1
|
Koma R, Shibaguchi T, Pérez López C, Oka T, Jue T, Takakura H, Masuda K. Localization of myoglobin in mitochondria: implication in regulation of mitochondrial respiration in rat skeletal muscle. Physiol Rep 2021; 9:e14769. [PMID: 33650803 PMCID: PMC7923563 DOI: 10.14814/phy2.14769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria play a principal role in metabolism, and mitochondrial respiration is an important process for producing adenosine triphosphate. Recently, we showed the possibility that the muscle-specific protein myoglobin (Mb) interacts with mitochondrial complex IV to augment the respiration capacity in skeletal muscles. However, the precise mechanism for the Mb-mediated upregulation remains under debate. The aim of this study was to ascertain whether Mb is truly integrated into the mitochondria of skeletal muscle and to investigate the submitochondrial localization. Isolated mitochondria from rat gastrocnemius muscle were subjected to different proteinase K (PK) concentrations to digest proteins interacting with the outer membrane. Western blotting analysis revealed that the PK digested translocase of outer mitochondrial membrane 20 (Tom20), and the immunoreactivity of Tom20 decreased with the amount of PK used. However, the immunoreactivity of Mb with PK treatment was better preserved, indicating that Mb is integrated into the mitochondria of skeletal muscle. The mitochondrial protease protection assay experiments suggested that Mb localizes within the mitochondria in the inner membrane from the intermembrane space side. These results strongly suggest that Mb inside muscle mitochondria could be implicated in the regulation of mitochondrial respiration via complex IV.
Collapse
Affiliation(s)
- Rikuhide Koma
- Graduate School of Human and Socio‐Environmental StudiesKanazawa UniversityIshikawaJapan
| | | | | | - Toshihiko Oka
- Department of Life ScienceRikkyo UniversityTokyoJapan
| | - Thomas Jue
- Department of Biochemistry and Molecular MedicineUniversity of California DavisDavisCAUSA
| | - Hisashi Takakura
- Faculty of Health and Sports ScienceDoshisha UniversityKyotoJapan
| | - Kazumi Masuda
- Graduate School of Human and Socio‐Environmental StudiesKanazawa UniversityIshikawaJapan
- Faculty of Human SciencesKanazawa UniversityIshikawaJapan
| |
Collapse
|
2
|
Sun SC, Huang HW, Lo YT, Chuang MC, Hsu YHH. Unraveling cardiolipin-induced conformational change of cytochrome c through H/D exchange mass spectrometry and quartz crystal microbalance. Sci Rep 2021; 11:1090. [PMID: 33441668 PMCID: PMC7806790 DOI: 10.1038/s41598-020-79905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin (CL), a crucial component in inner mitochondrial membranes, interacts with cytochrome c (cyt c) to form a peroxidase complex for the catalysis of CL oxidation. Such interaction is pivotal to the mitochondrial regulation of apoptosis and is affected by the redox state of cyt c. In the present study, the redox-dependent interaction of cyt c with CL was investigated through amide hydrogen/deuterium exchange coupled with mass spectrometry (HDXMS) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ferrous cyt c exhibited a more compact conformation compared with its ferric form, which was supported by the lower number of deuterons accumulated and the greater amplitude reduction on dissipation. Upon association with CL, ferrous cyt c resulted in a moderate increase in deuteration, whereas the ferric form caused a drastic increase of deuteration, which indicated that CL-bound ferric cyt c formed an extended conformation. These results were consistent with those of the frequency (f) − dissipation (D) experiments, which revealed that ferric cyt c yielded greater values of |ΔD/Δf| within the first minute. Further fragmentation analysis based on HDXMS indicated that the effect of CL binding was considerably different on ferric and ferrous cyt c in the C-helix and the Loop 9–24. In ferric cyt c, CL binding affected Met80 and destabilized His18 interaction with heme, which was not observed with ferrous cyt c. An interaction model was proposed to explain the aforementioned results.
Collapse
Affiliation(s)
- Sin-Cih Sun
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Department of Environmental Science and Engineering, Taichung, Taiwan.
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Biological Science Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
3
|
Melby ES, Allen C, Foreman-Ortiz IU, Caudill ER, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10793-10805. [PMID: 30102857 DOI: 10.1021/acs.langmuir.8b02060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.
Collapse
Affiliation(s)
- Eric S Melby
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Environmental and Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Caley Allen
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Isabel U Foreman-Ortiz
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Thomas R Kuech
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Ariane M Vartanian
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Xi Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Catherine J Murphy
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rigoberto Hernandez
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Joel A Pedersen
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
4
|
Marbán G, Ramírez-Montoya LA, García H, Menéndez JÁ, Arenillas A, Montes-Morán MA. Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials. J Colloid Interface Sci 2018; 511:27-38. [DOI: 10.1016/j.jcis.2017.09.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/07/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
|
5
|
Djafarzadeh S, Jakob SM. High-resolution Respirometry to Assess Mitochondrial Function in Permeabilized and Intact Cells. J Vis Exp 2017. [PMID: 28287504 DOI: 10.3791/54985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A high-resolution oxygraph is a device for measuring cellular oxygen consumption in a closed-chamber system with very high resolution and sensitivity in biological samples (intact and permeabilized cells, tissues or isolated mitochondria). The high-resolution oxygraph device is equipped with two chambers and uses polarographic oxygen sensors to measure oxygen concentration and calculate oxygen consumption within each chamber. Oxygen consumption rates are calculated using software and expressed as picomoles per second per number of cells. Each high-resolution oxygraph chamber contains a stopper with injection ports, which makes it ideal for substrate-uncoupler-inhibitor titrations or detergent titration protocols for determining effective and optimum concentrations for plasma membrane permeabilization. The technique can be applied to measure respiration in a wide range of cell types and also provides information on mitochondrial quality and integrity, and maximal mitochondrial respiratory electron transport system capacity.
Collapse
Affiliation(s)
- Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern;
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern
| |
Collapse
|
6
|
Messaoud NB, Yue J, Valent D, Katzarova I, López JM. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS One 2015; 10:e0124482. [PMID: 25866890 PMCID: PMC4395108 DOI: 10.1371/journal.pone.0124482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes, but the regulators and signaling pathways involved are not well characterized. Here we show that hyperosmotic shock induces rapid calpain activation and high levels of Smac/DIABLO release from the mitochondria before significant amounts of cytochrome c are released to promote caspase-3 activation. Calpain inhibitors or EGTA microinjection delays osmostress-induced apoptosis, and blockage of Smac/DIABLO with antibodies markedly reduces cytochrome c release and caspase-3 activation. Hyperosmotic shock also activates the p38 and JNK signaling pathways very quickly. Simultaneous inhibition of both p38 and JNK pathways reduces osmostress-induced apoptosis, while sustained activation of these kinases accelerates the release of cytochrome c and caspase-3 activation. Therefore, at least four different pathways early induced by osmostress converge on the mitochondria to trigger apoptosis. Deciphering the mechanisms of hyperosmotic shock-induced apoptosis gives insight for potential treatments of human diseases that are caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jicheng Yue
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Valent
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ilina Katzarova
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
7
|
Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:767-74. [DOI: 10.1016/j.bbamem.2014.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
|
8
|
Muhsain SNF, Lang MA, Abu-Bakar A. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress. Toxicol Appl Pharmacol 2015; 282:77-89. [DOI: 10.1016/j.taap.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
|
9
|
Muenzner J, Pletneva EV. Structural transformations of cytochrome c upon interaction with cardiolipin. Chem Phys Lipids 2013; 179:57-63. [PMID: 24252639 DOI: 10.1016/j.chemphyslip.2013.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 01/07/2023]
Abstract
Interactions of cytochrome c (cyt c) with cardiolipin (CL) play a critical role in early stages of apoptosis. Upon binding to CL, cyt c undergoes changes in secondary and tertiary structure that lead to a dramatic increase in its peroxidase activity. Insertion of the protein into membranes, insertion of CL acyl chains into the protein interior, and extensive unfolding of cyt c after adsorption to the membrane have been proposed as possible modes for interaction of cyt c with CL. Dissociation of Met80 is accompanied by opening of the heme crevice and binding of another heme ligand. Fluorescence studies have revealed conformational heterogeneity of the lipid-bound protein ensemble with distinct polypeptide conformations that vary in the degree of protein unfolding. We correlate these recent findings to other biophysical observations and rationalize the role of experimental conditions in defining conformational properties and peroxidase activity of the cyt c ensemble. Latest time-resolved studies propose the trigger and the sequence of cardiolipin-induced structural transitions of cyt c.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
10
|
Zawada ZH. Spatial arrangement of selected fluorescence labels in lipid bilayer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:26-31. [PMID: 23727616 DOI: 10.1016/j.jphotobiol.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022]
Abstract
The method for the determination the orientation factor κ(2), spatial arrangement and depth position of fluorescence labels located in hydrophilic layers of vesicles bilayer from resonance energy transfer (RET) data is presented. The method is based on the broadened Wolber and Hudson RET model in two dimensions (Biophys J. 1979). The vesicles were labeled with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) as the donor and N-(Lissamine rhodamine B sulfonyl) 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NRh-PE) as the acceptor. It was found that in basic environment sodium dithionite quenches fluorescence of both labels located in outer leaflet of bilayer. Therefore, RET data prior to and following dithionite treatment were compared and the donor-acceptor cis and trans distances of the closest approach as well as cis and trans Förster radii R0, and orientation factors κ(2) for cis RET equal to 0.61±0.06 and for trans RET equal to 0.17±0.01 were assigned. Knowing the κ(2) data, the spatial arrangement of NBD and NRh labels as dipoles in dipalmitoylphosphatidylcholine bilayer were described.
Collapse
Affiliation(s)
- Zygmunt H Zawada
- Department of Physical Pharmacy, Medical University of Silesia, Sosnowiec, Poland.
| |
Collapse
|
11
|
Patil VA, Greenberg ML. Cardiolipin-mediated cellular signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:195-213. [PMID: 23775697 DOI: 10.1007/978-94-007-6331-9_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This review focuses on recent studies showing that cardiolipin (CL), a unique mitochondrial phospholipid, regulates many cellular functions and signaling pathways, both inside and outside the mitochondria. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. Understanding these connections may shed light on the pathology of Barth syndrome, a disorder of CL remodeling.
Collapse
Affiliation(s)
- Vinay A Patil
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
12
|
Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin. J Biol Inorg Chem 2012; 18:137-44. [PMID: 23160757 DOI: 10.1007/s00775-012-0958-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented.
Collapse
|
13
|
Gorbenko G, Trusova V. Protein aggregation in a membrane environment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:113-42. [DOI: 10.1016/b978-0-12-386483-3.00002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Morandat S, El Kirat K. Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy. Colloids Surf B Biointerfaces 2011; 82:111-7. [DOI: 10.1016/j.colsurfb.2010.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/29/2022]
|
15
|
El Kirat K, Morandat S. Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. Chem Phys Lipids 2009; 162:17-24. [DOI: 10.1016/j.chemphyslip.2009.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/05/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|
16
|
Caesar CEB, Esbjörner EK, Lincoln P, Nordén B. Assigning membrane binding geometry of cytochrome C by polarized light spectroscopy. Biophys J 2009; 96:3399-411. [PMID: 19383483 DOI: 10.1016/j.bpj.2009.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022] Open
Abstract
In this work we demonstrate how polarized light absorption spectroscopy (linear dichroism (LD)) analysis of the peptide ultraviolet-visible spectrum of a membrane-associated protein (cytochrome (cyt) c) allows orientation and structure to be assessed with quite high accuracy in a native membrane environment that can be systematically varied with respect to lipid composition. Cyt c binds strongly to negatively charged lipid bilayers with a distinct orientation in which its alpha-helical segments are on average parallel to the membrane surface. Further information is provided by the LD of the pi-pi( *) transitions of the heme porphyrin and transitions of aromatic residues, mainly a single tryptophan. A good correlation with NMR data was found, and combining NMR structural data with LD angular data allowed the whole protein to be docked to the lipid membrane. When the redox state of cyt c was changed, distinct variations in the LD spectrum of the heme Soret band were seen corresponding to changes in electronic transition energies; however, no significant change in the overall protein orientation or structure was observed. Cyt c is known to interact in a specific manner with the doubly negatively charged lipid cardiolipin, and incorporation of this lipid into the membrane at physiologically relevant levels was indeed found to affect the protein orientation and its alpha-helical content. The detail in which cyt c binding is described in this study shows the potential of LD spectroscopy using shear-deformed lipid vesicles as a new methodology for exploring membrane protein structure and orientation.
Collapse
Affiliation(s)
- Christina E B Caesar
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Division of Physical Chemistry, SE-412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
17
|
Huang Z, Jiang J, Tyurin VA, Zhao Q, Mnuskin A, Ren J, Belikova NA, Feng W, Kurnikov IV, Kagan VE. Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Radic Biol Med 2008; 44:1935-44. [PMID: 18375209 PMCID: PMC2692820 DOI: 10.1016/j.freeradbiomed.2008.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/21/2008] [Accepted: 02/23/2008] [Indexed: 01/08/2023]
Abstract
Cardiolipin (CL), a unique mitochondrial phospholipid synthesized by CL synthase (CLS), plays important, yet not fully understood, roles in mitochondria-dependent apoptosis. We manipulated CL levels in HeLa cells by knocking down CLS using RNA interference and selected a clone of CL-deficient cells with approximately 45% of its normal content. ESI-MS analysis showed that the CL molecular species were the same in CL-deficient and CL-sufficient cells. CL deficiency did not change mitochondrial functions (membrane potential, reactive oxygen species generation, cellular ATP levels) but conferred resistance to apoptosis induced by actinomycin D (ActD), rotenone, or gamma-irradiation. During ActD-induced apoptosis, decreased CL peroxidation along with suppressed cytochrome (cyt) c release was observed in CL-deficient cells, whereas Bax translocation to mitochondria remained similar to that in CL-sufficient HeLa cells. The amounts of loosely bound cyt c (releasable under high ionic strength conditions) were the same in CL-deficient and CL-sufficient cells. Given that CL peroxidation during apoptosis is catalyzed by CL/cyt c complexes and CL oxidation products are essential for cyt c release from mitochondria, our results suggest that CL deficiency prevents adequate assembly of productive CL/cyt c complexes and CL peroxidation, resulting in increased resistance to apoptosis.
Collapse
Affiliation(s)
- Zhentai Huang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Jianfei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Qing Zhao
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Alexandra Mnuskin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Jin Ren
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Weihong Feng
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Igor V. Kurnikov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh
| |
Collapse
|
18
|
Abstract
Cardiolipin (CL) is a mitochondria-specific phospholipid which is known to be intimately linked with the mitochondrial bioenergetic machinery. Accumulating evidence now suggests that this unique lipid also has active roles in several of the mitochondria-dependent steps of apoptosis. CL is closely associated with cytochrome c at the outer leaflet of the mitochondrial inner membrane. This interaction makes the process of cytochrome c release from mitochondria more complex than previously assumed, requiring more than pore formation in the mitochondrial outer membrane. While CL peroxidation could be crucial for enabling cytochrome c dissociation from the mitochondrial inner membrane, cytochrome c itself catalyzes CL peroxidation. Moreover, peroxy-CL directly activates the release of cytochrome c and other apoptogenic factors from the mitochondria. CL is also directly involved in mitochondrial outer membrane permeabilization by enabling docking and activation of pro-apoptotic Bcl-2 proteins. It appears therefore that CL has multiple roles in apoptosis and that CL metabolism contributes to the complexity of the apoptotic process.
Collapse
Affiliation(s)
- François Gonzalvez
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | |
Collapse
|
19
|
Das J, Crouch RK, Chong PLG. Fluorescence Properties of Pyrylretinol. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720415fpop2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Buratta M, Piccotti L, Giannini S, Gresele P, Roberti R, Corazzi L. Selective Cytochrome c Displacement by Phosphate and Ca2+ in Brain Mitochondria. J Membr Biol 2007; 212:199-210. [PMID: 17334837 DOI: 10.1007/s00232-006-0015-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/11/2006] [Indexed: 10/23/2022]
Abstract
In brain mitochondria, phosphate- and Ca(2+)-dependent cytocrome c (cyt c) release reveals pools that interact differently with the inner membrane. Detachment of the phosphate-dependent pool did not influence the pool released by Ca(2+). Cyt c pools were also detected in a system of cyt c reconstituted in cardiolipin (CL) liposomes. Gradual binding of cyt c (1 nmol) to CL/2-[12-(7-nitrobenz- 2-oxa-1,3-diazol-4-yl)amino]dodecanoyl-1-hexadecan oyl-sn-glycero-3-phosphocholine (NBDC(12)-HPC) liposomes (10 nmol) produced NBD fluorescence quenching up to 0.4 nmol of added protein. Additional bound cyt c did not produce quenching, suggesting that cyt c-CL interactions originate distinct cyt c pools. Cyt c was removed from CL/NBDC(12)-HPC liposomes by either phosphate or Ca(2+), but only Ca(2+) produced fluorescence dequenching and leakage of encapsulated 8-aminonaphthalene-1,3,6-trisulfonic acid/p-xylene-bis-pyridinium bromide. In mitochondria, complex IV activity and mitochondrial membrane potential (Deltapsi(m)) were not affected by the release of the phosphate-dependent cyt c pool. Conversely, removal of cyt c by Ca(2+) caused inhibition of complex IV activity and impairment of Deltapsi(m). In a reconstituted system of mitochondria, nuclei and supernatant, cyt c detached from the inner membrane was released outside mitochondria and triggered events leading to DNA fragmentation. These events were prevented by enriching mitochondria with exogenous CL or by sequestering released cyt c with anti-cyt c antibody.
Collapse
Affiliation(s)
- Morena Buratta
- Laboratory of Biochemistry, Department of Internal Medicine, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact 2006; 163:4-14. [PMID: 16730343 DOI: 10.1016/j.cbi.2006.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 01/17/2023]
Abstract
Mitochondria play a decisive role in the regulation of both apoptotic and necrotic cell death. Permeabilization of the outer mitochondrial membrane and subsequent release of intermembrane space proteins are important features of both models of cell death. The mechanisms by which these proteins are released depend presumably on cell type and the nature of stimuli. Of the mechanisms involved, mitochondrial permeability transition appears to be associated mainly with necrosis, whereas the release of caspase activating proteins during early apoptosis is regulated primarily by the Bcl-2 family of proteins. However, there is increasing evidence for interaction and co-operation between these two mechanisms. The multiple mechanisms of mitochondrial permeabilization may explain diversities in the response of mitochondria to numerous apoptotic stimuli in different types of cells.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
22
|
Choi EJ, Dimitriadis EK. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Biophys J 2004; 87:3234-41. [PMID: 15347587 PMCID: PMC1304793 DOI: 10.1529/biophysj.104.047738] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/02/2004] [Indexed: 11/18/2022] Open
Abstract
The adsorption of membrane-associated protein cytochrome c to anionic lipid bilayers of dioleoyl phosphatidylglycerol was studied in low ionic strength physiological buffer using atomic force microscopy. The bilayers were supported on polylysinated mica. The formation of stable, single lipid bilayers was confirmed by imaging and force spectroscopy. Upon addition of low concentrations of cytochrome c, protein molecules were not topographically visible on the lipid bilayer-buffer interface. However, the forces required to punch through the bilayer by indentation using the atomic force microscopy probe were significantly lower after protein adsorption, which suggest that the protein inserts into the bilayer. Moreover, the apparent thickness of the bilayer remained unchanged after cytochrome c adsorption. Yet, mass spectroscopy and visible light absorption spectroscopy confirmed the presence of cytochrome c in the lipid bilayers. These results suggest that 1), cytochrome c inserts into the bilayer and resides in its hydrophobic core; 2), cytochrome c insertion changes the mechanical properties of the bilayer significantly; and 3), bilayer force spectroscopy may be a useful tool in investigating lipid-protein interactions.
Collapse
Affiliation(s)
- Eugene J Choi
- Instrumentation Research and Development Resource, Division of Bioengineering and Physical Science, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Oursler MJ, Bradley EW, Elfering SL, Giulivi C. Native, not nitrated, cytochrome c and mitochondria-derived hydrogen peroxide drive osteoclast apoptosis. Am J Physiol Cell Physiol 2004; 288:C156-68. [PMID: 15342339 DOI: 10.1152/ajpcell.00092.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two unresolved aspects of the role of mitochondria-derived cytochrome c in apoptosis are whether there is a separate pool of cytochrome c within mitochondria that participates in the activation of apoptosis and whether a chemically modified cytochrome c drives apoptosis. These questions were investigated using osteoclasts, because they are rich in mitochondria and because osteoclast apoptosis is critical in bone metabolism regulation. H(2)O(2) production was increased during culture, preceding cytochrome c release; both processes occurred anterior to apoptosis. With the addition of a mitochondrial uncoupler, H(2)O(2) production and apoptosis were blocked, indicating the prominent role of mitochondria-derived H(2)O(2). Trapping H(2)O(2)-derived hydroxyl radical decreased apoptosis. Cytosolic cytochrome c was originated from a single mitochondrial compartment, supporting a common pool involved in respiration and apoptosis, and it was chemically identical to the native form, with no indication of oxidative or nitrative modifications. Protein levels of Bcl-2 and Bc-xL were decreased before apoptosis, whereas expression of wild-type Bcl-2 repressed apoptosis, confirming that cytochrome c release is critical in initiating apoptosis. Cytosolic cytochrome c participated in activating caspase-3 and -9, both required for apoptosis. Collectively, our data indicate that the mitochondria-dependent apoptotic pathway is one of the major routes operating in osteoclasts.
Collapse
Affiliation(s)
- Merry Jo Oursler
- Department of Biology, University of Minnesota, Duluth, Minnesota, USA.
| | | | | | | |
Collapse
|
24
|
Oellerich S, Lecomte S, Paternostre M, Heimburg T, Hildebrandt P. Peripheral and Integral Binding of Cytochromecto Phospholipids Vesicles. J Phys Chem B 2004. [DOI: 10.1021/jp036799t] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Berezhna S, Wohlrab H, Champion PM. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria. Biochemistry 2003; 42:6149-58. [PMID: 12755617 DOI: 10.1021/bi027387y] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational states of cytochrome c inside intact and Ca(2+)-exposed mitochondria have been investigated using resonance Raman spectroscopy. Intact and swelling bovine heart and rat liver mitochondria were examined with an excitation wavelength (413.1 nm) in resonance with the Soret transition of ferrous cytochrome c. The different b- to c-type cytochrome concentration ratio in mitochondria from two different tissues was used to help assign the Raman spectral components. Resonance Raman spectra were also recorded for mitochondria fractions (supernatants and pellets) obtained from swollen (Ca(2+)-exposed) mitochondria after differential centrifugation. The results illustrate that cytochrome c has an altered vibrational spectrum in solution, in intact, and in swollen mitochondria. When cytochrome c is released from mitochondria, its Raman spectrum becomes identical to that of ferrous cytochrome c in solution. The spectra of mitochondrial pellets indicate that a small amount of structurally modified cytochrome c remains associated with the heavy membrane fraction. Indeed, spectroscopic shifts in the low-frequency fingerprint and the high-frequency marker-band regions suggest that membrane binding leads to a partial opening of the heme pocket and an alteration of the heme thioether bonds. The results support the conclusion that most cytochrome c molecules in mitochondria are membrane-bound and that the cytochrome c structure changes upon binding. Furthermore, changes in the resonance Raman active mode located at 675 cm(-)(1) in the spectra of intact, swollen, and fractionated mitochondria indicate that b-type cytochromes may also undergo structural alterations during mitochondrial swelling and disruption.
Collapse
Affiliation(s)
- Svitlana Berezhna
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Gorbenko GP, Domanov YA. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study. Biophys Chem 2003; 103:239-49. [PMID: 12727286 DOI: 10.1016/s0301-4622(02)00319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).
Collapse
Affiliation(s)
- Galina P Gorbenko
- V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine.
| | | |
Collapse
|
27
|
Domanov YA, Gorbenko GP. Analysis of resonance energy transfer in model membranes: role of orientational effects. Biophys Chem 2002; 99:143-54. [PMID: 12377365 DOI: 10.1016/s0301-4622(02)00143-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The model of resonance energy transfer (RET) in membrane systems containing donors randomly distributed over two parallel planes separated by fixed distance and acceptors confined to a single plane is presented. Factors determining energy transfer rate are considered with special attention being given to the contribution from orientational heterogeneity of the donor emission and acceptor absorption transition dipoles. Analysis of simulated data suggests that RET in membranes, as compared to intramolecular energy transfer, is substantially less sensitive to the degree of reorientational freedom of chromophores due to averaging over multiple donor-acceptor pairs. The uncertainties in the distance estimation resulting from the unknown mutual orientation of the donor and acceptor are analyzed.
Collapse
|
28
|
Gorbenko GP, Domanov YA. Energy transfer method in membrane studies: some theoretical and practical aspects. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2002; 52:45-58. [PMID: 12121753 DOI: 10.1016/s0165-022x(02)00031-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some applications of resonance energy transfer (RET) method to distance estimation in membrane systems are considered. The model of energy transfer between donors and acceptors randomly distributed over parallel planes localized at the outer and inner membrane leaflets is presented. It is demonstrated that RET method can provide evidence for specific orientation of the fluorophore relative to the lipid-water interface. An approach to estimating the depth of the protein penetration in lipid bilayer is suggested.
Collapse
Affiliation(s)
- Galina P Gorbenko
- Department of Physics and Technology, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov 61077, Ukraine
| | | |
Collapse
|
29
|
Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 2002; 99:1259-63. [PMID: 11818574 PMCID: PMC122177 DOI: 10.1073/pnas.241655498] [Citation(s) in RCA: 737] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cytochrome c is often released from mitochondria during the early stages of apoptosis, although the precise mechanisms regulating this event remain unclear. In this study, with isolated liver mitochondria, we demonstrate that cytochrome c release requires a two-step process. Because cytochrome c is present as loosely and tightly bound pools attached to the inner membrane by its association with cardiolipin, this interaction must first be disrupted to generate a soluble pool of this protein. Specifically, solubilization of cytochrome c involves a breaching of the electrostatic and/or hydrophobic affiliations that this protein usually maintains with cardiolipin. Once cytochrome c is solubilized, permeabilization of the outer mitochondrial membrane by Bax is sufficient to allow the extrusion of this protein into the extramitochondrial environment. Neither disrupting the interaction of cytochrome c with cardiolipin, nor permeabilizing the outer membrane with Bax, alone, is sufficient to trigger this protein's release. This mechanism also extends to conditions of mitochondrial permeability transition insofar as cytochrome c release is significantly depressed when the electrostatic interaction between cytochrome c and cardiolipin remains intact. Our results indicate that the release of cytochrome c involves a distinct two-step process that is undermined when either step is compromised.
Collapse
Affiliation(s)
- Martin Ott
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Gorbenko G, Saito H, Molotkovsky J, Tanaka M, Egashira M, Nakano M, Handa T. Resonance energy transfer study of peptide-lipid complexes. Biophys Chem 2001; 92:155-68. [PMID: 11583833 DOI: 10.1016/s0301-4622(01)00195-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance energy transfer involving tryptophan as a donor and anthrylvinyl-labeled phosphatidylcholine (AV-PC), 3-methoxybenzanthrone (MBA) and 8-anilino-1-naphthalene sulfonic acid (ANS) as acceptors has been examined to obtain information on the structure of peptide-lipid systems consisting of 18A or Ac-18A-NH(2) peptides and large unilamellar phosphatidylcholine vesicles. The lower and upper limits for the tryptophan distance from the bilayer midplane have been assessed in terms of the models of energy transfer in two-dimensional systems, taking into account orientational effects. Evidence for the existence of preferential orientations of Ac-18A-NH(2) with respect to the lipid-water interface has been obtained.
Collapse
Affiliation(s)
- G Gorbenko
- Kharkov National University, Department of Physics and Technology, 4 Svoboda Sq., 61077, Kharkov, Ukraine
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
A fluorescent analog of retinol, 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetr aene-1-ol (referred to as pyrylretinol, or 1) has been synthesized. The fluorescence properties (e.g. quantum yield, lifetime, steady-state anisotropy, and excitation/emission spectra) of this compound in various organic solvents and in dimyristoylphosphatidylcholine (DMPC) liposomes have been studied, and the results are compared with those obtained from 3-methyl-5-(1-pyryl)-2E,4E-pentadiene-1-ol (2), which has the same fused aromatic ring system but a much shorter acyclic chain. 1 and 2 form excimer in aqueous media and fluorescence anisotropies of both 1 and 2 in DMPC liposomes exhibit an abrupt decrease at approximately 21-23 degrees C, which coincides with the main phase transition temperature of DMPC liposomes, indicating that both compounds may be a useful membrane probe. In addition, the binding and quenching capability of pyrylretinol (1) to bovine serum albumin has been investigated. Pyrylretinol (1) binds with BSA with a binding constant of 3.6 x 10(4) M-1, although the value is somewhat lower than that obtained for retinol (3.06 x 10(5) M-1). Pyrylretinol (1) also quenches the BSA intrinsic fluorescence with the quenching rate constant of 1.67 x 10(13) M-1 s-1 and the value is lower than that obtained for retinol (4.06 x 10(13) M-1 s-1). The binding and quenching studies suggest that pyrylretinol (1) may serve as a useful fluorescence probe for structure/function studies of different retinoid binding proteins.
Collapse
Affiliation(s)
- J Das
- Department of Ophthalmology, Medical University of South Carolina, Charleston 29403, USA.
| | | | | |
Collapse
|