1
|
Che LP, Ruan J, Xin Q, Zhang L, Gao F, Cai L, Zhang J, Chen S, Zhang H, Rochaix JD, Peng L. RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4143-4167. [PMID: 38963884 PMCID: PMC11449094 DOI: 10.1093/plcell/koae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Collapse
Affiliation(s)
- Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shiwei Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Pavlou A, Mokvist F, Styring S, Mamedov F. Far-red photosynthesis: Two charge separation pathways exist in plant Photosystem II reaction center. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148994. [PMID: 37355002 DOI: 10.1016/j.bbabio.2023.148994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
An alternative charge separation pathway in Photosystem II under the far-red light was proposed by us on the basis of electron transfer properties at 295 K and 5 K. Here we extend these studies to the temperature range of 77-295 K with help of electron paramagnetic resonance spectroscopy. Induction of the S2 state multiline signal, oxidation of Cytochrome b559 and ChlorophyllZ was studied in Photosystem II membrane preparations from spinach after application of a laser flashes in visible (532 nm) or far-red (730-750 nm) spectral regions. Temperature dependence of the S2 state signal induction after single flash at 730-750 nm (Tinhibition ~ 240 K) was found to be different than that at 532 nm (Tinhibition ~ 157 K). No contaminant oxidation of the secondary electron donors cytochrome b559 or chlorophyllZ was observed. Photoaccumulation experiments with extensive flashing at 77 K showed similar results, with no or very little induction of the secondary electron donors. Thus, the partition ratio defined as (yield of YZ/CaMn4O5-cluster oxidation):(yield of Cytb559/ChlZ/CarD2 oxidation) was found to be 0.4 at under visible light and 1.7 at under far-red light at 77 K. Our data indicate that different products of charge separation after far-red light exists in the wide temperature range which further support the model of the different primary photochemistry in Photosystem II with localization of hole on the ChlD1 molecule.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fredrik Mokvist
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Khorobrykh A. A possible relationship between the effect of factors on photoactivation of photosystem II depleted of functional Mn and cytochrome b 559. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148997. [PMID: 37506995 DOI: 10.1016/j.bbabio.2023.148997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The photoassembly of the Mn4CaO5 cluster in Mn-depleted photosystem II preparations (photoactivation) was studied under the influence of oxidants, reductants and pH. New data on the effect of these factors on the photoactivation yield are presented. The presence of the oxidant, ferricyanide, negatively affected the photoactivation yield over the entire concentration range studied (0-1 mM). In contrast to ferricyanide, the addition of the reductant, ferrocyanide, up to 1 mM resulted in an increase in the photoactivation yield. Other reductants either did not significantly affect (diphenylcarbazide) or suppressed (ascorbate) the photoactivation yield. The effect of ferrocyanide on photoactivation were found to be similar dichlorophenolindophenol. Investigation of the photoactivation yield as a function of pH revealed that the maximum yield was observed at pH 6.5 in the presence of ferrocyanide and DCPIP, and at pH 5.5 without additives. In addition, the photoactivation yield at pH 5.5 was the same without and with the addition of ferrocyanide or dichlorophenolindophenol. Although ferricyanide suppressed the photoactivation, the photoactivation yield increased in the presence of ferricyanide by shifting the pH to the acidic region. The samples contained approximately 25 % of the HP cyt b559, which was in the reduced state, as the absorbance at 559 nm was decreased upon addition of ferricyanide and subsequent addition of ferrocyanide returned the spectrum to the baseline. A possible relationship between the effect of factors on the photoactivation and the involvement of cyt b559 in the protection of PSII from oxidative damage on the donor side is discussed.
Collapse
Affiliation(s)
- Andrey Khorobrykh
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino 142290, Moscow Region, Russia.
| |
Collapse
|
4
|
Zournas A, Mani K, Dismukes GC. Cyclic electron flow around photosystem II in silico: How it works and functions in vivo. PHOTOSYNTHESIS RESEARCH 2023; 156:129-145. [PMID: 36753032 DOI: 10.1007/s11120-023-00997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To date, cyclic electron flow around PSI (PSI-CEF) has been considered the primary (if not the only) mechanism accepted to adjust the ratio of linear vs cyclic electron flow that is essential to adjust the ratio of ATP/NADPH production needed for CO2 carboxylation. Here we provide a kinetic model showing that cyclic electron flow within PSII (PSII-CEF) is essential to account for the accelerating rate of decay in flash-induced oscillations of O2 yield as the PQ pool progressively reduces to PQH2. Previously, PSII-CEF was modeled by backward transitions using empirical Markov models like Joliot-Kok (J-K) type. Here, we adapted an ordinary differential equation methodology denoted RODE1 to identify which microstates within PSII are responsible for branching between PSII-CEF and Linear Electron Flow (LEF). We applied it to simulate the oscillations of O2 yield from both Chlorella ohadii, an alga that shows strong PSII-CEF attributed to high backward transitions, and Synechococcus elongatus sp. 7002, a widely studied model cyanobacterium. RODE2 simulations reveal that backward transitions occur in microstates that possess a QB- semiquinone prior to the flash. Following a flash that forms microstates populating (QAQB)2-, PSII-CEF redirects these two electrons to the donor side of PSII only when in the oxidized S2 and S3 states. We show that this backward transition pathway is the origin of the observed period-2 oscillations of flash O2 yield and contributes to the accelerated decay of period-4 oscillations. This newly added pathway improved RODE1 fits for cells of both S. elongatus and C. ohadii. RODE2 simulations show that cellular adaptation to high light intensity growth is due to a decrease in QB availability (empty or blocked by Q2-B), or equivalently due to a decrease in the difference in reduction potential relative to QA/QA-. PSII-CEF provides an alternative mechanism for rebalancing the NADPH:ATP ratio that occurs rapidly by adjusting the redox level of the PQ:PQH2 pool and is a necessary process for energy metabolism in aquatic phototrophs.
Collapse
Affiliation(s)
- Apostolos Zournas
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemical and Biological Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kyle Mani
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department. of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Electronic Structure of Tyrosyl D Radical of Photosystem II, as Revealed by 2D-Hyperfine Sublevel Correlation Spectroscopy. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7090131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological water oxidation takes place in Photosystem II (PSII), a multi-subunit protein located in thylakoid membranes of higher plant chloroplasts and cyanobacteria. The catalytic site of PSII is a Mn4Ca cluster and is known as the oxygen evolving complex (OEC) of PSII. Two tyrosine residues D1-Tyr161 (YZ) and D2-Tyr160 (YD) are symmetrically placed in the two core subunits D1 and D2 and participate in proton coupled electron transfer reactions. YZ of PSII is near the OEC and mediates electron coupled proton transfer from Mn4Ca to the photooxidizable chlorophyll species P680+. YD does not directly interact with OEC, but is crucial for modulating the various S oxidation states of the OEC. In PSII from higher plants the environment of YD• radical has been extensively characterized only in spinach (Spinacia oleracea) Mn-depleted non functional PSII membranes. Here, we present a 2D-HYSCORE investigation in functional PSII of spinach to determine the electronic structure of YD• radical. The hyperfine couplings of the protons that interact with the YD• radical are determined and the relevant assignment is provided. A discussion on the similarities and differences between the present results and the results from studies performed in non functional PSII membranes from higher plants and PSII preparations from other organisms is given.
Collapse
|
6
|
Shevela D, Ananyev G, Vatland AK, Arnold J, Mamedov F, Eichacker LA, Dismukes GC, Messinger J. 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2019; 166:165-180. [PMID: 30693529 DOI: 10.1111/ppl.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Gennady Ananyev
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ann K Vatland
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - G Charles Dismukes
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| |
Collapse
|
7
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Nakamura S, Noguchi T. Infrared Detection of a Proton Released from Tyrosine YD to the Bulk upon Its Photo-oxidation in Photosystem II. Biochemistry 2015; 54:5045-53. [PMID: 26241205 DOI: 10.1021/acs.biochem.5b00568] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosystem II (PSII) has two symmetrically located, redox-active tyrosine residues, YZ and YD. Whereas YZ mediates the electron transfer from the water-oxidizing center to P680 in the main electron transfer pathway, YD functions as a peripheral electron donor to P680. To understand the mechanism of this functional difference between YZ and YD, it is essential to know where the proton is transferred upon its oxidation in the proton-coupled electron transfer process. In this study, we used Fourier transform infrared (FTIR) spectroscopy to examine whether the proton from YD is released from the protein into the bulk. The proton detection method previously used for water oxidation in PSII [Suzuki et al. (2009) J. Am. Chem. Soc. 131, 7849-7857] was applied to YD; a proton released into the bulk upon YD oxidation was trapped by a high-concentration Mes buffer, and the protonation reaction of Mes was monitored by FTIR difference spectroscopy. It was shown that 0.84 ± 0.10 protons are released into the bulk by oxidation of YD in one PSII center. This result indicates that the proton of YD is not transferred to the neighboring D2-His198 but is released from the protein; this is in sharp contrast to the YZ reaction, in which a proton is transferred to D1-His190 through a strong hydrogen bond. This functional difference is caused by differences in the hydrogen-bonded structures of YD and YZ, which are determined by the hydrogen bond partners at the Nπ sites of these His residues, i.e., D2-Arg294 and D1-Asn298, which function as a hydrogen bond donor and acceptor, respectively. This FTIR spectroscopy result supports the recent theoretical prediction [Saito et al. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 7690-7695] based on the X-ray crystallographic structure of PSII and explains the different rates of the redox reactions of YD and YZ.
Collapse
Affiliation(s)
- Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
9
|
Chu HA, Chiu YF. The Roles of Cytochrome b 559 in Assembly and Photoprotection of Photosystem II Revealed by Site-Directed Mutagenesis Studies. FRONTIERS IN PLANT SCIENCE 2015; 6:1261. [PMID: 26793230 PMCID: PMC4709441 DOI: 10.3389/fpls.2015.01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/24/2015] [Indexed: 05/05/2023]
Abstract
Cytochrome b 559 (Cyt b 559) is one of the essential components of the Photosystem II reaction center (PSII). Despite recent accomplishments in understanding the structure and function of PSII, the exact physiological function of Cyt b 559 remains unclear. Cyt b 559 is not involved in the primary electron transfer pathway in PSII but may participate in secondary electron transfer pathways that protect PSII against photoinhibition. Site-directed mutagenesis studies combined with spectroscopic and functional analysis have been used to characterize Cyt b 559 mutant strains and their mutant PSII complex in higher plants, green algae, and cyanobacteria. These integrated studies have provided important in vivo evidence for possible physiological roles of Cyt b 559 in the assembly and stability of PSII, protecting PSII against photoinhibition, and modulating photosynthetic light harvesting. This mini-review presents an overview of recent important progress in site-directed mutagenesis studies of Cyt b 559 and implications for revealing the physiological functions of Cyt b 559 in PSII.
Collapse
|
10
|
Hamilton ML, Franco E, Deák Z, Schlodder E, Vass I, Nixon PJ. Investigating the photoprotective role of cytochrome b-559 in photosystem II in a mutant with altered ligation of the haem. PLANT & CELL PHYSIOLOGY 2014; 55:1276-85. [PMID: 24850839 DOI: 10.1093/pcp/pcu070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite many years of study, the physiological role of cytochrome b-559 (Cyt b-559) within the photosystem II (PSII) complex still remains unclear. Here we describe the analysis of a mutant of the green alga Chlamydomonas reinhardtii in which the His ligand to the haem, provided by the alpha subunit, has been replaced by a Cys residue. The mutant is unable to grow photoautotrophically but can assemble oxygen-evolving PSII supercomplexes to 15-20% of the levels found in the wild-type control. Haem is still detected in the isolated PSII supercomplexes but at sub-stoichiometric levels consistent with weaker binding to the mutated cytochrome. Analysis of PSII activity in cells indicates slowed electron transfer in the mutant between plastoquinones QA and QB. We show that PSII activity in the mutant is more sensitive to chronic photoinhibition than the WT control because of two effects: a faster rate of damage and an impaired PSII repair cycle at the level of synthesis and/or incorporation of D1 into PSII. We also demonstrate that Cyt b-559 plays a role during the critical stage of assembling the Mn4CaO5 cluster. Overall we conclude that Cyt b-559 optimises electron transfer on the acceptor side of PSII and plays physiologically important roles in the assembly, repair and maintenance of the complex.
Collapse
Affiliation(s)
- Mary L Hamilton
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UKPresent address: Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Emanuel Franco
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UK
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Eberhard Schlodder
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington campus, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Mokvist F, Sjöholm J, Mamedov F, Styring S. The Photochemistry in Photosystem II at 5 K Is Different in Visible and Far-Red Light. Biochemistry 2014; 53:4228-38. [DOI: 10.1021/bi5006392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredrik Mokvist
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Johannes Sjöholm
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| |
Collapse
|
12
|
Vinyard DJ, Ananyev GM, Charles Dismukes G. Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annu Rev Biochem 2013; 82:577-606. [DOI: 10.1146/annurev-biochem-070511-100425] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Vinyard
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540;
| | - Gennady M. Ananyev
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
| |
Collapse
|
13
|
A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the 01, 02 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1817:1083-94. [PMID: 23487854 DOI: 10.1016/j.bbabio.2012.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photosynthetic electron transport, chromatic photoacclirnation and expression of the genes encoding the 01, 02, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a 01' isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the 01 and the abundant isoform of the 02 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a 02' isoform whose primary structure is different from the abundant 02 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of 01 and 02 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.
Collapse
|
14
|
Petrova IO, Kurashov VN, Zaspa AA, Semenov AY, Mamedov MD. Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:395-402. [PMID: 23590442 DOI: 10.1134/s0006297913040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). Generation of ΔΨ due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1→S2, S2→S3, and S4→S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2.
Collapse
Affiliation(s)
- I O Petrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | | |
Collapse
|
15
|
Chiu YF, Chen YH, Roncel M, Dilbeck PL, Huang JY, Ke SC, Ortega JM, Burnap RL, Chu HA. Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the cytoplasmic-side of cytochrome b559 in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:507-19. [PMID: 23399490 DOI: 10.1016/j.bbabio.2013.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
We performed spectroscopic and functional characterization on cyanobacterium Synechocystis PCC6803 with mutations of charged residues of the cytoplasmic side of cytochrome (Cyt) b559 in photosystem II (PSII). All of the mutant cells grew photoautotrophically and assembled stable PSII. However, R7Eα, R17Eα and R17Lβ mutant cells grew significantly slower and were more susceptible to photoinhibition than wild-type cells. The adverse effects of the arginine mutations on the activity and the stability of PSII were in the following order (R17Lβ>R7Eα>R17Eα and R17Aα). All these arginine mutants exhibited normal period-four oscillation in oxygen yield. Thermoluminescence characteristics indicated a slight decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the R7Eα and R17Lβ mutant cells. R7Eα and R17Lβ PSII core complexes contained predominantly the low potential form of Cyt b559. EPR results indicated the displacement of one of the two axial ligands to the heme of Cyt b559 in R7Eα and R17Lβ mutant reaction centers. Our results demonstrate that the electrostatic interactions between these arginine residues and the heme propionates of Cyt b559 are important to the structure and redox properties of Cyt b559. In addition, the blue light-induced nonphotochemical quenching was significantly attenuated and its recovery was accelerated in the R7Lα and R17Lβ mutant cells. Furthermore, ultra performance liquid chromatography-mass spectrometry results showed that the PQ pool was more reduced in the R7Eα and R17Lβ mutant cells than wild-type cells in the dark. Our data support a functional role of Cyt b559 in protection of PSII under photoinhibition conditions in vivo.
Collapse
Affiliation(s)
- Yi-Fang Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Feyziyev Y, Deák Z, Styring S, Bernát G. Electron transfer from Cyt b(559) and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. J Bioenerg Biomembr 2012; 45:111-20. [PMID: 23104119 DOI: 10.1007/s10863-012-9482-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Abstract
The Mn(4)CaO(5) cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P(680), which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y(D)) and Cytochrome b(559) (Cyt b(559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b(559) and Y(D) to the S(2) and S(3) states at 195 K. First, Y(D)(•) and Cyt b(559) were chemically reduced. The S(2) and S(3) states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S(1) state. EPR signals of the WOC (the S(2)-state multiline signal, ML-S(2)), Y(D)(•) and oxidized Cyt b(559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S(2) population decayed to S(1) in the S(2) samples by following a single exponential decay. Differently, S(3) samples showed an initial increase in the ML-S(2) intensity (due to S(3) to S(2) conversion) and a subsequent slow decay due to S(2) to S(1) conversion. In both cases, only a minor oxidation of Y(D) was observed. In contrast, the signal intensity of the oxidized Cyt b(559) showed a two-fold increase in both the S(2) and S(3) samples. The electron donation from Cyt b(559) was much more efficient to the S(2) state than to the S(3) state.
Collapse
Affiliation(s)
- Yashar Feyziyev
- Institute of Botany, 40 Patamdar Shosse, AZ-1073 Baku, Azerbaijan
| | | | | | | |
Collapse
|
17
|
Shinopoulos KE, Brudvig GW. Cytochrome b₅₅₉ and cyclic electron transfer within photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:66-75. [PMID: 21864501 DOI: 10.1016/j.bbabio.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Cytochrome b₅₅₉ (Cyt b₅₅₉), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b₅₅₉ is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b₅₅₉ is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
18
|
Enzymatic function of cytochrome b559 in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:341-7. [DOI: 10.1016/j.jphotobiol.2011.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 11/22/2022]
|
19
|
Styring S, Sjöholm J, Mamedov F. Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:76-87. [PMID: 21557928 DOI: 10.1016/j.bbabio.2011.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/10/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII), the thylakoid membrane enzyme which uses sunlight to oxidize water to molecular oxygen, holds many organic and inorganic redox cofactors participating in the electron transfer reactions. Among them, two tyrosine residues, Tyr-Z and Tyr-D are found on the oxidizing side of PSII. Both tyrosines demonstrate similar spectroscopic features while their kinetic characteristics are quite different. Tyr-Z, which is bound to the D1 core protein, acts as an intermediate in electron transfer between the primary donor, P(680) and the CaMn₄ cluster. In contrast, Tyr-D, which is bound to the D2 core protein, does not participate in linear electron transfer in PSII and stays fully oxidized during PSII function. The phenolic oxygens on both tyrosines form well-defined hydrogen bonds to nearby histidine residues, His(Z) and His(D) respectively. These hydrogen bonds allow swift and almost activation less movement of the proton between respective tyrosine and histidine. This proton movement is critical and the phenolic proton from the tyrosine is thought to toggle between the tyrosine and the histidine in the hydrogen bond. It is found towards the tyrosine when this is reduced and towards the histidine when the tyrosine is oxidized. The proton movement occurs at both room temperature and ultra low temperature and is sensitive to the pH. Essentially it has been found that when the pH is below the pK(a) for respective histidine the function of the tyrosine is slowed down or, at ultra low temperature, halted. This has important consequences for the function also of the CaMn₄ complex and the protonation reactions as the critical Tyr-His hydrogen bond also steer a multitude of reactions at the CaMn₄ cluster. This review deals with the discovery and functional assignments of the two tyrosines. The pH dependent phenomena involved in oxidation and reduction of respective tyrosine is covered in detail. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Stenbjörn Styring
- Molecular Biomimetics, Department for Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, Sweden.
| | | | | |
Collapse
|
20
|
Chen G, Allahverdiyeva Y, Aro EM, Styring S, Mamedov F. Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:205-15. [DOI: 10.1016/j.bbabio.2010.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
21
|
Cardona T, Battchikova N, Zhang P, Stensjö K, Aro EM, Lindblad P, Magnuson A. Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:252-63. [DOI: 10.1016/j.bbabio.2009.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
22
|
Tracewell CA, Brudvig GW. Characterization of the secondary electron-transfer pathway intermediates of photosystem II containing low-potential cytochrome b559. PHOTOSYNTHESIS RESEARCH 2008; 98:189-97. [PMID: 18780156 DOI: 10.1007/s11120-008-9360-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 08/19/2008] [Indexed: 05/09/2023]
Abstract
Beta-carotene (Car) and chlorophyll (Chl) function as secondary electron donors in photosystem II (PS II) under conditions, such as low temperature, when electron donation from the O(2)-evolving complex is inhibited. In prior studies of the formation and decay of Car(*+) and Chl(*+) species at low temperatures, cytochrome b(559) (Cyt b(559)) was chemically oxidized prior to freezing the sample. In this study, the photochemical formation of Car(*+) and Chl(*+) is characterized at low temperature in O(2)-evolving Synechocystis PS II treated with ascorbate to reduce most of the Cyt b(559). Not all of the Cyt b(559) is reduced by ascorbate; the remainder of the PS II reaction centers, containing oxidized low-potential Cyt b(559), give rise to Car(*+) and Chl(*+) species after illumination at low temperature that are characterized by near-IR spectroscopy. These data are compared to the measurements on ferricyanide-treated O(2)-evolving Synechocystis PS II in which the Car(*+) and Chl(*+) species are generated in PS II centers containing mostly high- and intermediate-potential Cyt b(559). Spectral differences observed in the ascorbate-reduced PS II samples include decreased intensity of the Chl(*+) and Car(*+) absorbance peaks, shifts in the Car(*+) absorbance maxima, and lack of formation of a 750 nm species that is assigned to a Car neutral radical. These results suggest that different spectral forms of Car are oxidized in PS II samples containing different redox forms of Cyt b(559), which implies that different secondary electron donors are favored depending on the redox form of Cytb(559) in PS II.
Collapse
Affiliation(s)
- Cara A Tracewell
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
23
|
Hwang HJ, Nagarajan A, McLain A, Burnap RL. Assembly and disassembly of the photosystem II manganese cluster reversibly alters the coupling of the reaction center with the light-harvesting phycobilisome. Biochemistry 2008; 47:9747-55. [PMID: 18717592 DOI: 10.1021/bi800568p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The light-driven oxidative assembly of Mn (2+) ions into the H 2O oxidation complex (WOC) of the photosystem II (PSII) reaction center is termed photoactivation. The fluorescence yield characteristics of Synechocystis sp. PCC6803 cells undergoing photoactivation showed that basal fluorescence, F 0, exhibited a characteristic decline when red, but not blue, measuring light was employed. This result was traced to a progressive increase in the coupling of the phycobilisome (PBS) to the PSII reaction center as determined by observing the changes in room temperature and 77 K fluorescence emission spectra that accompany photoactivation. The results support the hypothesis that strong energetic coupling of the PBS to the PSII reaction center depends upon the formation of an active WOC, which presumably diminishes the likelihood of photodamage to reaction centers that have either lost an intact Mn cluster or are in the process of assembling an active WOC.
Collapse
Affiliation(s)
- Hong Jin Hwang
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|
24
|
Pocock T, Sane PV, Falk S, Hüner NPA. Excitation pressure regulates the activation energy for recombination events in the photosystem II reaction centres of Chlamydomonas reinhardtii. Biochem Cell Biol 2008; 85:721-9. [PMID: 18059530 DOI: 10.1139/o07-144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 degrees C resulted in comparable downward shifts in the temperature peak maxima (T(M)) for S2QB- charge pair recombination events, with minimal changes in S2QA- recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB- charge pair recombination events with no concomitant change in the activation energy for S2QA- recombination events. This resulted in a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 degrees C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.
Collapse
Affiliation(s)
- Tessa Pocock
- Department of Natural and Environmental Science, Mid Sweden University, Sundsvall, Sweden.
| | | | | | | |
Collapse
|
25
|
Mamedov F, Danielsson R, Gadjieva R, Albertsson PA, Styring S. EPR characterization of photosystem II from different domains of the thylakoid membrane. Biochemistry 2008; 47:3883-91. [PMID: 18303856 DOI: 10.1021/bi701913k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report electron paramagnetic resonance (EPR) studies on photosystem II (PSII) from higher plants in five different domains of the thylakoid membrane prepared by sonication and two-phase partitioning. The domains studied were the grana core, the entire grana stack, the grana margins, the stroma lamellae and the purified stromal fraction, Y100. The electron transport properties of both donor and acceptor sides of PSII such as oxygen evolution, cofactors Y D, Q A, the CaMn 4-cluster, and Cytb 559 were investigated. The PSII content was estimated on the basis of oxidized Y D and Q A (-) Fe (2+) signal from the acceptor side vs Chl content (100% in the grana core fraction). It was found to be about 82% in the grana, 59% in the margins, 35% in the stroma and 15% in the Y100 fraction. The most active PSII centers were found in the granal fractions as was estimated from the rates of electron transfer and the S 2 state multiline EPR signal. In the margin and stroma fractions the multiline signal was smaller (40 and 33%, respectively). The S 2 state multiline could not be induced in the Y100 fraction. In addition, the oxidized LP Cytb 559 prevailed in the stromal fractions while the HP form dominated in the grana core. The margins and entire grana fractions have Cytb 559 in both potential forms. These data together with previous analyses indicate that the sequence of activation of the PSII properties can be represented as: PSII content > oxygen evolution > reduced Cytb 559 > dimerization of PSII centers in all fractions of the thylakoid membrane with the gradual increase from stromal fractions via margin to the grana core fraction. The results further support the existence of a PSII activity gradient which reflects lateral movement and photoactivation of PSII centers in the thylakoid membrane. The possible role of the PSII redox components in this process is discussed.
Collapse
Affiliation(s)
- Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Box 523, Uppsala University, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Tiwari A, Jajoo A, Bharti S. Heat-induced changes in the EPR signal of tyrosine D ( % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % WGzbWaa0baaSqaaiaadseaaeaacaWGpbGaamiwaaaaaaa!3B15! $$ Y^{{OX}}_{D} $$ ): a possible role of Cytochrome b559. J Bioenerg Biomembr 2007; 40:237-43. [PMID: 17885798 DOI: 10.1007/s10863-007-9099-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
The present study for the first time describes a close relationship between a change in the states of Cyt b559, a damage to Mn complex and a rapid reduction of tyrosine D (Y(D)) as a function of temperature in spinach thylakoid membranes. Measurements of the EPR signal of dark stable tyrosine D in heat-treated thylakoid membranes showed a gradual decay of the oxidized state of tyrosine D with the progression of temperature. Simultaneously, it leads to the conversion of high-potential Cytochrome b559 into its low-potential form. We have speculated a possible involvement of Cytochrome b559 in the primary reduction events of tyrosine D in dark at high temperature. However, rapid reduction of tyrosine D may also be due to the disassembly of the Mn clock, which causes exposure of Y(D) to the lumen and thereby its reduction by some unknown factor. These conclusions are supported by the measurements of Mn(2+) release and thermoluminescence curves of various charge pairs in heat-treated thylakoid membranes. The results reveal an important aspect on the role of Cyt b559 in PS II during temperature stress.
Collapse
Affiliation(s)
- Arjun Tiwari
- School of Life Sciences, Life Science Annex Building, Devi Ahilya University, Indore, (M.P.), India
| | | | | |
Collapse
|
27
|
Mamedov F, Gadjieva R, Styring S. Oxygen-induced changes in the redox state of the cytochrome b559 in photosystem II depend on the integrity of the Mn cluster. PHYSIOLOGIA PLANTARUM 2007; 131:41-49. [PMID: 18251923 DOI: 10.1111/j.1399-3054.2007.00938.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effect of oxygen and anaerobiosis on the redox properties of Cyt b(559) was investigated in PSII preparations from spinach with different degree of disintegration of the donor side. Comparative studies were performed on intact PSII membranes and PSII membranes that were deprived of the 18-kDa peripheral subunit (0.25 NaCl washed), the 18- and 24-kDa peripheral subunits (1 M NaCl washed), the 18-, 24- and 33-kDa peripheral subunits (1.2 M CaCl(2) washed), Cl depleted and after complete depletion of the Mn cluster (Tris washed). In active PSII centers, about 75% of Cyt b(559) was found in the high-potential form and the rest in the intermediate potential form. With decomposition of the donor side, the intermediate potential form started to dominate, reaching more than 90% after Tris treatment. The oxygen-dependent conversion of the intermediate potential form of Cyt b(559) into the low-potential and high-potential forms was only observed after treatments that directly affect the Mn cluster. In PSII membranes, deprived of all three extrinsic subunits (CaCl(2) treatment), 21% of the intermediate potential form was converted into the low-potential form and 14% into the high-potential form by the removal of oxygen. In Tris-washed PSII membranes, completely lacking the Mn cluster, this conversion amounted to 60 and 33%, respectively. In intact PSII membranes, the oxygen-dependent conversion did not occur. The possible physiological role of this oxygen-dependent behavior of the Cyt b(559) redox forms during the assembly/photoactivation cycle of PSII is discussed.
Collapse
Affiliation(s)
- Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, PO Box 523, 75120 Uppsala, Sweden.
| | | | | |
Collapse
|
28
|
Havelius KGV, Styring S. pH Dependent Competition between YZand YDin Photosystem II Probed by Illumination at 5 K. Biochemistry 2007; 46:7865-74. [PMID: 17559194 DOI: 10.1021/bi700377g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photosystem II (PSII) reaction center contains two redox active tyrosines, YZ and YD, situated on the D1 and D2 proteins, respectively. By illumination at 5 K, oxidation of YZ in oxygen-evolving PSII can be observed as induction of the Split S1 EPR signal from YZ* in magnetic interaction with the CaMn4 cluster, whereas oxidation of YD can be observed as the formation of the free radical EPR signal from YD*. We have followed the light induced induction at 5 K of the Split S1 signal between pH 4-8.5. The formation of the signal, that is, the oxidation of YZ, is pH independent and efficient between pH 5.5 and 8.5. At low pH, the split signal formation decreases with pKa approximately 4.7-4.9. In samples with chemically pre-reduced YD, the pH dependent competition between YZ and YD was studied. Only YZ was oxidized below pH 7.2, but at pH above 7.2, the oxidation of YD became possible, and the formation of the Split S1 signal diminished. The onset of YD oxidation occurred with pKa approximately 8.0, while the Split S1 signal decreased with pKa approximately 7.9 demonstrating that the two tyrosines compete in this pH interval. The results reflect the formation and breaking of hydrogen bonds between YZ and D1-His190 (HisZ) and YD and D2-His190 (HisD), respectively. The oxidation of respective tyrosine at 5 K demands that the hydrogen bond is well-defined; otherwise, the low-temperature oxidation is not possible. The results are discussed in the framework of recent literature data and with respect to the different oxidation kinetics of YZ and YD.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Angström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | | |
Collapse
|
29
|
Mamedov F, Nowaczyk MM, Thapper A, Rögner M, Styring S. Functional Characterization of Monomeric Photosystem II Core Preparations fromThermosynechococcus elongatuswith or without the Psb27 Protein. Biochemistry 2007; 46:5542-51. [PMID: 17432833 DOI: 10.1021/bi7000399] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two monomeric fractions of photosystem II (PS II) core pacticles from the thermophilic cyanobacterium Thermosynechococcus elongatus have been investigated using flash-induced variable fluorescence kinetics and EPR spectroscopy. One fraction was highly active in oxygen evolution and contained the extrinsic protein subunits PsbO, PsbU, and PsbV. The other monomeric fraction lacked oxygen evolving activity as well as the three extrinsic subunits, but the luminally located, extrinsic Psb27 lipoprotein was present. In the monomeric fraction with bound Psb27, flash-induced variable fluorescence showed an absence of oxidizable Mn on the donor side of PS II and impaired forward electron transfer from the primary quinone acceptor, QA. These results were confirmed with EPR spectroscopy by the absence of the "split S1" interaction signal from YZ* and the CaMn4 cluster and by the absence of the S2-state multiline signal. A different protein composition on the donor side of PS II monomers with Psb27 was also supported by the lack of an EPR signal from cytochrome c550 (in the PsbV subunit). In addition, we did not observe any oxidation of cytochrome b559 at low temperature in this fraction. The presence of Psb27 and the absence of the CaMn4 cluster did not affect the protein matrix around YD or the acceptor side quinones as can be judged from the appearance of the corresponding EPR signals. The diminished electron transport capabilities on both the donor and the acceptor side of PS II when Psb27 is present give further indications that this PS II complex is involved in the earlier steps of the PS II repair cycle.
Collapse
Affiliation(s)
- Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Danielsson R, Suorsa M, Paakkarinen V, Albertsson PA, Styring S, Aro EM, Mamedov F. Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 2006; 281:14241-9. [PMID: 16537530 DOI: 10.1074/jbc.m600634200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.
Collapse
Affiliation(s)
- Ravi Danielsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, Lund University, S-221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Kaminskaya O, Kern J, Shuvalov VA, Renger G. Extinction coefficients of cytochromes b559 and c550 of Thermosynechococcus elongatus and Cyt b559/PS II stoichiometry of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:333-41. [PMID: 15950926 DOI: 10.1016/j.bbabio.2005.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/21/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | | | |
Collapse
|
32
|
Lazár D, Ilík P, Kruk J, Strzałka K, Naus J. A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II. J Theor Biol 2004; 233:287-300. [PMID: 15619367 DOI: 10.1016/j.jtbi.2004.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor (Q(A)) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) b559. In the model, cyt b559 accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII (P680+). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, F(M), increases with an increasing amount of initially reduced cyt b559. In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the F(M) level and how this control depends on the initial redox state of cyt b559. The simulations also revealed that increasing the amount of initially reduced cyt b559 could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Burnap RL. D1 protein processing and Mn cluster assembly in light of the emerging Photosystem II structure. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407094a] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Kropacheva TN, Feikema W, Mamedov F, Feyziyev Y, Styring S, Hoff AJ. Spin conversion of cytochrome b559 in photosystem II induced by exogenous high potential quinone. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00327-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Feyziyev Y, Rotterdam BJ, Bernát G, Styring S. Electron transfer from cytochrome b559 and tyrosineD to the S2 and S3 states of the water oxidizing complex in photosystem II. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Yruela I, Miota F, Torrado E, Seibert M, Picorel R. Cytochrome b559 content in isolated photosystem II reaction center preparations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2268-73. [PMID: 12752446 DOI: 10.1046/j.1432-1033.2003.03597.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome b559 content was examined in five types of isolated photosystem II D1-D2-cytochrome b559 reaction center preparations containing either five or six chlorophylls per reaction center. The reaction center complexes were obtained following isolation procedures that differed in chromatographic column material, washing buffer composition and detergent concentration. Two different types of cytochrome b559 assays were performed. The absolute heme content in each preparation was obtained using the oxidized-minus-reduced difference extinction coefficient of cytochrome b559 at 559 nm. The relative amount of D1 and cytochrome b559alpha-subunit polypeptide was also calculated for each preparation from immunoblots obtained using antibodies raised against the two polypeptides. The results indicate that the cytochrome b559 heme content in photosystem II reaction center complexes can vary with the isolation procedure, but the variation of the cytochrome b559alpha-subunit/D1 polypeptide ratio was even greater. This variation was not found in the PSII-enriched membrane fragments used as the RC-isolation starting material, as different batches of membranes obtained from spinach harvested at different seasons of the year or those from sugar beets grown in a chamber under controlled environmental conditions lack variation in their alpha-subunit/D1 polypeptide ratio. A precise determination of the ratio using an RC1-control sample calibration curve gave a ratio of 1.25 cytochrome b559alpha-subunit per 1.0 D1 polypeptide in photosystem II membranes. We conclude that the variations found in the reaction center preparations were due to the different procedures used to isolate and purify the different reaction center complexes.
Collapse
|
37
|
|
38
|
Affiliation(s)
- R P Pesavento
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
39
|
Morais F, Kühn K, Stewart DH, Barber J, Brudvig GW, Nixon PJ. Photosynthetic water oxidation in cytochrome b(559) mutants containing a disrupted heme-binding pocket. J Biol Chem 2001; 276:31986-93. [PMID: 11390403 DOI: 10.1074/jbc.m103935200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of cytochrome b(559) in photosynthetic oxygen evolution has been investigated in three chloroplast mutants of Chlamydomonas reinhardtii, in which one of the two histidine axial ligands to the heme, provided by the alpha subunit, has been replaced by the residues methionine, tyrosine, and glutamine. Photosystem two complexes functional for oxygen evolution could be assembled in the methionine and tyrosine mutants up to approximately 15% of wild type levels, whereas no complexes with oxygen evolution activity could be detected in the glutamine mutant. PSII supercomplexes isolated from the tyrosine and methionine mutants were as active as wild type in terms of light-saturated rates of oxygen evolution but in contrast to wild type contained no bound heme despite the presence of the alpha subunit. Oxygen evolution in the tyrosine and methionine mutants was, however, more sensitive to photoinactivation than the WT. Overall, these data establish unambiguously that a redox role for the heme of cytochrome b(559) is not required for photosynthetic oxygen evolution. Instead, our data provide new evidence of a role for cytochrome b(559) in the protection of the photosystem two complex in vivo.
Collapse
Affiliation(s)
- F Morais
- Department of Biochemistry, Imperial College of Science, Technology, and Medicine, London, SW7 2AY, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Hofbauer W, Zouni A, Bittl R, Kern J, Orth P, Lendzian F, Fromme P, Witt HT, Lubitz W. Photosystem II single crystals studied by EPR spectroscopy at 94 GHz: the tyrosine radical Y(D)(*). Proc Natl Acad Sci U S A 2001; 98:6623-8. [PMID: 11381107 PMCID: PMC34403 DOI: 10.1073/pnas.101127598] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy at 94 GHz is used to study the dark-stable tyrosine radical Y(D)(*) in single crystals of photosystem II core complexes (cc) isolated from the thermophilic cyanobacterium Synechococcus elongatus. These complexes contain at least 17 subunits, including the water-oxidizing complex (WOC), and 32 chlorophyll a molecules/PS II; they are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with four PS II dimers per unit cell. High-frequency EPR is used for enhancing the sensitivity of experiments performed on small single crystals as well as for increasing the spectral resolution of the g tensor components and of the different crystal sites. Magnitude and orientation of the g tensor of Y(D)(*) and related information on several proton hyperfine tensors are deduced from analysis of angular-dependent EPR spectra. The precise orientation of tyrosine Y(D)(*) in PS II is obtained as a first step in the EPR characterization of paramagnetic species in these single crystals.
Collapse
Affiliation(s)
- W Hofbauer
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Photosystem II complex (PSII) of thylakoid membranes uses light energy to oxidise extremely stable water and produce oxygen (2H(2)O-->O(2)+4H(+)+4e(-)). PSII is compared with cytochrome c oxidase that catalyses the opposite reaction coupled to proton translocation. Cytochrome c oxidase has proton and water channels, and a tentative oxygen channel. I propose that functional PSII complexes also need a specific oxygen channel to direct O(2) from the water molecules bound to specific Mn atoms of the Mn cluster within PSII out to the membrane surface. The function of this channel will be to prevent oxygen being accessible to the radical pair P680(+)Pheo(-), thereby preventing singlet oxygen generation from the triplet P680 state in functional PSII. The important role of singlet oxygen in structurally perturbed non-functional photosystem II is also discussed.
Collapse
Affiliation(s)
- J M Anderson
- Photobioenergetics, Research School of Biological Sciences, Australian National University, G.P.O. Box 475, 2601, Canberra, A.C.T., Australia.
| |
Collapse
|
42
|
Ananyev GM, Zaltsman L, Vasko C, Dismukes GC. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:52-68. [PMID: 11115624 DOI: 10.1016/s0005-2728(00)00215-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the request of the organizer of this special edition, we have attempted to do several things in this manuscript: (1) we present a mini-review of recent, selected, works on the light-induced inorganic biogenesis (photoactivation), composition and structure of the inorganic core responsible for photosynthetic water oxidation; (2) we summarize a new proposal for the evolutionary origin of the water oxidation catalyst which postulates a key role for bicarbonate in formation of the inorganic core; (3) we summarize published studies and present new results on what has been learned from studies of 'inorganic mutants' in which the endogenous cofactors (Mn(n+), Ca2+, Cl-) are substituted; (4) the first DeltapH changes measured during the photoactivation process are reported and used to develop a model for the stepwise photo-assembly process; (5) a comparative analysis is given of data in the literature on the kinetics of substrate water exchange and peroxide binding/dismutation which support a mechanistic model for water oxidation in general; (6) we discuss alternative interpretations of data in the literature with a view to forecast new avenues where progress is needed.
Collapse
Affiliation(s)
- G M Ananyev
- Princeton University Department of Chemistry, Hoyt Laboratory, Princeton, NJ 09544, USA
| | | | | | | |
Collapse
|
43
|
Kuroiwa S, Tonaka M, Kawamori A, Akabori K. The position of cytochrome b(559) relative to Q(A) in photosystem II studied by electron-electron double resonance (ELDOR). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:330-7. [PMID: 11106773 DOI: 10.1016/s0005-2728(00)00199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electron-electron double resonance (ELDOR) method was applied to measure the dipole interaction between cytochrome (Cyt) b(+)(559) and the primary acceptor quinone (Q(-)(A)), observed at g=2.0045 with the peak to peak width of about 9 G, in Photosystem II (PS II) in which the non-heme Fe(2+) was substituted by Zn(2+). The paramagnetic centers of Cyt b(+)(559)Y(D)Q(-)(A) were trapped by illumination at 273 K for 8 min, followed by dark adaptation for 3 min and freezing into 77 K. The distance between the pair Cyt b(+)(559)-Q(-)(A) was estimated from the dipole interaction constant fitted to the observed ELDOR time profile to be 40+/-1 A. In the membrane oriented PS II particles the angle between the vector from Q(A) to Cyt b(559) and the membrane normal was determined to be 80+/-5 degrees. The position of Cyt b(559) relative to Q(A) suggests that the heme plane is located on the stromal side of the thylakoid membrane. ELDOR was not observed for Cyt b(+)(559) Y(D) spin pair, suggesting the distance between them is more than 50 A.
Collapse
Affiliation(s)
- S Kuroiwa
- Faculty of Science, Kwansei Gakuin University, Uegahara 1-1-155, Nishinomiya 662-8501, Japan
| | | | | | | |
Collapse
|
44
|
Mamedov F, Stefansson H, Albertsson PA, Styring S. Photosystem II in different parts of the thylakoid membrane: a functional comparison between different domains. Biochemistry 2000; 39:10478-86. [PMID: 10956038 DOI: 10.1021/bi992877k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process.
Collapse
Affiliation(s)
- F Mamedov
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, Lund University, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|