1
|
Liu D, Yan Q, Qin X, Tian L. Ultrafast kinetics of PSI-LHCI super-complex from the moss Physcomitrella patens. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149526. [PMID: 39561953 DOI: 10.1016/j.bbabio.2024.149526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Photosystem I (PSI) is a large membrane photosynthetic complex that harvests sunlight and drives photosynthetic electron transport. In both green algae and higher plants, PSI's ultrafast energy transfer and charge separation kinetics have been characterized. In contrast, it is not yet clear in Physcomitrella patens, even though moss is one of the earliest land plants and represents a critical stage in plant evolution. Here, we measured the time-resolved fluorescence of purified Pp PSI-LHCI at both room temperature (RT) and 77 K. Compared to the PSI kinetics of Arabidopsis thaliana at RT, we found that although the overall trapping time of Pp PSI-LHCI is nearly identical, ∼46 ps, their lifetimes at different wavelength regions differ. Specifically, Pp PSI-LHCI is slower in energy trapping below 720 nm but faster beyond. The slow-down of energy transfer between bulk chlorophylls (Chls, <720 nm) in Pp PSI-LHCI is probably because of the larger spatial gap between the PSI core and LHCI belt, and the acceleration of trapping at longer wavelength is most likely due to the lack of low-energy red-shifted Chls (red Chls). Indeed, time-resolved fluorescence results at 77 K revealed only three types of red Chls of 702 nm, 712 nm, and 720 nm in Pp PSI-LHCI but failed to detect the red Chls of 735 nm that present in LHCI in higher plants. Finally, we briefly discussed the evolutionary adaptations of PSI-LHCI in the context of red Chls from green algae to mosses and to land plants.
Collapse
Affiliation(s)
- Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; China National Botanical Garden, 100093 Beijing, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China
| | - Qiujing Yan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; China National Botanical Garden, 100093 Beijing, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| |
Collapse
|
2
|
Akhtar P, van Stokkum IHM, Lambrev PH. The Quenching of Long-Wavelength Fluorescence by the Closed Reaction Center in Photosystem I in Thermostichus vulcanus at 77 K. Int J Mol Sci 2024; 25:12430. [PMID: 39596495 PMCID: PMC11594324 DOI: 10.3390/ijms252212430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Photosystem I in most organisms contains long-wavelength or "Red" chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700+), which has broad absorption in the near-infrared region. This study investigates the excitation dynamics of Red Chls in Photosystem I from the cyanobacterium Thermostichus vulcanus at cryogenic temperatures (77 K) and examines the role of the oxidized RC in modulating their fluorescence kinetics. Using time-resolved fluorescence spectroscopy, the kinetics of Red Chls were recorded for samples with open (neutral P700) and closed (P700+) RCs. We found that emission lifetimes in the range of 710-720 nm remained unaffected by the RC state, while more red-shifted emissions (>730 nm) decayed significantly faster when the RC was closed. A kinetic model describing the quenching by the oxidized RC was constructed based on simultaneous fitting to the recorded fluorescence emission in Photosystem I with open and closed RCs. The analysis resolved multiple Red Chl forms and variable quenching efficiencies correlated with their spectral properties. Only the most red-shifted Chls, with emission beyond 730 nm, are efficiently quenched by P700+, with rate constants of up to 6 ns-1. The modeling results support the notion that structural and energetic disorder in Photosystem I can have a comparable or larger effect on the excitation dynamics than the geometric arrangement of Chls.
Collapse
Affiliation(s)
- Parveen Akhtar
- HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Petar H. Lambrev
- HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary;
| |
Collapse
|
3
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
4
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Schmitt FJ, Hüls A, Moldenhauer M, Friedrich T. How electron tunneling and uphill excitation energy transfer support photochemistry in Halomicronema hongdechloris. PHOTOSYNTHESIS RESEARCH 2024; 159:273-289. [PMID: 38198121 DOI: 10.1007/s11120-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Halomicronema hongdechloris, the first cyanobacterium reported to produce the red-shifted chlorophyll f (Chl f) upon acclimation to far-red light, demonstrates remarkable adaptability to diverse light conditions. The photosystem II (PS II) of this organism undergoes reversible changes in its Chl f content, ranging from practically zero under white-light culture conditions to a Chl f: Chl a ratio of up to 1:8 when exposed to far-red light (FRL) of 720-730 nm for several days. Our ps time- and wavelength-resolved fluorescence data obtained after excitation of living H. hongdechloris cells indicate that the Soret band of a far-red (FR) chlorophyll involved in charge separation absorbs around 470 nm. At 10 K, the fluorescence decay at 715-720 nm is still fast with a time constant of 165 ps indicating an efficient electron tunneling process. There is efficient excitation energy transfer (EET) from 715-720 nm to 745 nm with the latter resulting from FR Chl f, which mainly functions as light-harvesting pigment upon adaptation to FRL. From there, excitation energy reaches the primary donor in the reaction center of PS II with an energetic uphill EET mechanism inducing charge transfer. The fluorescence data are well explained with a secondary donor PD1 represented by a red-shifted Chl a molecule with characteristic fluorescence around 715 nm and a more red-shifted FR Chl f with fluorescence around 725 nm as primary donor at the ChlD1 or PD2 position.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle (Saale), Germany.
| | - Anne Hüls
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Marcus Moldenhauer
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
6
|
Sláma V, Cupellini L, Mascoli V, Liguori N, Croce R, Mennucci B. Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I. J Phys Chem Lett 2023; 14:8345-8352. [PMID: 37702053 PMCID: PMC10518868 DOI: 10.1021/acs.jpclett.3c02091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The antenna complexes of Photosystem I present low-lying states visible as red-shifted and broadened absorption and fluorescence bands. Among these, Lhca4 has the most evident features of these "red" states, with a fluorescence band shifted by more than 25 nm from typical LHC emission. This signal arises from a mixing of exciton and charge-transfer (CT) states within the excitonically coupled a603-a609 chlorophyll (Chl) dimer. Here we combine molecular dynamics, multiscale quantum chemical calculations, and spectral simulations to uncover the molecular mechanism for the formation and tuning of exciton-CT interactions in Lhca4. We show that the coupling between exciton and CT states is extremely sensitive to tiny variations in the Chl dimer arrangement, explaining both the red-shifted bands and the switch between conformations with blue and red emission observed in single-molecule spectroscopy. Finally, we show that mutating the axial ligand of a603 diminishes the exciton-CT coupling, removing any red-state fingerprint.
Collapse
Affiliation(s)
- Vladislav Sláma
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Vincenzo Mascoli
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Nicoletta Liguori
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Roberta Croce
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Benedetta Mennucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| |
Collapse
|
7
|
Nöthling JA, Mancal T, Kruger T. Accuracy of approximate methods for the calculation of absorption-type linear spectra with a complex system-bath coupling. J Chem Phys 2022; 157:095103. [DOI: 10.1063/5.0100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accuracy of approximate methods for calculating linear optical spectra depends on many variables. In this study, we fix most of these parameters to typical values found in photosynthetic light-harvesting complexes of plants and determine the accuracy of approximate spectra with respect to exact calculation as a function of the energy gap and interpigment coupling in a pigment dimer. We use a spectral density with the first eight intramolecular modes of chlorophyll a and include inhomogeneous disorder for the calculation of spectra. We compare the accuracy of absorption, linear dichroism, and circular dichroism spectra calculated using the Full Cumulant Expansion (FCE), coherent time-dependent Redfield (ctR), and time-independent Redfield and modified Redfield methods. As a reference we use spectra calculated with the Exact Stochastic Path Integral Evaluation method. We find the FCE method to be the most accurate for the calculation of all spectra. The ctR method performs well for the qualitative calculation of absorption and linear dichroism spectra when pigments are moderately coupled (∼15 cm-1), but ctR spectra may differ significantly from exact spectra when strong interpigment coupling (>100 cm-1) is present. The dependence of the quality of Redfield and modified Redfield spectra on molecular parameters is similar, and these methods almost always perform worse than ctR, especially when the interpigment coupling is strong or the excitonic energy gap is small (for a given coupling). The accuracy of approximate spectra is not affected by resonance with intramolecular modes for typical system-bath coupling and disorder values found in plant light-harvesting complexes.
Collapse
Affiliation(s)
| | - Tomas Mancal
- Faculty of Mathematics and Physics, Charles University Faculty of Mathematics and Physics, Czech Republic
| | | |
Collapse
|
8
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of Spirulina platensis probed by two-dimensional electronic spectroscopy. J Chem Phys 2022; 156:164202. [PMID: 35490013 DOI: 10.1063/5.0078911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photosystem I (PSI), a naturally occurring supercomplex composed of a core part and a light-harvesting antenna, plays an essential role in the photosynthetic electron transfer chain. Evolutionary adaptation dictates a large variability in the type, number, arrangement, and absorption of the Chlorophylls (Chls) responsible for the early steps of light-harvesting and charge separation. For example, the specific location of long-wavelength Chls (referred to as red forms) in the cyanobacterial core has been intensively investigated, but the assignment of the chromophores involved is still controversial. The most red-shifted Chl a form has been observed in the trimer of the PSI core of the cyanobacterium Spirulina platensis, with an absorption centered at ∼740 nm. Here, we apply two-dimensional electronic spectroscopy to study photoexcitation dynamics in isolated trimers and monomers of the PSI core of S. platensis. By means of global analysis, we resolve and compare direct downhill and uphill excitation energy transfer (EET) processes between the bulk Chls and the red forms, observing significant differences between the monomer (lacking the most far red Chl form at 740 nm) and the trimer, with the ultrafast EET component accelerated by five times, from 500 to 100 fs, in the latter. Our findings highlight the complexity of EET dynamics occurring over a broad range of time constants and their sensitivity to energy distribution and arrangement of the cofactors involved. The comparison of monomeric and trimeric forms, differing both in the antenna dimension and in the extent of red forms, enables us to extract significant information regarding PSI functionality.
Collapse
Affiliation(s)
- Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
9
|
Schiphorst C, Achterberg L, Gómez R, Koehorst R, Bassi R, van Amerongen H, Dall’Osto L, Wientjes E. The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:2241-2252. [PMID: 34893885 PMCID: PMC8968287 DOI: 10.1093/plphys/kiab579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI-LHCI-LHCII supercomplex. The binding site(s) of the "additional" LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that "additional" LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.
Collapse
Affiliation(s)
- Christo Schiphorst
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luuk Achterberg
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Rodrigo Gómez
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | | |
Collapse
|
10
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem J 2021; 478:1333-1346. [PMID: 33687054 DOI: 10.1042/bcj20210021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
Collapse
|
12
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Direct Evidence for Excitation Energy Transfer Limitations Imposed by Low-Energy Chlorophylls in Photosystem I-Light Harvesting Complex I of Land Plants. J Phys Chem B 2021; 125:3566-3573. [PMID: 33788560 PMCID: PMC8154617 DOI: 10.1021/acs.jpcb.1c01498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The overall efficiency
of photosynthetic energy conversion depends
both on photochemical and excitation energy transfer processes from
extended light-harvesting antenna networks. Understanding the trade-offs
between increase in the antenna cross section and bandwidth and photochemical
conversion efficiency is of central importance both from a biological
perspective and for the design of biomimetic artificial photosynthetic
complexes. Here, we employ two-dimensional electronic spectroscopy
to spectrally resolve the excitation energy transfer dynamics and
directly correlate them with the initial site of excitation in photosystem
I–light harvesting complex I (PSI-LHCI) supercomplex of land
plants, which has both a large antenna dimension and a wide optical
bandwidth extending to energies lower than the peak of the reaction
center chlorophylls. Upon preferential excitation of the low-energy
chlorophylls (red forms), the average relaxation time in the bulk
supercomplex increases by a factor of 2–3 with respect to unselective
excitation at higher photon energies. This slowdown is interpreted
in terms of an excitation energy transfer limitation from low-energy
chlorophyll forms in the PSI-LHCI. These results aid in defining the
optimum balance between the extension of the antenna bandwidth to
the near-infrared region, which increases light-harvesting capacity,
and high photoconversion quantum efficiency.
Collapse
Affiliation(s)
- Mattia Russo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
13
|
Cherepanov DA, Shelaev IV, Gostev FE, Petrova A, Aybush AV, Nadtochenko VA, Xu W, Golbeck JH, Semenov AY. Primary charge separation within the structurally symmetric tetrameric Chl 2AP AP BChl 2B chlorophyll exciplex in photosystem I. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112154. [PMID: 33636482 DOI: 10.1016/j.jphotobiol.2021.112154] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
In Photosystem I (PS I), the role of the accessory chlorophyll (Chl) molecules, Chl2A and Chl2B (also termed A-1A and A-1B), which are directly adjacent to the special pair P700 and fork into the A- and B-branches of electron carriers, is incompletely understood. In this work, the Chl2A and Chl2B transient absorption ΔA0(λ) at a time delay of 100 fs was identified by ultrafast pump-probe spectroscopy in three pairs of PS I complexes from Synechocystis sp. PCC 6803 with residues PsaA-N600 or PsaB-N582 (which ligate Chl2B or Chl2A through a H2O molecule) substituted by Met, His, and Leu. The ΔA0(λ) spectra were quantified using principal component analysis, the main component of which was interpreted as a mutation-induced shift of the equilibrium between the excited state of primary donor P700⁎ and the primary charge-separated state P700+Chl2-. This equilibrium is shifted to the charge-separated state in wild-type PS I and to the excited P700 in the PS I complexes with the substituted ligands to the Chl2A and Chl2B monomers. The results can be rationalized within the framework of an adiabatic model in which the P700 is electronically coupled with the symmetrically arranged monomers Chl2A and Chl2B; such a structure can be considered a symmetric tetrameric exciplex Chl2APAPBChl2B, in which the excited state (Chl2APAPBChl2B)* is mixed with two charge-transfer states P700+Chl2A- and P700+Chl2B-. The electron redistribution between the two branches in favor of the A-branch apparently takes place in the picosecond time scale after reduction of the Chl2A and Chl2B monomers.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Anastasia Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| |
Collapse
|
14
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
|
17
|
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 146:55-73. [PMID: 32144697 DOI: 10.1007/s11120-020-00731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Vladimir A Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Akhtar P, Lambrev PH. On the spectral properties and excitation dynamics of long-wavelength chlorophylls in higher-plant photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148274. [PMID: 32712151 DOI: 10.1016/j.bbabio.2020.148274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022]
Abstract
In higher-plant Photosystem I (PSI), the majority of "red" chlorophylls (absorbing at longer wavelengths than the reaction centre P700) are located in the peripheral antenna, but contradicting reports are given about red forms in the core complex. Here we attempt to clarify the spectroscopic characteristics and quantify the red forms in the PSI core complex, which have profound implication on understanding the energy transfer and charge separation dynamics. To this end we compare the steady-state absorption and fluorescence spectra and picosecond time-resolved fluorescence kinetics of isolated PSI core complex and PSI-LHCI supercomplex from Pisum sativum recorded at 77 K. Gaussian decomposition of the absorption spectra revealed a broad band at 705 nm in the core complex with an oscillator strength of three chlorophylls. Additional absorption at 703 nm and 711 nm in PSI-LHCI indicated up to five red chlorophylls in the peripheral antenna. Analysis of fluorescence emission spectra resolved states emitting at 705, 715 and 722 nm in the core and additional states around 705-710 nm and 733 nm in PSI-LHCI. The red states compete with P700 in trapping excitations in the bulk antenna, which occurs on a timescale of ~20 ps. The three red forms in the core have distinct decay kinetics, probably in part determined by the rate of quenching by the oxidized P700. These results affirm that the red chlorophylls in the core complex must not be neglected when interpreting kinetic experimental results of PSI.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.
| |
Collapse
|
19
|
Russo M, Petropoulos V, Molotokaite E, Cerullo G, Casazza AP, Maiuri M, Santabarbara S. Ultrafast excited-state dynamics in land plants Photosystem I core and whole supercomplex under oxidised electron donor conditions. PHOTOSYNTHESIS RESEARCH 2020; 144:221-233. [PMID: 32052255 DOI: 10.1007/s11120-020-00717-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 05/28/2023]
Abstract
The kinetics of excited-state energy migration were investigated by femtosecond transient absorption in the isolated Photosystem I-Light-Harvesting Complex I (PSI-LHCI) supercomplex and in the isolated PSI core complex of spinach under conditions in which the terminal electron donor P700 is chemically pre-oxidised. It is shown that, under these conditions, the relaxation of the excited state is characterised by lifetimes of about 0.4 ps, 4.5 ps, 15 ps, 35 ps and 65 ps in PSI-LHCI and 0.15 ps, 0.3 ps, 6 ps and 16 ps in the PSI core complex. Compartmental spectral-kinetic modelling indicates that the most likely mechanism to explain the absence of long-lived (ns) excited states is the photochemical population of a radical pair state, which cannot be further stabilised and decays non-radiatively to the ground state with time constants in the order of 6-8 ps.
Collapse
Affiliation(s)
- Mattia Russo
- IFN Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Vasilis Petropoulos
- IFN Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Egle Molotokaite
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milan, Italy
| | - Giulio Cerullo
- IFN Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Margherita Maiuri
- IFN Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
20
|
Abram M, Białek R, Szewczyk S, Karolczak J, Gibasiewicz K, Kargul J. Remodeling of excitation energy transfer in extremophilic red algal PSI-LHCI complex during light adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148093. [DOI: 10.1016/j.bbabio.2019.148093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
|
21
|
Wolf BM, Blankenship RE. Far-red light acclimation in diverse oxygenic photosynthetic organisms. PHOTOSYNTHESIS RESEARCH 2019; 142:349-359. [PMID: 31222688 DOI: 10.1007/s11120-019-00653-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Oxygenic photosynthesis has historically been considered limited to be driven by the wavelengths of visible light. However, in the last few decades, various adaptations have been discovered that allow algae, cyanobacteria, and even plants to utilize longer wavelength light in the far-red spectral range. These adaptations provide distinct advantages to the species possessing them, allowing the effective utilization of shade light under highly filtered light environments. In prokaryotes, these adaptations include the production of far-red-absorbing chlorophylls d and f and the remodeling of phycobilisome antennas and reaction centers. Eukaryotes express specialized light-harvesting pigment-protein complexes that use interactions between pigments and their protein environment to spectrally tune the absorption of chlorophyll a. If these adaptations could be applied to crop plants, a potentially significant increase in photon utilization in lower shaded leaves could be realized, improving crop yields.
Collapse
Affiliation(s)
- Benjamin M Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
22
|
Schmitt FJ, Campbell ZY, Bui MV, Hüls A, Tomo T, Chen M, Maksimov EG, Allakhverdiev SI, Friedrich T. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. PHOTOSYNTHESIS RESEARCH 2019; 139:185-201. [PMID: 30039357 DOI: 10.1007/s11120-018-0556-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Züleyha Yenice Campbell
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mai Vi Bui
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anne Hüls
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku‑Ku, Tokyo, 162‑8601, Japan
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1, bld. 24, Moscow, Russian Federation, 119991
| | - Suleyman I Allakhverdiev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russian Federation, 127276
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
23
|
Giera W, Szewczyk S, McConnell MD, Redding KE, van Grondelle R, Gibasiewicz K. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. PHOTOSYNTHESIS RESEARCH 2018; 137:321-335. [PMID: 29619738 DOI: 10.1007/s11120-018-0506-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.
Collapse
Affiliation(s)
- Wojciech Giera
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland.
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| | - Michael D McConnell
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| |
Collapse
|
24
|
Akhtar P, Zhang C, Liu Z, Tan HS, Lambrev PH. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy. PHOTOSYNTHESIS RESEARCH 2018; 135:239-250. [PMID: 28808836 DOI: 10.1007/s11120-017-0427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 05/24/2023]
Abstract
Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Cheng Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhengtang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Petar H Lambrev
- Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
25
|
Santabarbara S, Tibiletti T, Remelli W, Caffarri S. Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis. Phys Chem Chem Phys 2018; 19:9210-9222. [PMID: 28319223 DOI: 10.1039/c7cp00554g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns-1 interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns-1, likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns-1), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns-1), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro di Studio per la Biologia Cellulare e Molecolare delle Piante, Via Celoria 26, 20133 Milan, Italy.
| | - Tania Tibiletti
- Aix Marseille Univ, CEA, CNRS UMR7265 BVME, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France
| | - William Remelli
- Photosynthesis Research Unit, Centro di Studio per la Biologia Cellulare e Molecolare delle Piante, Via Celoria 26, 20133 Milan, Italy.
| | - Stefano Caffarri
- Aix Marseille Univ, CEA, CNRS UMR7265 BVME, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France
| |
Collapse
|
26
|
Molotokaite E, Remelli W, Casazza AP, Zucchelli G, Polli D, Cerullo G, Santabarbara S. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation. J Phys Chem B 2017; 121:9816-9830. [DOI: 10.1021/acs.jpcb.7b07064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Egle Molotokaite
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - William Remelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Dario Polli
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
27
|
Wientjes E, Philippi J, Borst JW, van Amerongen H. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:259-265. [DOI: 10.1016/j.bbabio.2017.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
|
28
|
High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:56-63. [DOI: 10.1016/j.bbabio.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/23/2022]
|
29
|
Bressan M, Dall'Osto L, Bargigia I, Alcocer MJP, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M. LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity. NATURE PLANTS 2016; 2:16131. [PMID: 27564313 DOI: 10.1038/nplants.2016.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/28/2016] [Indexed: 05/10/2023]
Abstract
Light-harvesting complexes (LHCs) are major constituents of the antenna systems in higher plant photosystems. Four Lhca subunits are tightly bound to the photosystem I (PSI) core complex, forming its outer antenna moiety called LHCI. The Arabidopsis thaliana mutant ΔLhca lacks all Lhca1-4 subunits and compensates for its decreased antenna size by binding LHCII trimers, the main constituent of the photosystem II antenna system, to PSI. In this work we have investigated the effect of LHCI/LHCII substitution by comparing the light harvesting and excitation energy transfer efficiency properties of PSI complexes isolated from ΔLhca mutants and from the wild type, as well as the consequences for plant growth. We show that the excitation energy transfer efficiency was not compromised by the substitution of LHCI with LHCII but a significant reduction in the absorption cross-section was observed. The absence of LHCI subunits in PSI thus significantly limits light harvesting, even on LHCII binding, inducing, as a consequence, a strong reduction in growth.
Collapse
Affiliation(s)
- Mauro Bressan
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Ilaria Bargigia
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
| | - Marcelo J P Alcocer
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Daniele Viola
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giulio Cerullo
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Cosimo D'Andrea
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| |
Collapse
|
30
|
Novoderezhkin VI, Croce R, Wahadoszamen M, Polukhina I, Romero E, van Grondelle R. Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4. Phys Chem Chem Phys 2016; 18:19368-77. [DOI: 10.1039/c6cp02225a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-based modeling of spectra of the wild-type Lhca4 and NH mutant enables us to build the exciton model of the complex that includes a charge-transfer state mixed with the excited-state manifold.
Collapse
Affiliation(s)
| | - Roberta Croce
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Md. Wahadoszamen
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Iryna Polukhina
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Elisabet Romero
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
31
|
Le Quiniou C, van Oort B, Drop B, van Stokkum IHM, Croce R. The High Efficiency of Photosystem I in the Green Alga Chlamydomonas reinhardtii Is Maintained after the Antenna Size Is Substantially Increased by the Association of Light-harvesting Complexes II. J Biol Chem 2015; 290:30587-95. [PMID: 26504081 DOI: 10.1074/jbc.m115.687970] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Photosystems (PS) I and II activities depend on their light-harvesting capacity and trapping efficiency, which vary in different environmental conditions. For optimal functioning, these activities need to be balanced. This is achieved by redistribution of excitation energy between the two photosystems via the association and disassociation of light-harvesting complexes (LHC) II, in a process known as state transitions. Here we study the effect of LHCII binding to PSI on its absorption properties and trapping efficiency by comparing time-resolved fluorescence kinetics of PSI-LHCI and PSI-LHCI-LHCII complexes of Chlamydomonas reinhardtii. PSI-LHCI-LHCII of C. reinhardtii is the largest PSI supercomplex isolated so far and contains seven Lhcbs, in addition to the PSI core and the nine Lhcas that compose PSI-LHCI, together binding ∼ 320 chlorophylls. The average decay time for PSI-LHCI-LHCII is ∼ 65 ps upon 400 nm excitation (15 ps slower than PSI-LHCI) and ∼ 78 ps upon 475 nm excitation (27 ps slower). The transfer of excitation energy from LHCII to PSI-LHCI occurs in ∼ 60 ps. This relatively slow transfer, as compared with that from LHCI to the PSI core, suggests loose connectivity between LHCII and PSI-LHCI. Despite the relatively slow transfer, the overall decay time of PSI-LHCI-LHCII remains fast enough to assure a 96% trapping efficiency, which is only 1.4% lower than that of PSI-LHCI, concomitant with an increase of the absorption cross section of 47%. This indicates that, at variance with PSII, the design of PSI allows for a large increase of its light-harvesting capacities.
Collapse
Affiliation(s)
- Clotilde Le Quiniou
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bart van Oort
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bartlomiej Drop
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- From the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Le Quiniou C, Tian L, Drop B, Wientjes E, van Stokkum IHM, van Oort B, Croce R. PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:458-467. [PMID: 25681242 PMCID: PMC4547092 DOI: 10.1016/j.bbabio.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI) is an essential component of photosynthetic membranes. Despite the high sequence and structural homologies, its absorption properties differ substantially in algae, plants and cyanobacteria. In particular it is characterized by the presence of low-energy chlorophylls (red forms), the number and the energy of which vary in different organisms. The PSI-LHCI (PSI-light harvesting complex I) complex of the green alga Chlamydomonas reinhardtii (C.r.) is significantly larger than that of plants, containing five additional light-harvesting complexes (together binding≈65 chlorophylls), and contains red forms with higher energy than plants. To understand how these differences influence excitation energy transfer and trapping in the system, we studied two PSI-LHCI C.r. particles, differing in antenna size and red-form content, using time-resolved fluorescence and compared them to plant PSI-LHCI. The excited state kinetics in C.r. shows the same average lifetime (50 ps) as in plants suggesting that the effect of antenna enlargement is compensated by higher energy red forms. The system equilibrates very fast, indicating that all Lhcas are well-connected, despite their long distance to the core. The differences between C.r. PSI-LHCI with and without Lhca2 and Lhca9 show that these Lhcas bind red forms, although not the red-most. The red-most forms are in (or functionally close to) other Lhcas and slow down the trapping, but hardly affect the quantum efficiency, which remains as high as 97% even in a complex that contains 235 chlorophylls.
Collapse
Affiliation(s)
- Clotilde Le Quiniou
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Lijin Tian
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bartlomiej Drop
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Emilie Wientjes
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Bart van Oort
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Institute for Lasers, Life and Biophotonics Amsterdam, LaserLaB Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
34
|
Maksimov EG, Schmitt FJ, Tsoraev GV, Ryabova AV, Friedrich T, Paschenko VZ. Fluorescence quenching in the lichen Peltigera aphthosa due to desiccation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:67-73. [PMID: 24485218 DOI: 10.1016/j.plaphy.2014.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Photoprotective mechanisms were studied on the tripartite lichen Peltigera aphthosa that exhibits external cephalodia. Using the methods of steady-state and time-resolved fluorescence microscopy, we studied the dynamics of the rehydration process in different parts of the lichen thalli. It was found that apical, medial and basal parts of the thallus are not only morphologically different, but also show completely different chlorophyll induction curves and other spectral characteristics. In dry state, significant contribution to the fluorescence spectrum of lichen gives a green fluorescence of hyphae forming the upper crust, which is rapidly and almost completely quenched during the rehydration process. Probably this is one of the protective mechanisms that reduce the amount of light reaching the PS II reaction centers in the dry state. In the process of rehydration, we observed an increase in the intensity of the chlorophyll fluorescence of the photobiont at 680 nm, with significant changes of the fluorescence lifetimes and the amplitude ratios of fast and slow components of fluorescence decay kinetics. While in dry state, chlorophyll fluorescence is strongly quenched (opposite to the fluorescence of the hyphae), and the fluorescence time constants recover to the typical decay times of active photosynthetic organisms during rehydration. The quantitative behavior of these changes differs largely between the apical, medial and basal parts of the thallus, probably due to the complex interactions of the fungus, algae and cyanobacteria.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - F-J Schmitt
- Institute of Chemistry, Biophysical Chemistry, Berlin Institute of Technology, 10623 Berlin, Germany
| | - G V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A V Ryabova
- A.M.Prokhorov General Physics Institute RAS, 119991 Moscow, Russia
| | - T Friedrich
- Institute of Chemistry, Biophysical Chemistry, Berlin Institute of Technology, 10623 Berlin, Germany
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
35
|
Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4065-95. [PMID: 24868038 DOI: 10.1093/jxb/eru191] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Jon Atherton
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland
| | | | - Jaume Flexas
- Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Ctra. de Valldemossa Km. 7.5, 07122 Palma, Spain
| | | | - Jose Moreno
- Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Christian Frankenberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Jennings RC, Santabarbara S, Belgio E, Zucchelli G. The Carnot efficiency and plant photosystems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914020080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Rizzo F, Zucchelli G, Jennings R, Santabarbara S. Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:726-33. [PMID: 24561096 DOI: 10.1016/j.bbabio.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
The fluorescence emission characteristics of the photosynthetic apparatus under conditions of open (F0) and closed (FM) Photosystem II reaction centres have been investigated under steady state conditions and by monitoring the decay lifetimes of the excited state, in vivo, in the green alga Chlorella sorokiniana. The results indicate a marked wavelength dependence of the ratio of the variable fluorescence, FV=FM-F0, over FM, a parameter that is often employed to estimate the maximal quantum efficiency of Photosystem II. The maximal value of the FV/FM ratio is observed between 660 and 680nm and the minimal in the 690-730nm region. It is possible to attribute the spectral variation of FV/FM principally to the contribution of Photosystem I fluorescence emission at room temperature. Moreover, the analysis of the excited state lifetime at F0 and FM indicates only a small wavelength dependence of Photosystem II trapping efficiency in vivo.
Collapse
Affiliation(s)
- Federico Rizzo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Robert Jennings
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy
| | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
38
|
Croce R, van Amerongen H. Light-harvesting in photosystem I. PHOTOSYNTHESIS RESEARCH 2013; 116:153-66. [PMID: 23645376 PMCID: PMC3825136 DOI: 10.1007/s11120-013-9838-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
This review focuses on the light-harvesting properties of photosystem I (PSI) and its LHCI outer antenna. LHCI consists of different chlorophyll a/b binding proteins called Lhca's, surrounding the core of PSI. In total, the PSI-LHCI complex of higher plants contains 173 chlorophyll molecules, most of which are there to harvest sunlight energy and to transfer the created excitation energy to the reaction center (RC) where it is used for charge separation. The efficiency of the complex is based on the capacity to deliver this energy to the RC as fast as possible, to minimize energy losses. The performance of PSI in this respect is remarkable: on average it takes around 50 ps for the excitation to reach the RC in plants, without being quenched in the meantime. This means that the internal quantum efficiency is close to 100% which makes PSI the most efficient energy converter in nature. In this review, we describe the light-harvesting properties of the complex in relation to protein and pigment organization/composition, and we discuss the important parameters that assure its very high quantum efficiency. Excitation energy transfer and trapping in the core and/or Lhcas, as well as in the supercomplexes PSI-LHCI and PSI-LHCI-LHCII are described in detail with the aim of giving an overview of the functional behavior of these complexes.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | |
Collapse
|
39
|
Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI–LHCI). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:779-85. [DOI: 10.1016/j.bbabio.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
|
40
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
41
|
Belgio E, Tumino G, Santabarbara S, Zucchelli G, Jennings R. Reconstituted CP29: multicomponent fluorescence decay from an optically homogeneous sample. PHOTOSYNTHESIS RESEARCH 2012; 111:53-62. [PMID: 22002817 DOI: 10.1007/s11120-011-9696-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
The multiexponential fluorescence decay of the CP29 complex in which the apoprotein and pigments were reconstituted in vitro was examined. Of the three decay components observed only the two dominant ones, with about 3 and 5 ns lifetimes, were studied. The main question addressed was whether the multicomponent decay was associated with sample optical heterogeneity. To this end, we examined the optical absorption and fluorescence of the CP29 sample by means of two different and independent experimental strategies. This approach was used as the wavelength positions of the absorption/fluorescence spectral forms has recently been shown to be a sensitive indicator of the binding site-induced porphyrin ring deformation (Zucchelli et al. Biophys J 93:2240-2254, 2007) and hence of apoprotein conformational changes. The data indicate that this CP29 sample is optically homogeneous. It is hypothesised that the different lifetimes are explained in terms of multiple detergent/CP29 interactions leading to different quenching states, a suggestion that allows for optical homogeneity.
Collapse
Affiliation(s)
- Erica Belgio
- CNR-Istituto di Biofisica, Sede di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
42
|
The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys J 2011; 101:745-54. [PMID: 21806943 DOI: 10.1016/j.bpj.2011.06.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022] Open
Abstract
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
Collapse
|
43
|
Wientjes E, van Stokkum IHM, van Amerongen H, Croce R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys J 2011; 100:1372-80. [PMID: 21354411 DOI: 10.1016/j.bpj.2011.01.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/19/2011] [Indexed: 11/15/2022] Open
Abstract
Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data.
Collapse
Affiliation(s)
- Emilie Wientjes
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem J 2011; 433:477-85. [PMID: 21083539 DOI: 10.1042/bj20101538] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge about Lhcas has been obtained from the study of the in vitro reconstituted antennas. In the present study we were able to purify the native complexes, showing that Lhca2/3 and Lhca1/4 form two functional heterodimers. Both dimers show red-fluorescence emission with maxima around 730 nm, as in the intact PSI complex. This indicates that the dimers are in their native state and that LHCI-680, which was previously assumed to be part of the PSI antenna, does not represent the native state of the system. The data show that the light-harvesting properties of the two dimers are functionally identical, concerning absorption, long-wavelength emission and fluorescence quantum yield, whereas they differ in their high-light response. Implications of the present study for the understanding of the energy transfer process in PSI are discussed. Finally, the comparison of the properties of the native dimers with those of the reconstituted complexes demonstrates that all of the major properties of the Lhcas are reproduced in the in vitro systems.
Collapse
|
45
|
Busch A, Hippler M. The structure and function of eukaryotic photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:864-77. [PMID: 20920463 DOI: 10.1016/j.bbabio.2010.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Andreas Busch
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | |
Collapse
|
46
|
Passarini F, Wientjes E, van Amerongen H, Croce R. Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:501-8. [PMID: 20097154 DOI: 10.1016/j.bbabio.2010.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
In this work we have investigated the origin of the multi-exponential fluorescence decay and of the short excited-state lifetime of Lhca4. Lhca4 is the antenna complex of Photosystem I which accommodates the red-most chlorophyll forms and it has been proposed that these chlorophylls can play a role in fluorescence quenching. Here we have compared the fluorescence decay of Lhca4 with that of several Lhca4 mutants that are affected in their red form content. The results show that neither the multi-exponentiality of the decay nor the fluorescence quenching is due to the red forms. The data indicate that Lhca4 exists in multiple conformations. The presence of the red forms, which are very sensitive to changes in the environment, allows to spectrally resolve the different conformations: a "blue" conformation with a short lifetime and a "red" one with a long lifetime. This finding strongly supports the idea that the members of the Lhc family are able to adopt different conformations associated with their light-harvesting and photoprotective roles. The ratio between the conformations is modified by the substitution of lutein by violaxanthin. Finally, it is demonstrated that the red forms cannot be present in the quenched conformation.
Collapse
Affiliation(s)
- Francesca Passarini
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Mozzo M, Mantelli M, Passarini F, Caffarri S, Croce R, Bassi R. Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:212-21. [PMID: 19853576 DOI: 10.1016/j.bbabio.2009.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
The outer antenna system of Chlamydomonas reinhardtii Photosystem I is composed of nine gene products, but due to difficulty in purification their individual properties are not known. In this work, the functional properties of the nine Lhca antennas of Chlamydomonas, have been investigated upon expression of the apoproteins in bacteria and refolding in vitro of the pigment-protein complexes. It is shown that all Lhca complexes have a red-shifted fluorescence emission as compared to the antenna complexes of Photosystem II, similar to Lhca from higher plants, but less red-shifted. Three complexes, namely Lhca2, Lhca4 and Lhca9, exhibit emission maxima above 707 nm and all carry an asparagine as ligand for Chl 603. The comparison of the protein sequences and the biochemical/spectroscopic properties of the refolded Chlamydomonas complexes with those of the well-characterized Arabidopsis thaliana Lhcas shows that all the Chlamydomonas complexes have a chromophore organization similar to that of A. thaliana antennas, particularly to Lhca2, despite low sequence identity. All the major biochemical and spectroscopic properties of the Lhca complexes have been conserved through the evolution, including those involved in "red forms" absorption. It has been proposed that in Chlamydomonas PSI antenna size and polypeptide composition can be modulated in vivo depending on growth conditions, at variance as compared to higher plants. Thus, the different properties of the individual Lhca complexes can be functional to adapt the architecture of the PSI-LHCI supercomplex to different environmental conditions.
Collapse
Affiliation(s)
- Milena Mozzo
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 2009; 284:7803-10. [PMID: 19139095 DOI: 10.1074/jbc.m808395200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, Photosystem I supercomplexes have been purified from Lhca-deficient lines of Arabidopsis thaliana using a mild detergent treatment that does not induce loss of outer antennas. The complexes have been studied by integrating biochemical analysis with electron microscopy. This allows the direct correlation of changes in protein content with changes in supramolecular structure of Photosystem I to get information about the position of the individual Lhca subunits, the association of the antenna to the core, and the influence of the individual subunits on the stability of the system. Photosystem I complexes with only two or three antenna complexes were purified, showing that the binding of Lhca1/4 and Lhca2/3 dimers to the core is not interdependent, although weak binding of Lhca2/3 to the core is stabilized by the presence of Lhca4. Moreover, Lhca2 and Lhca4 can be associated with the core in the absence of their "dimeric partners." The structure of Photosystem I is very rigid, and the absence of one antenna complex leaves a "hole" in the structure that cannot be filled by other Lhcas, clearly indicating that the docking sites for the individual subunits are highly specific. There is, however, an exception to the rule: Lhca5 can substitute for Lhca4, yielding highly stable PSI supercomplexes with a supramolecular organization identical to the WT.
Collapse
Affiliation(s)
- Emilie Wientjes
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
van Oort B, Amunts A, Borst JW, van Hoek A, Nelson N, van Amerongen H, Croce R. Picosecond fluorescence of intact and dissolved PSI-LHCI crystals. Biophys J 2008; 95:5851-61. [PMID: 18931256 PMCID: PMC2599838 DOI: 10.1529/biophysj.108.140467] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 +/- 2.5 ps) and rates of excitation energy transfer from LHCI to core (k(LC)) and vice versa (k(CL)). The ratio between these rates, R = k(CL)/k(LC), appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. k(LC) depends slightly but nonsystematically on detection wavelength, averaging (9.4 +/- 4.9 ps)(-1). R ranges from 0.5 (<690 nm) to approximately 1.3 above 720 nm.
Collapse
Affiliation(s)
- Bart van Oort
- Laboratory of Biophysics, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M. Selective Photobleaching of Chlorophylls and Carotenoids in Photosystem I Particles under High-Light Treatment. Photochem Photobiol 2007; 83:1301-7. [DOI: 10.1111/j.1751-1097.2007.00136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|