2+), Cu(2+) Tb(3+), Tm(3+)) showed inhibitory effects similar to Zn(2+). Proton pumping is slower and less efficient with zinc. The results suggest that zinc inhibits proton movement through a proton exit path, which can allow proton back-leak at high membrane potentials. The physiological and mechanistic significance of proton movement in the exit pathway and its blockage by zinc is discussed in terms of regulation of the efficiency of energy transduction.
Collapse
Affiliation(s)
- Denise A Mills
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | | | | | | | |
Collapse
|
50
|
Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 2002; 277:10064-72. [PMID: 11744691 DOI: 10.1074/jbc.m108264200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Submicromolar zinc inhibits alpha-ketoglutarate-dependent mitochondrial respiration. This was attributed to inhibition of the alpha-ketoglutarate dehydrogenase complex (Brown, A. M., Kristal, B. S., Effron, M. S., Shestopalov, A. I., Ullucci, P. A., Sheu, K.-F. R., Blass, J. P., and Cooper, A. J. L. (2000) J. Biol. Chem. 275, 13441-13447). Lipoamide dehydrogenase, a component of the alpha-ketoglutarate dehydrogenase complex and two other mitochondrial complexes, catalyzes the transfer of reducing equivalents from the bound dihydrolipoate of the neighboring dihydrolipoamide acyltransferase subunit to NAD(+). This reversible reaction involves two reaction centers: a thiol pair, which accepts electrons from dihydrolipoate, and a non-covalently bound FAD moiety, which transfers electrons to NAD(+). The lipoamide dehydrogenase reaction catalyzed by the purified pig heart enzyme is strongly inhibited by Zn(2+) (K(i) approximately 0.15 microm) in both directions. Steady-state kinetic studies revealed that Zn(2+) competes with oxidized lipoamide for the two-electron-reduced enzyme. Interaction of Zn(2+) with the two-electron-reduced enzyme was directly detected in anaerobic stopped-flow experiments. Lipoamide dehydrogenase also catalyzes NADH oxidation by oxygen, yielding hydrogen peroxide as the major product and superoxide radical as a minor product. Zn(2+) accelerates the oxidase reaction up to 5-fold with an activation constant of 0.09 +/- 0.02 microm. Activation is a consequence of Zn(2+) binding to the reduced catalytic thiols, which prevents delocalization of the reducing equivalents between catalytic disulfide and FAD. A kinetic scheme that satisfactorily describes the observed effects has been developed and applied to determine a number of enzyme kinetic parameters in the oxidase reaction. The distinct effects of Zn(2+) on different LADH activities represent a novel example of a reversible switch in enzyme specificity that is modulated by metal ion binding. These results suggest that Zn(2+) can interfere with mitochondrial antioxidant production and may also stimulate production of reactive oxygen species by a novel mechanism.
Collapse
Affiliation(s)
- Irina G Gazaryan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, New York 10605, USA
| | | | | | | | | | | |
Collapse
|