1
|
Potter AL, Zare M, Harris JM, Kitt JP. Hybrid Bilayer Interfaces within Reversed-Phase Chromatographic Silica Formed by Self-Assembly of Long-Chain Primary Alcohols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2851-2862. [PMID: 39825216 DOI: 10.1021/acs.langmuir.4c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, n-alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase. In this work, we propose modification of C18-functionalized chromatographic silica surfaces through self-assembly of long-chain primary alcohols to form uncharged hybrid-bilayer surfaces. Hybrid bilayers formed from alcohols ranging from C12OH to C22OH are investigated with in situ confocal-Raman microscopy, and the spectra indicate that they form highly ordered n-alkane structures, with order increasing as a function of alcohol chain length. Temperature-dependent Raman spectra of C12OH-C22OH hybrid bilayers were collected to investigate their melting transitions. Multivariate curve resolution of these spectra show broad, two-component melting transitions, indicating alcohol and C18 alkyl chains melt simultaneously. These results suggest an interdigitated interfacial structure, where the hydrocarbon chains of the adsorbed alcohol extend into the underlying C18 chains, ordering both layers. Interdigitation is confirmed by a temperature-dependent study of a deuterated C16-OH bilayer, where spectrally resolved Raman bands from deuterated and protiated hydrocarbons melt together. Finally, n-alkyl alcohol bilayers were tested for protein repellency, where no protein adsorption was observed when equilibrated with ∼1 mg/mL bovine serum albumin. Bilayers C16OH in chain length are shelf stable at refrigerated temperatures for months. These results demonstrate long-chain alcohol bilayers can be utilized to control the interfacial hydrocarbon structure of C18-modified silica and have potential for use in separations, biosensing, and anti-biofouling applications.
Collapse
Affiliation(s)
- Aric Larry Potter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Maryam Zare
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
2
|
Simm C, Lee TH, Weerasinghe H, Walsh D, Nakou IT, Shankar M, Tse WC, Zhang Y, Inman R, Mulder RJ, Harrison F, Aguilar MI, Challis GL, Traven A. Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements. mBio 2024; 15:e0261124. [PMID: 39422464 PMCID: PMC11559049 DOI: 10.1128/mbio.02611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Amphotericin B (AmpB) is an effective but toxic antifungal drug. Thus, improving its activity/toxicity relationship is of interest. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity. To explain the mechanism of synergy, we show that gladiolin interacts with membranes via a previously unreported binding mode for polyketides. Moreover, gladiolin modulates lipid binding by AmpB and, in combination, causes faster and more pronounced lipid rearrangements relative to AmpB alone which include membrane thinning consistent with ergosterol extraction, areas of thickening, pore formation, and increased membrane destruction. These biophysical data provide evidence of a functional interaction between gladiolin and AmpB at the membrane interface. The data further indicate that the two proposed AmpB mechanisms (ergosterol sequestration and pore formation) act in conjunction to disrupt membranes, and that gladiolin synergizes by enhancing both mechanisms. Collectively, our findings shed light on AmpB's mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB's activity/toxicity relationship. IMPORTANCE Amphotericin B (AmpB) is one of the oldest antifungal drugs in clinical use. It is an effective therapeutic, but it comes with toxicity issues due to the similarities between its fungal target (the membrane lipid ergosterol) and its mammalian counterpart (cholesterol). One strategy to improve its activity/toxicity relationship is by combinatorial therapy with potentiators, which would enable a lower therapeutic dose of AmpB. Here, we report on the discovery of the antibiotic gladiolin as a potentiator of AmpB against several priority human fungal pathogens and fungal biofilms, with no increased toxicity against mammalian cells. We show that gladiolin potentiates AmpB by increasing and accelerating membrane damage. Our findings also provide insights into the on-going debate about the mechanism of action of AmpB by indicating that both proposed mechanisms, extraction of ergosterol from membranes and pore formation, are potentiated by gladiolin.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ioanna T. Nakou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Madhu Shankar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Wai Chung Tse
- School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Rebecca Inman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Roger J. Mulder
- CSIRO Manufacturing, Research Way, Clayton, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory L. Challis
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Córdoba L, López D, Mejía M, Guzmán F, Beltrán D, Carbonell B, Medina L. Antibacterial Activity of AXOTL-13, a Novel Peptide Identified from the Transcriptome of the Salamander Ambystoma mexicanum. Pharmaceutics 2024; 16:1445. [PMID: 39598568 PMCID: PMC11597150 DOI: 10.3390/pharmaceutics16111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antimicrobial peptides are essential molecules in the innate immunity of various organisms and possess a broad spectrum of antimicrobial, antitumor, and immunomodulatory activities. Due to their multifunctionality, they are seen as an alternative for controlling bacterial infections. Although conventional antibiotics have improved health worldwide, their indiscriminate use has led to the emergence of resistant microorganisms. To discover new molecules with antimicrobial activity that could overcome the limitations of traditional antibiotics, this study aimed to identify antimicrobial peptides in Ambystoma mexicanum. Methods: In this study, hypothetical proteins encoded in the Ambystoma mexicanum transcriptome were predicted. These proteins were aligned with peptides reported in the Antimicrobial Peptide Database (APD3) using the Fasta36 program. After identifying peptide sequences with potential antibacterial activity, their expression was confirmed through conventional polymerase chain reaction (PCR) and then chemically synthesized. The antibacterial activity of the synthesized peptides was evaluated against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Results: A new antimicrobial peptide named AXOTL-13 was identified. AXOTL-13 is an amphipathic cationic alpha-helical peptide with the ability to inhibit the growth of Escherichia coli without causing hemolysis in red blood cells, with its action likely directed at the membrane, as suggested by morphological changes observed through scanning electron microscopy. Conclusions: This research is pioneering in evaluating the activity of antimicrobial peptides present in Ambystoma mexicanum and in specifically identifying one of these peptides. The findings will serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Laura Córdoba
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Daniela López
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Mariana Mejía
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Dina Beltrán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Belfran Carbonell
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| |
Collapse
|
4
|
Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multi-drug resistant E. coli. Commun Biol 2023; 6:1170. [PMID: 37973936 PMCID: PMC10654507 DOI: 10.1038/s42003-023-05528-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.
Collapse
Affiliation(s)
- Zhenlong Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge. Int J Mol Sci 2022; 23:10558. [PMID: 36142470 PMCID: PMC9501188 DOI: 10.3390/ijms231810558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
LTX-315 is a clinical-stage, anticancer peptide therapeutic that disrupts cancer cell membranes. Existing mechanistic knowledge about LTX-315 has been obtained from cell-based biological assays, and there is an outstanding need to directly characterize the corresponding membrane-peptide interactions from a biophysical perspective. Herein, we investigated the membrane-disruptive properties of the LTX-315 peptide using three cell-membrane-mimicking membrane platforms on solid supports, namely the supported lipid bilayer, intact vesicle adlayer, and tethered lipid bilayer, in combination with quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) measurements. The results showed that the cationic LTX-315 peptide selectively disrupted negatively charged phospholipid membranes to a greater extent than zwitterionic or positively charged phospholipid membranes, whereby electrostatic interactions were the main factor to influence peptide attachment and membrane curvature was a secondary factor. Of note, the EIS measurements showed that the LTX-315 peptide extensively and irreversibly permeabilized negatively charged, tethered lipid bilayers that contained high phosphatidylserine lipid levels representative of the outer leaflet of cancer cell membranes, while circular dichroism (CD) spectroscopy experiments indicated that the LTX-315 peptide was structureless and the corresponding membrane-disruptive interactions did not involve peptide conformational changes. Dynamic light scattering (DLS) measurements further verified that the LTX-315 peptide selectively caused irreversible disruption of negatively charged lipid vesicles. Together, our findings demonstrate that the LTX-315 peptide preferentially disrupts negatively charged phospholipid membranes in an irreversible manner, which reinforces its potential as an emerging cancer immunotherapy and offers a biophysical framework to guide future peptide engineering efforts.
Collapse
Affiliation(s)
- Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
6
|
Gupta S, Mishra DK, Khan MZ, Saini V, Mehta D, Kumar S, Yadav A, Mitra M, Rani P, Singh M, Nandi CK, Das P, Ahuja V, Nandicoori VK, Bajaj A. Development of a Highly Specific, Selective, and Sensitive Fluorescent Probe for Detection of Mycobacteria in Human Tissues. Adv Healthc Mater 2022; 11:e2102640. [PMID: 35038229 DOI: 10.1002/adhm.202102640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Indexed: 11/08/2022]
Abstract
Tuberculosis (TB), including extrapulmonary TB, is responsible for more than one million deaths in a year worldwide. Existing methods of mycobacteria detection have poor sensitivity, selectivity, and specificity, especially in human tissues. Herein, the synthesis of a cholic acid-derived fluorescent probe (P4) that can specifically stain the mycobacterium species is presented. It is shown that P4 probe specifically binds with mycobacterial lipids, trehalose monomycolate, and phosphatidylinositol mannoside 6. P4 probe can detect mycobacteria in polymicrobial planktonic cultures and biofilms with high specificity, selectivity, and sensitivity. Moreover, it can detect a single mycobacterium in the presence of 10 000 other bacilli. Unlike the probes that depend on active mycobacterial enzymes, the membrane-specific P4 probe can detect mycobacteria even in formalin-fixed paraffin-embedded mice and human tissue sections. Therefore, the ability of the P4 probe to detect mycobacteria in different biological milieu makes it a potential candidate for diagnostic and prognostic applications in clinical settings.
Collapse
Affiliation(s)
- Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Deepak Kumar Mishra
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Mehak Zahoor Khan
- National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Aditya Yadav
- School of Basic Sciences Indian Institute of Technology Mandi Mandi HP 175005 India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| | - Mukesh Singh
- Department of Gastroenterology All India Institute of Medical Sciences New Delhi 110029 India
| | - Chayan Kanti Nandi
- School of Basic Sciences Indian Institute of Technology Mandi Mandi HP 175005 India
| | - Prasenjit Das
- Department of Pathology All India Institute of Medical Sciences New Delhi 110029 India
| | - Vineet Ahuja
- Department of Gastroenterology All India Institute of Medical Sciences New Delhi 110029 India
| | | | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology Regional Centre for Biotechnology NCR Biotech Science Cluster 3rd Milestone, Faridabad‐Gurgaon Expressway Faridabad Haryana 121001 India
| |
Collapse
|
7
|
Fini H, Hassan Q, Noroozifar M, Kerman K. Electrografting a Hybrid Bilayer Membrane via Diazonium Chemistry for Electrochemical Impedance Spectroscopy of Amyloid-β Aggregation. MICROMACHINES 2022; 13:574. [PMID: 35457879 PMCID: PMC9029378 DOI: 10.3390/mi13040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
Abstract
Herein, a novel hybrid bilayer membrane is introduced as a platform to study the aggregation of amyloid-β1-42 (Aβ1-42) peptide on surfaces. The first layer was covalently attached to a glassy carbon electrode (GCE) via diazonium electrodeposition, which provided a highly stable template for the hybrid bilayer formation. To prepare the long-chain hybrid bilayer membrane (lcHBLM)-modified electrodes, GCE surfaces were modified with 4-dodecylbenzenediazonium (DDAN) followed by the modification with dihexadecyl phosphate (DHP) as the second layer. For the preparation of short-chain hybrid bilayer membrane (scHBLM)-modified electrodes, GCE surfaces were modified with 4-ethyldiazonium (EDAN) as the first layer and bis(2-ethylhexyl) phosphate (BEHP) was utilized as the second layer. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to characterize the bilayer formation. Both positively charged [Ru(NH3)6]3+ and negatively charged ([Fe(CN)6]3-/4-) redox probes were used for electrochemical characterization of the modified surfaces using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS results showed a decrease in charge transfer resistance (Rct) upon incubation of Aβ1-42 on the hybrid bilayer-modified surfaces. This framework provides a promising electrochemical platform for designing hybrid bilayers with various physicochemical properties to study the interaction of membrane-bound receptors and biomolecules on surfaces.
Collapse
|
8
|
Zhou J, Wan C, Cheng J, Huang H, Lovell JF, Jin H. Delivery Strategies for Melittin-Based Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17158-17173. [PMID: 33847113 DOI: 10.1021/acsami.1c03640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melittin (MLT) has been studied preclinically as an anticancer agent based on its broad lytic effects in multiple tumor types. However, unsatisfactory tissue distribution, hemolysis, rapid metabolism, and limited specificity are critical obstacles that limit the translation of MLT. Emerging drug delivery strategies hold promise for targeting, controlled drug release, reduced side effects, and ultimately improved treatment efficiency. In this review, we discuss recent advances in the use of diverse carriers to deliver MLT, with an emphasis on the design and mechanisms of action. We further outline the opportunities for MLT-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Hao Huang
- Guo Life Science Center, Wuhan Shengrun Biotechnology Co. Ltd, Wuhan 430075, P.R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
9
|
Winkler K, Karner A, Horner A, Hannesschlaeger C, Knyazev D, Siligan C, Zimmermann M, Kuttner R, Pohl P, Preiner J. Interaction of the motor protein SecA and the bacterial protein translocation channel SecYEG in the absence of ATP. NANOSCALE ADVANCES 2020; 2:3431-3443. [PMID: 36134293 PMCID: PMC9418451 DOI: 10.1039/d0na00427h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 06/16/2023]
Abstract
Translocation of many secretory proteins through the bacterial plasma membrane is facilitated by a complex of the SecYEG channel with the motor protein SecA. The ATP-free complex is unstable in detergent, raising the question how SecA may perform several rounds of ATP hydrolysis without being released from the membrane embedded SecYEG. Here we show that dual recognition of (i) SecYEG and (ii) vicinal acidic lipids confers an apparent nanomolar affinity. High-speed atomic force microscopy visualizes the complexes between monomeric SecA and SecYEG as being stable for tens of seconds. These long-lasting events and complementary shorter ones both give rise to single ion channel openings of equal duration. Furthermore, luminescence resonance energy transfer reveals two conformations of the SecYEG-SecA complex that differ in the protrusion depth of SecA's two-helix finger into SecYEG's aqueous channel. Such movement of the finger is in line with the power stroke mechanism of protein translocation.
Collapse
Affiliation(s)
- Klemens Winkler
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Andreas Karner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| | - Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | | | - Denis Knyazev
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Christine Siligan
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| |
Collapse
|
10
|
Zare M, Kitt JP, Harris JM. Hybrid-Supported Bilayers Formed with Mixed-Charge Surfactants on C 18-Functionalized Silica Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7609-7618. [PMID: 32503363 DOI: 10.1021/acs.langmuir.0c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixtures of cationic-anionic surfactants have been shown to spontaneously form ordered monolayers at hydrophobic-hydrophilic boundaries, including air-water and oil-water interfaces. In this work, confocal Raman microscopy is used to investigate the structure of hybrid-supported surfactant bilayers (HSSBs) formed by deposition of a distal leaflet of mixed cationic-anionic surfactants onto a proximal leaflet of n-alkane (C18) chains on the interior surfaces of chromatographic silica particles. The surface coverage of the two surfactants in a hybrid bilayer was determined from carbon analysis and the relative Raman scattering of their respective head-groups. Within the measurement uncertainty, the stoichiometric ratio of the two surfactants is one-to-one, equivalent to mixed-charge-surfactant monolayers at air-water and oil-water interfaces and consistent with the role of the head-group electrostatic interactions in their formation. When self-assembled on the hydrophobic surface, pairs of oppositely charged n-alkyl chain surfactants resemble a phospholipid (phosphatidylcholine) molecule, with its zwitterionic head-group and two hydrophobic acyl chain tails. Indeed, the structure of these hybrid-supported surfactant bilayers on C18-modified silica surfaces is similar to that of hybrid-supported lipid bilayers (HSLBs) on the same supports, but with denser and more-ordered n-alkyl chains. Hybrid-supported surfactant bilayers exhibit a melting phase transition (gel to liquid-crystalline phase) with structural and energetic characteristics similar to those of hybrid-supported bilayers prepared from a zwitterionic phospholipid of the same alkyl chain length. These mixed-charge surfactants on n-alkane-modified silica are stable in water over time (months), results that suggest the potential use of these hybrid bilayers for generating supported lipid-bilayer-like surfaces or for separation applications.
Collapse
Affiliation(s)
- Maryam Zare
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| |
Collapse
|
11
|
Sabapathy T, Deplazes E, Mancera RL. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. Int J Mol Sci 2020; 21:E746. [PMID: 31979376 PMCID: PMC7037773 DOI: 10.3390/ijms21030746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Melittin is an anti-microbial peptide (AMP) and one of the most studied membrane-disrupting peptides. There is, however, a lack of accurate measurements of the concentration-dependent kinetics and affinity of binding of melittin to phospholipid membranes. In this study, we used surface plasmon resonance spectroscopy to determine the concentration-dependent effect on the binding of melittin to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers in vesicles. Three concentration ranges were considered, and when combined, covered two orders of magnitudes (0.04 µM to 8 µM), corresponding to concentrations relevant to the membrane-disrupting and anti-microbial activities of melittin. Binding kinetics data were analysed using a 1:1 Langmuir-binding model and a two-state reaction model. Using in-depth quantitative analysis, we characterised the effect of peptide concentration, the addition of NaCl at physiological ionic strength and the choice of kinetic binding model on the reliability of the calculated kinetics and affinity of binding parameters. The apparent binding affinity of melittin for POPC bilayers was observed to decrease with increasing peptide/lipid (P/L) ratio, primarily due to the marked decrease in the association rate. At all concentration ranges, the two-state reaction model provided a better fit to the data and, thus, a more reliable estimate of binding affinity. Addition of NaCl significantly reduced the signal response during the association phase; however, no substantial effect on the binding affinity of melittin to the POPC bilayers was observed. These findings based on POPC bilayers could have important implications for our understanding of the mechanism of action of melittin on more complex model cell membranes of higher physiological relevance.
Collapse
Affiliation(s)
- Thiru Sabapathy
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| |
Collapse
|
12
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
13
|
Kumar S, Thakur J, Yadav K, Mitra M, Pal S, Ray A, Gupta S, Medatwal N, Gupta R, Mishra D, Rani P, Padhi S, Sharma P, Kapil A, Srivastava A, Priyakumar UD, Dasgupta U, Thukral L, Bajaj A. Cholic Acid-Derived Amphiphile which Combats Gram-Positive Bacteria-Mediated Infections via Disintegration of Lipid Clusters. ACS Biomater Sci Eng 2019; 5:4764-4775. [PMID: 33448819 DOI: 10.1021/acsbiomaterials.9b00706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inappropriate and uncontrolled use of antibiotics results in the emergence of antibiotic resistance, thereby threatening the present clinical regimens to treat infectious diseases. Therefore, new antimicrobial agents that can prevent bacteria from developing drug resistance are urgently needed. Selective disruption of bacterial membranes is the most effective strategy for combating microbial infections as accumulation of genetic mutations will not allow for the emergence of drug resistance against these antimicrobials. In this work, we tested cholic acid (CA) derived amphiphiles tethered with different alkyl chains for their ability to combat Gram-positive bacterial infections. In-depth biophysical and biomolecular simulation studies suggested that the amphiphile with a hexyl chain (6) executes more effective interactions with Gram-positive bacterial membranes as compared to other hydrophobic counterparts. Amphiphile 6 is effective against multidrug resistant Gram-positive bacterial strains as well and does not allow the adherence of S. aureus on amphiphile 6 coated catheters implanted in mice. Further, treatment of wound infections with amphiphile 6 clears the bacterial infections. Therefore, the current study presents strategic guidelines in design and development of CA-derived membrane-targeting antimicrobials for Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Kalinga Institute of Industrial Technology, KIIT Road, Patia, Bhubaneswar-751024, Odisha, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Nihal Medatwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Siladitya Padhi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University, Amity Education Valley Gurugram, Panchgaon, Manesar, Gurugram-122413, Haryana, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
14
|
Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids Surf B Biointerfaces 2019; 177:94-104. [DOI: 10.1016/j.colsurfb.2019.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
|
15
|
Aguilar MI. A comment by Prof. Mibel Aguilar-2018 recipient of the Australian Society for Biophysics' McAulay-Hope Prize for Original Biophysics. Biophys Rev 2019; 11:271-272. [PMID: 31041667 DOI: 10.1007/s12551-019-00520-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Vic, 3800, Australia.
| |
Collapse
|
16
|
Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ. Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infect Dis 2019; 5:539-549. [PMID: 30693760 DOI: 10.1021/acsinfecdis.8b00245] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Violacein is a tryptophan-derived purple pigment produced by environmental bacteria, which displays multiple biological activities, including strong inhibition of Gram-positive pathogens. Here, we applied a combination of experimental approaches to identify the mechanism by which violacein kills Gram-positive bacteria. Fluorescence microscopy showed that violacein quickly and dramatically permeabilizes B. subtilis and S. aureus cells. Cell permeabilization was accompanied by the appearance of visible discontinuities or rips in the cytoplasmic membrane, but it did not affect the cell wall. Using in vitro experiments, we showed that violacein binds directly to liposomes made with commercial and bacterial phospholipids and perturbs their structure and permeability. Furthermore, molecular dynamics simulations were employed to reveal how violacein inserts itself into lipid bilayers. Thus, our combined results demonstrate that the cytoplasmic membrane is the primary target of violacein in bacteria. The implications of this finding for the development of violacein as a therapeutic agent are discussed.
Collapse
Affiliation(s)
- Ana C. G. Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, São Paulo 13083-862, Brazil
| | - Gustavo P. B. Carretero
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Greice K. V. Saraiva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Peter Park
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Laura Mortara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Iolanda M. Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, São Paulo 13083-862, Brazil
| | - Frederico J. Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
17
|
Mitra M, Asad M, Kumar S, Yadav K, Chaudhary S, Bhavesh NS, Khalid S, Thukral L, Bajaj A. Distinct Intramolecular Hydrogen Bonding Dictates Antimicrobial Action of Membrane-Targeting Amphiphiles. J Phys Chem Lett 2019; 10:754-760. [PMID: 30694679 DOI: 10.1021/acs.jpclett.8b03508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As mechanisms underpinning the molecular interactions between membrane-targeting antimicrobials and Gram-negative bacterial membranes at atomistic scale remain elusive, we used cholic acid (CA)-derived amphiphiles with different hydrophobicities as model antimicrobials and assessed the effect of their conformational flexibility on antimicrobial activity. Relative to other hydrophobic counterparts, a compound with a hexyl chain (6) showed the strongest binding with the lipopolysaccharide (LPS) of Gram-negative bacterial membranes and acted as an effective antimicrobial. Biomolecular simulations, validated by complementary approaches, revealed that specific intramolecular hydrogen bonding imparts conformationally rigid character to compound 6. This conformational stability of compound 6 allows minimum but specific interactions of the amphiphile with LPS that are a sum of exothermic processes like electrostatic interactions, membrane insertion, and endothermic contributions from disaggregation of LPS. Therefore, our study reveals that a membrane-targeting mechanism with the help of conformationally selective molecules offers a roadmap for developing future therapeutics against bacterial infections.
Collapse
Affiliation(s)
- Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Mohammad Asad
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Sarika Chaudhary
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi 110067 , India
| | - Syma Khalid
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| |
Collapse
|
18
|
Yadav K, Kumar S, Mishra D, Asad M, Mitra M, Yavvari PS, Gupta S, Vedantham M, Ranga P, Komalla V, Pal S, Sharma P, Kapil A, Singh A, Singh N, Srivastava A, Thukral L, Bajaj A. Deciphering the Role of Intramolecular Networking in Cholic Acid–Peptide Conjugates on the Lipopolysaccharide Surface in Combating Gram-Negative Bacterial Infections. J Med Chem 2019; 62:1875-1886. [DOI: 10.1021/acs.jmedchem.8b01357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Mohammad Asad
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Prabhu S. Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462030, Madhya Pradesh, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Madhukar Vedantham
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Pavit Ranga
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Varsha Komalla
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462030, Madhya Pradesh, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
19
|
The C-Terminal Domain of the Bacillus thuringiensis Cry4Ba Mosquito-Specific Toxin Serves as a Potential Membrane Anchor. Toxins (Basel) 2019; 11:toxins11020062. [PMID: 30678087 PMCID: PMC6410236 DOI: 10.3390/toxins11020062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Although the C-terminal domain (DIII) of three-domain Cry insecticidal toxins from Bacillus thuringiensis has been implicated in various biological functions, its exact role still remains to be elucidated. Here, the 21-kDa isolated DIII fragment of the 65-kDa Cry4Ba mosquito-specific toxin was analyzed for its binding characteristics toward lipid-bilayer membranes. When the highly-purified Cry4Ba-DIII protein was structurally verified by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, it revealed the presence of a distinct β-sheet structure, corresponding to its structure embodied in the Cry4Ba crystal structure. Binding analysis via surface plasmon resonance (SPR) spectroscopy revealed that the 21-kDa Cry4Ba-DIII truncate displayed tight binding to immobilized liposome membranes in a two-step manner, exhibiting a dissociation rate constant (kd) comparable to the 65-kDa full-length toxin. Also similar to the Cry4Ba full-length toxin, its isolated DIII truncate was able to anchor a part of its molecule into the immobilized membrane as the SPR signal was still detected after prolonged treatment with proteinase K. However, unlike the full-length active toxin, the DIII truncate was unable to induce membrane permeability of calcein-loaded liposomes or ion-channel formation in planar lipid bilayers. Together, our present data have disclosed a pivotal role of C-terminal DIII in serving as a membrane anchor rather than a pore-forming moiety of the Cry4Ba mosquito-active toxin, highlighting its potential mechanistic contribution to the interaction of the full-length toxin with lipid membranes in mediating toxicity.
Collapse
|
20
|
Brown JS, Mohamed ZJ, Artim CM, Thornlow DN, Hassler JF, Rigoglioso VP, Daniel S, Alabi CA. Antibacterial isoamphipathic oligomers highlight the importance of multimeric lipid aggregation for antibacterial potency. Commun Biol 2018; 1:220. [PMID: 30534612 PMCID: PMC6286309 DOI: 10.1038/s42003-018-0230-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 12/02/2022] Open
Abstract
Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique ~ 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treated Staphylococcus aureus mimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function. Joseph Brown et al. use oligothioetheramides (oligo TEAs) to show that multimeric lipid aggregation in Staphylococcus aureus mimetic membranes correlates with the biological activity of oligoTEAs. These results may explain why antimicrobial peptides with identical cationic charge and hydrophobicity show different biological activity.
Collapse
Affiliation(s)
- Joseph S Brown
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Zeinab J Mohamed
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Christine M Artim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Dana N Thornlow
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Joseph F Hassler
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Vincent P Rigoglioso
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 120 Olin Hall, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
21
|
Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep 2018; 8:17628. [PMID: 30514891 PMCID: PMC6279787 DOI: 10.1038/s41598-018-35964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
MIL77, which has a higher manufacturing capacity than ZMapp, comprises MIL77-1, MIL77-2, and MIL77-3. The mechanisms by which these antibodies inhibit glycoprotein are unclear. Infection by viruses with lipid-bilayer envelopes occurs via the fusion of the viral membrane with the membrane of the target cell. Therefore, the interaction between the antibodies and the EBOV membrane is crucial. We examined the interactions between MIL77 and the viral membrane using SPR. MIL77-1 selectively binds to viral membranes, while MIL77-2 and MIL77-3 do not. MIL77-1’s ability to screen the more rigid domains of the membranes results in a locally increased concentration of the drug at the fusion site. Although MIL77-2 recognizes an epitope of GP, it is not necessary in the MIL77 cocktail. These results highlight the importance of EBOV membrane interactions in improving the efficiency of a neutralizing antibody. Furthermore, the viral membrane may be an important target of antibodies against EBOV.
Collapse
|
22
|
Soler M, Li X, John-Herpin A, Schmidt J, Coukos G, Altug H. Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor. ACS Sens 2018; 3:2286-2295. [PMID: 30339020 DOI: 10.1021/acssensors.8b00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The screening and analysis of T cells functional avidity for specific tumor-associated antigens is crucial for the development of personalized immunotherapies against cancer. The affinity and kinetics of a T cell receptor (TCR) binding to the peptide-major histocompatibility complex (pMHC), expressed on tumor or antigen-presenting cells, have shown major implications in T cell activation and effector functions. We introduce an innovative methodology for the two-dimensional affinity analysis of TCR-pMHC in a label-free configuration by employing a multiparametric Surface Plasmon Resonance biosensor (MP-SPR) functionalized with artificial cell membranes. The biomimetic scaffold created with planar lipid bilayers is able to efficiently capture the specific and intact tumor-specific T cells and monitor the formation of the immunological synapse in situ. We have achieved excellent limits of detection for in-flow cell capturing, up to 2 orders of magnitude below the current state-of-the-art for plasmonic sensing. We demonstrate the accuracy and selectivity of our sensor for the analysis of CD8+ T cells bioengineered with TCR of incremental affinities specific for the HLA-A0201/NY-ESO-I157-165 pMHC complex. The study confirmed the significance of providing a biomimetic microenvironment, compared to the traditional molecular analysis, and showed fine agreement with previous results employing flow cytometry. Our methodology is reliable and versatile; thus, it can be applied to more sophisticated photonic and nanoplasmonic technologies for the screening of multiple cell types and boost the development of novel treatments for cancer.
Collapse
Affiliation(s)
- Maria Soler
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiaokang Li
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aurelian John-Herpin
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Schmidt
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - George Coukos
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Artim CM, Phan NN, Alabi CA. Effect of Composition on Antibacterial Activity of Sequence-Defined Cationic Oligothioetheramides. ACS Infect Dis 2018; 4:1257-1263. [PMID: 29750860 DOI: 10.1021/acsinfecdis.8b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In response to the urgent need for new antibiotic development strategies, antimicrobial peptides and their synthetic mimetics are being investigated as promising alternatives to traditional antibiotics. To facilitate their development into clinically viable candidates, we need to understand what molecular features and physicochemical properties are needed to induce cell death. Within the context of sequence-defined oligothioetheramides (oligoTEAs), we explore the impact of the cationic pendant group and backbone hydrophobicity on the potency and selectivity of antibacterial oligoTEAs. Through antibacterial, cytotoxicity, membrane destabilization, and membrane depolarization assays, we find a strong dependency on the nature of the cationic group and improved selectivity toward bacteria by tuning backbone hydrophobicity. In particular, compounds with the guanidinium headgroup are more potent than those with amines. Finally, we identify a promising oligoTEA, PDT-4G, with enhanced activity in vitro (minimum inhibitory concentration (MIC) ∼ 0.78 μM) and moderate activity in a mouse thigh infection model of methicillin-resistant Staphylococcus aureus. The studies outlined in this work provide insights into the effect of macromolecular physicochemical properties on antibacterial potency. This knowledge base will be vital for researchers engaged in the ongoing development of clinically viable antibacterial agents.
Collapse
Affiliation(s)
- Christine M. Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Ngoc N. Phan
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Kim M, Vala M, Ertsgaard CT, Oh SH, Lodge TP, Bates FS, Hackel BJ. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6703-6712. [PMID: 29787676 PMCID: PMC6055929 DOI: 10.1021/acs.langmuir.8b00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.
Collapse
|
25
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
26
|
Bryce DA, Kitt JP, Harris JM. Confocal-Raman Microscopy Characterization of Supported Phospholipid Bilayers Deposited on the Interior Surfaces of Chromatographic Silica. J Am Chem Soc 2018; 140:4071-4078. [DOI: 10.1021/jacs.7b13777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| | - Jay P. Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
27
|
Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Mar Drugs 2018; 16:md16020057. [PMID: 29439417 PMCID: PMC5852485 DOI: 10.3390/md16020057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases caused by Gram-negative bacteria and sepsis induced by lipopolysaccharide (LPS) pose a major threat to humans and animals and cause millions of deaths each year. Marine organisms are a valuable resource library of bioactive products with huge medicinal potential. Among them, antibacterial and antiendotoxic peptides or proteins, which are composed of metabolically tolerable residues, are present in many marine species, including marine vertebrates, invertebrates and microorganisms. A lot of studies have reported that these marine peptides and proteins or their derivatives exhibit potent antibacterial activity and antiendotoxic activity in vitro and in vivo. However, their categories, heterologous expression in microorganisms, physicochemical factors affecting peptide or protein interactions with bacterial LPS and LPS-neutralizing mechanism are not well known. In this review, we highlight the characteristics and anti-infective activity of bifunctional peptides or proteins from marine resources as well as the challenges and strategies for further study.
Collapse
|
28
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
29
|
Junior EFC, Guimarães CFRC, Franco LL, Alves RJ, Kato KC, Martins HR, de Souza Filho JD, Bemquerer MP, Munhoz VHO, Resende JM, Verly RM. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity. Amino Acids 2017; 49:1389-1400. [PMID: 28573520 DOI: 10.1007/s00726-017-2441-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH2). Two glycotriazole-peptides, namely [p-Glc-trz-G1]HSP1-NH2 and [p-GlcNAc-trz-G1]HSP1-NH2, were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G1]HSP1-NH2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH2 presents relatively low and [trz-G1]HSP1-NH2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.
Collapse
Affiliation(s)
- Eduardo F C Junior
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Carlos F R C Guimarães
- Departamento de Química, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucas L Franco
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo J Alves
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Kelly C Kato
- Faculdade de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Helen R Martins
- Faculdade de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - José D de Souza Filho
- Departamento de Química, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Bemquerer
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil
| | - Victor H O Munhoz
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Jarbas M Resende
- Departamento de Química, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil.
| |
Collapse
|
30
|
Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance. Sci Rep 2017; 7:45647. [PMID: 28358389 PMCID: PMC5372468 DOI: 10.1038/srep45647] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding the interplay between molecules and lipid membranes is fundamental when studying cellular and biotechnological phenomena. Partition between aqueous media and lipid membranes is key to the mechanism of action of many biomolecules and drugs. Quantifying membrane partition, through adequate and robust parameters, is thus essential. Surface Plasmon Resonance (SPR) is a powerful technique for studying 1:1 stoichiometric interactions but has limited application to lipid membrane partition data. We have developed and applied a novel mathematical model for SPR data treatment that enables determination of kinetic and equilibrium partition constants. The method uses two complementary fitting models for association and dissociation sensorgram data. The SPR partition data obtained for the antibody fragment F63, the HIV fusion inhibitor enfuvirtide, and the endogenous drug kyotorphin towards POPC membranes were compared against data from independent techniques. The comprehensive kinetic and partition models were applied to the membrane interaction data of HRC4, a measles virus entry inhibitor peptide, revealing its increased affinity for, and retention in, cholesterol-rich membranes. Overall, our work extends the application of SPR beyond the realm of 1:1 stoichiometric ligand-receptor binding into a new and immense field of applications: the interaction of solutes such as biomolecules and drugs with lipids.
Collapse
|
31
|
Lombardi L, Stellato MI, Oliva R, Falanga A, Galdiero M, Petraccone L, D'Errico G, De Santis A, Galdiero S, Del Vecchio P. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes. Sci Rep 2017; 7:44425. [PMID: 28294185 PMCID: PMC5353584 DOI: 10.1038/srep44425] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Marco Ignazio Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Università della Campania "Luigi Vanvitelli", via De Crecchio, 80134 Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Geradino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| |
Collapse
|
32
|
Li NN, Li JZ, Liu P, Pranantyo D, Luo L, Chen JC, Kang ET, Hu XF, Li CM, Xu LQ. An antimicrobial peptide with an aggregation-induced emission (AIE) luminogen for studying bacterial membrane interactions and antibacterial actions. Chem Commun (Camb) 2017; 53:3315-3318. [DOI: 10.1039/c6cc09408b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A fluorescence technique to investigate the interactions between bacterial membranes and an AIE luminogen-decorated antimicrobial peptide has been reported.
Collapse
Affiliation(s)
- Ning Ning Li
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- China
| | - Jun Zhi Li
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- China
| | - Peng Liu
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Lei Luo
- College of Pharmaceutical Science
- Southwest University
- Chongqing
- China
| | - Jiu Cun Chen
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- China
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Xue Feng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- China
| | - Li Qun Xu
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing
- China
| |
Collapse
|
33
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
34
|
Kitt JP, Harris JM. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9033-9044. [PMID: 27493032 DOI: 10.1021/acs.langmuir.6b02309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain structure. The simultaneous melting of both layers is also consistent with an interdigitated structure, where immobility of surface-grafted C18 chains decreases the cooperativity and increases the melting temperature compared to a vesicle bilayer.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
35
|
Hirst DJ, Lee TH, Kulkarni K, Wilce JA, Aguilar MI. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1841-9. [PMID: 27163492 DOI: 10.1016/j.bbamem.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions.
Collapse
Affiliation(s)
- Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia.
| |
Collapse
|
36
|
Therrien A, Fournier A, Lafleur M. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation. J Phys Chem B 2016; 120:3993-4002. [PMID: 27054924 DOI: 10.1021/acs.jpcb.5b11705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| | - Alain Fournier
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 Boul. des Prairies, Ville de Laval (Québec) H7V 1B7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| |
Collapse
|
37
|
Xi D, Wang X, Teng D, Mao R. Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. Biometals 2015; 27:957-68. [PMID: 25015218 DOI: 10.1007/s10534-014-9768-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
The tri-hybrid peptide-LHP7 has the potent activity against Gram-positive and Gram-negative as well as fungi, but its mechanism of action has remained elusive. The effluences of LHP7 on the Staphylococcus aureus cell membrane and targets of intracellular action were investigated. LHP7 exhibited an inhibitory effect on the S. aureus growth, similar to those achieved by plectasin, vancomycin and gramicidin. The membrane integrity studies confirmed that LHP7 disrupted the cell membrane, indicating a membrane permeabilizing killing action. A marginal decline in the intensity fluorescence indicated no significant depolarization of the membrane potential following LHP7 treatment. Furthermore, electron microscopy showed that cell shrinkage, cell wall thickening, cellular content leakage, and cell disruption were observed in the cells treated with LHP7. A gel retardation assay showed that LHP7 bound to the genomic DNA of S. aureus or plasmid DNA at a mass ratio of 2.5–10 (peptide/DNA). Circular dichroism indicated that LHP7 inserted into the groove of DNA. The cell cycle analysis showed that after the treatment with LHP7 for 30 and 60 min, the proportion of cells in I-phase increased from 8.71 to 12.09 % and from 8.71 to 15.68 %, indicating that LHP7 induced arrest of cells in the I-phase. These results would conduce to elucidate its underlying antibacterial mechanism.
Collapse
|
38
|
Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S. Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS One 2014; 9:e112128. [PMID: 25423477 PMCID: PMC4244103 DOI: 10.1371/journal.pone.0112128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/12/2014] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
| | - Rossella Tarallo
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Thomas Carberry
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | | | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Stefania Galdiero
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
39
|
Silva RR, Avelino KYPS, Ribeiro KL, Franco OL, Oliveira MDL, Andrade CAS. Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis. Front Microbiol 2014; 5:443. [PMID: 25191319 PMCID: PMC4138613 DOI: 10.3389/fmicb.2014.00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants, and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi, and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.
Collapse
Affiliation(s)
- Rafael R Silva
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco Recife, Brasil
| | - Karen Y P S Avelino
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brasil
| | - Kalline L Ribeiro
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco Recife, Brasil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília Brasília-DF, Brasil
| | - Maria D L Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brasil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco Recife, Brasil ; Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brasil
| |
Collapse
|
40
|
Kira A, Javkhlantugs N, Miyamori T, Sasaki Y, Eguchi M, Kawamura I, Ueda K, Naito A. Interaction of Extracellular Loop II of κ-Opioid Receptor (196–228) with Opioid Peptide Dynorphin in Membrane Environments as Revealed by Solid State Nuclear Magnetic Resonance, Quartz Crystal Microbalance and Molecular Dynamics Simulation. J Phys Chem B 2014; 118:9604-12. [DOI: 10.1021/jp505412j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kira
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Namsrai Javkhlantugs
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Center for Nanoscience and Nanotechnology & School of Engineering and Applied Science, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Takenori Miyamori
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshiyuki Sasaki
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masayuki Eguchi
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuyoshi Ueda
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate School
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
41
|
Real-time measurement of membrane conformational states induced by antimicrobial peptides: balance between recovery and lysis. Sci Rep 2014; 4:5479. [PMID: 24969959 PMCID: PMC4073255 DOI: 10.1038/srep05479] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022] Open
Abstract
The disruption of membranes by antimicrobial peptides is a multi-state process involving significant structural changes in the phospholipid bilayer. However, direct measurement of these membrane structural changes is lacking. We used a combination of dual polarisation interferometry (DPI), surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM) to measure the real-time changes in membrane structure through the measurement of birefringence during the binding of magainin 2 (Mag2) and a highly potent analogue in which Ser8, Gly13 and Gly18 has been replaced with alanine (Mag-A). We show that the membrane bilayer undergoes a series of structural changes upon peptide binding before a critical threshold concentration is reached which triggers a significant membrane disturbance. We also propose a detailed model for antimicrobial peptide action as a function of the degree of bilayer disruption to provide an unprecedented in-depth understanding of the membrane lysis in terms of the interconversion of different membrane conformational states in which there is a balance between recovery and lysis.
Collapse
|
42
|
Onaizi SA, Nasser MS, Twaiq F. Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:191-8. [DOI: 10.1007/s00249-014-0955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022]
|
43
|
Hirst DJ, Lee TH, Swann MJ, Aguilar MI. Combined mass and structural kinetic analysis of multistate antimicrobial peptide-membrane interactions. Anal Chem 2013; 85:9296-304. [PMID: 23998643 DOI: 10.1021/ac402148v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic analysis of peptide-membrane interactions generally involves a curve fitting process with no information about what the different curves may physically correspond to. Given the multistep process of peptide-membrane interactions, a computational method that utilizes physical parameters that relate to both peptide binding and membrane structure would provide new insight into this complex process. In this study, kinetic models accounting for two-state and three-state mechanisms were fitted to our previously reported simultaneous real-time measurements of mass and birefringence during the binding and dissociation of the peptide HPA3 (Hirst, D.; Lee, T.-H.; Swann, M.; Unabia, S.; Park, Y.; Hahm, K.-S.; Aguilar, M. Eur. Biophys. J. 2011, 40, 503-514); significantly, the mass and birefringence are constrained by the same set of kinetic constants, allowing the unification of peptide binding patterns with membrane structure changes. For the saturated phospholipid dimyristoyl-phosphatidylcholine (DMPC) the two-state model was sufficient to account for the observed changes in mass and birefringence, whereas for the unsaturated phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) the two-state model was found to be inadequate and a three-state model gave a significantly better fit. The third state of interaction for POPC was found to disrupt the bilayer much more than the previous two states. We propose a hypothesis for the mechanism of membrane permeabilization based on the results featuring a loosely bound first state, a tightly bound second state, and a highly membrane-disrupting third state. The results demonstrate the importance of the difference in membrane fluidity between the gel phase DMPC and the liquid crystal phase POPC for peptide-membrane interactions and establish the combination of DPI and kinetic modeling as a powerful tool for revealing features of peptide-membrane interaction mechanisms, including intermediate states between initial binding and full membrane disruption.
Collapse
Affiliation(s)
- Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University , Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
44
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|
45
|
Horvath R, Kobzi B, Keul H, Moeller M, Kiss É. Molecular interaction of a new antibacterial polymer with a supported lipid bilayer measured by an in situ label-free optical technique. Int J Mol Sci 2013; 14:9722-36. [PMID: 23648479 PMCID: PMC3676808 DOI: 10.3390/ijms14059722] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/21/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022] Open
Abstract
The interaction of the antibacterial polymer-branched poly(ethylene imine) substituted with quaternary ammonium groups, PEO and alkyl chains, PEI25QI5J5A815-with a solid supported lipid bilayer was investigated using surface sensitive optical waveguide spectroscopy. The analysis of the optogeometrical parameters was extended developing a new composite layer model in which the structural and optical anisotropy of the molecular layers was taken into consideration. Following in situ the change of optical birefringence we were able to determine the composition of the lipid/polymer surface layer as well as the displacement of lipid bilayer by the antibacterial polymer without using additional labeling. Comparative assessment of the data of layer thickness and optical anisotropy helps to reveal the molecular mechanism of antibacterial effect of the polymer investigated.
Collapse
Affiliation(s)
- Robert Horvath
- MTA TTK MFA Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Budapest, Konkoly Thege u. 29-33 H-1121, Hungary; E-Mail:
| | - Balázs Kobzi
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 112 H-1518, Hungary; E-Mails: (B.K.); (É.K.)
| | - Helmut Keul
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstr. 50, Aachen D-52056, Germany; E-Mail:
| | - Martin Moeller
- DWI an der RWTH Aachen e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Forckenbeckstr. 50, Aachen D-52056, Germany; E-Mail:
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 112 H-1518, Hungary; E-Mails: (B.K.); (É.K.)
| |
Collapse
|
46
|
OKA M, KAMIMORI H. Lipid Membrane-Binding Properties of Amphotericin B Deoxycholate (Fungizone) Using Surface Plasmon Resonance. ANAL SCI 2013; 29:697-702. [DOI: 10.2116/analsci.29.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masako OKA
- Pharmaceutical Research Division, Shionogi & Co., Ltd
| | | |
Collapse
|
47
|
KINOUCHI H, ONISHI M, KAMIMORI H. Lipid Membrane-Binding Properties of Daptomycin Using Surface Plasmon Resonance. ANAL SCI 2013; 29:297-301. [DOI: 10.2116/analsci.29.297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Masako ONISHI
- Pharmaceutical Research Division, Shionogi & Co. Ltd
| | | |
Collapse
|
48
|
Xiao S, Charonko JJ, Fu X, Salmanzadeh A, Davalos RV, Vlachos PP, Finkielstein CV, Capelluto DGS. Structure, sulfatide binding properties, and inhibition of platelet aggregation by a disabled-2 protein-derived peptide. J Biol Chem 2012; 287:37691-702. [PMID: 22977233 DOI: 10.1074/jbc.m112.385609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for α(IIb)β(3) integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Shuyan Xiao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Tech, 1981 Kraft Dr., Rm. 2007, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2354-61. [DOI: 10.1016/j.bbamem.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022]
|
50
|
Evaluation of Magainin I interactions with lipid membranes: An optical and electrochemical study. Chem Phys Lipids 2012; 165:537-44. [DOI: 10.1016/j.chemphyslip.2012.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/24/2023]
|