1
|
Godoy TAD, Lima EOVD, Silveira GPM, Rodrigues FS, Sant'anna SS, Hatakeyama DM, Grego KF, Tanaka-Azevedo AM. Analysis of the genus B othrops snake venom: An inter and intraspecific comparative study. Heliyon 2024; 10:e37262. [PMID: 39296225 PMCID: PMC11409068 DOI: 10.1016/j.heliyon.2024.e37262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The genus Bothrops are considered Category 1 of medical importance by the World Health Organization, responsible for approximately 85 % of snakebites occurring throughout Brazil. Main factors determining snake venom variations can be genetics, diet, gender, geographic distribution, age, or even seasonality. In this study, we compared the composition of protein profile, biochemical activities, and immunorecognition of toxins present in the venom of eight adults of Bothrops species (B. alternatus, B. atrox, B. jararaca, B. jararacussu, B. leucurus, B. moojeni, B. neuwiedi and B. pauloensis). The following methods were used to analyze the venoms: protein dosage; electrophoresis in polyacrylamide gel containing SDS; High Performance Liquid Chromatography - Reverse Phase; enzymatic activities, western blotting and Enzyme Linked Immuno Sorbent Assay. The results show inter and intraspecific differences in the electrophoretic profile. LAAO and PLA2 activities, in general, were higher in males than females and proteolytic activity was higher in females than males. The bothropic antivenom produced by Instituto Butantan recognized most of the protein bands in all Bothrops species analyzed, with only the regions between 37 and 25 kDa presenting lower intensity. A notable variability in the chromatograms was observed. Bothrops venom demonstrated inter-intraspecific disparities in protein composition and biochemical activity.
Collapse
Affiliation(s)
- Thais Almeida de Godoy
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
- Escola Superior do Instituto Butantan, São Paulo, Brazil
| | - Eduardo Oliveira Venancio de Lima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
- Escola Superior do Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
2
|
Bicho GFH, Nunes LOC, Fiametti LO, Argentin MN, Candido VT, Camargo ILBC, Cilli EM, Santos-Filho NA. Synthesis, Characterization, and Study of the Antimicrobial Potential of Dimeric Peptides Derived from the C-Terminal Region of Lys 49 Phospholipase A 2 Homologs. Toxins (Basel) 2024; 16:308. [PMID: 39057948 PMCID: PMC11281518 DOI: 10.3390/toxins16070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.
Collapse
Affiliation(s)
- Gabriel F. H. Bicho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Letícia O. C. Nunes
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Louise Oliveira Fiametti
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Marcela N. Argentin
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Vitória T. Candido
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Ilana L. B. C. Camargo
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Eduardo M. Cilli
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Norival A. Santos-Filho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| |
Collapse
|
3
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
4
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
5
|
Thakur S, Blotra A, Vasudevan K, Malhotra A, Lalremsanga HT, Santra V, Doley R. Proteome Decomplexation of Trimeresurus erythrurus Venom from Mizoram, India. J Proteome Res 2023; 22:215-225. [PMID: 36516484 DOI: 10.1021/acs.jproteome.2c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green pit vipers are the largest group of venomous vipers in tropical and subtropical Asia, which are responsible for most of the bite cases across this region. Among the green pit vipers of the Indian subcontinent, Trimeresurus erythrurus is the most prevalent; however, limited knowledge is available about its venomics. Proteome decomplexation of T. erythrurus venom using mass spectrometry revealed a blend of 53 different proteins/peptides belonging to 10 snake venom protein families. Phospholipase A2 and snake venom serine proteases were found to be the major enzymatic families, and Snaclec was the major nonenzymatic family in this venom. These protein families might be responsible for consumptive coagulopathy in victims. Along with these, snake venom metalloproteases, l-amino acid oxidases, disintegrins, and cysteine-rich secretory proteins were also found, which might be responsible for inducing painful edema, tissue necrosis, blistering, and defibrination in patients. Protein belonging to C-type lectins, C-type natriuretic peptides, and glutaminyl-peptide cyclotransfreases were also observed as trace proteins. The crude venom shows platelet aggregation in the absence of any agonist, suggesting their role in alterations in platelet functions. This study is the first proteomic analysis of T. erythrurus venom, contributing an overview of different snake venom proteins/peptides responsible for various pathophysiological disorders obtained in patients. Data are available via ProteomeXchange with the identifier PXD038311.
Collapse
Affiliation(s)
- Susmita Thakur
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| | - Avni Blotra
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad500048, India
| | - Anita Malhotra
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, BangorLL57 2UW, Gwynedd, U.K
| | - Hmar Tlawmte Lalremsanga
- Developmental Biology and Herpetology Laboratory, Department of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal712407, India.,Captive and Field Herpetology, 13 Hirfron, AngleseyLL65 1YU, Wales, U.K.,Gujarat Forest Department, Consultant - Snake Research Institute, Dharampur, Valsad, Gujarat396050, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, Napaam784028, India
| |
Collapse
|
6
|
Nourreddine FZ, Oussedik-Oumehdi H, Laraba-Djebari F. Myotoxicity induced by Cerastes cerastes venom: Beneficial effect of heparin in skeletal muscle tissue regeneration. Acta Trop 2020; 202:105274. [PMID: 31738878 DOI: 10.1016/j.actatropica.2019.105274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
Myonecrosis is a relevant tissue damage induced by snakes of Viperidae family often leading to permanent tissue and function loss and even amputation. The aim of this study was to evaluate the effect of heparin on skeletal muscle tissue regeneration after Cerastes cerastes envenomation. Mice received either the venom (1 LD50) by i.m. route, or the venom followed, by heparin administration by i.v. route at 15 min and 4 h. Obtained results showed that Cerastes cerastes venom induced deep tissue structure alterations, characterized mainly by edema, hemorrhage, myonecrosis and inflammation. Myotoxicity was correlated with increased CK levels in sera, concomitant with their decrease in muscle tissue homogenates. Muscle wet weight was restored within 2 weeks after heparin treatment and 28 days in the envenomed group. Heparin treatment significantly decreased MPO activity, suggesting an anti-inflammatory effect. NO, HGF, VEGF and G-CSF levels were increased after heparin administration. These mitogenic factors constitute potent stimuli for satellite and endothelial cells improving, thus, muscle regeneration. This study showed that muscle tissue recovery was significantly enhanced after heparin treatment. Heparin use seems to be a promising therapeutic approach after viper envenomation.
Collapse
Affiliation(s)
- Fatima Zohra Nourreddine
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria.
| |
Collapse
|
7
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|
8
|
Diniz-Sousa R, Caldeira CAS, Kayano AM, Paloschi MV, Pimenta DC, Simões-Silva R, Ferreira AS, Zanchi FB, Matos NB, Grabner FP, Calderon LA, Zuliani JP, Soares AM. Identification of the Molecular Determinants of the Antibacterial Activity of LmutTX, a Lys49 Phospholipase A2
Homologue Isolated from Lachesis muta muta
Snake Venom (Linnaeus, 1766). Basic Clin Pharmacol Toxicol 2017; 122:413-423. [DOI: 10.1111/bcpt.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Cleópatra A. S. Caldeira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Anderson M. Kayano
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Mauro V. Paloschi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Daniel. C. Pimenta
- Biochemistry and Biophysics Laboratory; Butantan Institute; Sao Paulo SP Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Amália S. Ferreira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Fernando B. Zanchi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Najla B. Matos
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Microbiology Laboratory; Research Center on Tropical Medicine of Rondonia (CEPEM); Porto Velho RO Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | | | - Leonardo A. Calderon
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Juliana P. Zuliani
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Andreimar M. Soares
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Sao Lucas Universitary Center (UNISL); Porto Velho RO Brazil
| |
Collapse
|
9
|
Ullah A, Souza T, Betzel C, Murakami M, Arni R. Crystallographic portrayal of different conformational states of a Lys49 phospholipase A2 homologue: Insights into structural determinants for myotoxicity and dimeric configuration. Int J Biol Macromol 2012; 51:209-14. [DOI: 10.1016/j.ijbiomac.2012.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/28/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
|
10
|
Lomonte B, Rangel J. Snake venom Lys49 myotoxins: From phospholipases A2 to non-enzymatic membrane disruptors. Toxicon 2012; 60:520-30. [DOI: 10.1016/j.toxicon.2012.02.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
11
|
Rangel J, Quesada O, Gutiérrez JM, Angulo Y, Lomonte B. Membrane cholesterol modulates the cytolytic mechanism of myotoxin II, a Lys49 phospholipase A2 homologue from the venom of Bothrops asper. Cell Biochem Funct 2011; 29:365-70. [PMID: 21506137 DOI: 10.1002/cbf.1758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 03/16/2011] [Indexed: 11/09/2022]
Abstract
Lys49 phospholipase A2 (PLA2) homologues present in crotalid snake venoms lack enzymatic activity, yet they induce skeletal muscle necrosis by a membrane permeabilizing mechanism whose details are only partially understood. The present study evaluated the effect of altering the membrane cholesterol content on the cytolytic activity of myotoxin II, a Lys49 PLA2 isolated from the venom of Bothrops asper, using the myogenic cell line C2C12 as a model target. Cell membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) treatment enhanced the cytolytic action of myotoxin II, as well as of its bioactive C-terminal synthetic peptide p(115-129) . Conversely, cell membrane cholesterol enrichment by preformed cholesterol-MβCD complexes reduced the cytolytic effect of myotoxin II. The toxic actions of myotoxin I, a catalytically active PLA2 from the same venom, as well as of the cytolytic peptide melittin from bee venom, also increased in cholesterol-depleted cells. Although physical and functional changes resulting from variations in membrane cholesterol are complex, these findings suggest that membrane fluidity could be a relevant parameter to explain the observed modulation of the cytolytic mechanism of myotoxin II, possibly influencing bilayer penetration. In concordance, the cytolytic effect of myotoxin II decreased in direct proportion to lower temperature, a physical factor that affects membrane fluidity. In conclusion, physicochemical properties that depend on membrane cholesterol content significantly influence the cytolytic mechanism of myotoxin II, reinforcing the concept that the primary site of action of Lys49 PLA2 myotoxins is the plasma membrane.
Collapse
Affiliation(s)
- José Rangel
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
12
|
dos Santos JI, Cintra-Francischinelli M, Borges RJ, Fernandes CAH, Pizzo P, Cintra ACO, Braz ASK, Soares AM, Fontes MRM. Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A2class. Proteins 2010; 79:61-78. [DOI: 10.1002/prot.22858] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
13
|
Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: Contributions to understanding snakebite envenomings and their treatment. Toxicon 2009; 54:1012-28. [DOI: 10.1016/j.toxicon.2009.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
14
|
Ponce-Soto LA, Baldasso PA, Romero-Vargas FF, Winck FV, Novello JC, Marangoni S. Biochemical, pharmacological and structural characterization of two PLA2 isoforms Cdr-12 and Cdr-13 from Crotalus durissus ruruima snake venom. Protein J 2007; 26:39-49. [PMID: 17203396 DOI: 10.1007/s10930-006-9042-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cdr-12 and Cdr-13 isoforms of PLA2, a D49 protein, were purified from Crotalus durissus ruruima venom after one chromatographic step, reverse phase HPLC on micro-Bondapack C-18. The molecular mass by SDS-PAGE of Cdr-12 and Cdr-13 isoforms of PLA2 was 14333.49 Da and 14296.42 Da, respectively and confirmed by MALDI-TOF mass spectrometry. The amino acid composition showed that both isoforms Cdr-12 and Cdr-13 have a high content of Lys, Tyr, Gly, Arg, and 14 half-Cys residues, typical of a basic PLA2. The isoforms Cdr-12 and Cdr-13 had a sequence of amino acids of 122 amino acid residues, being Cdr-12: SLLQFNKMIK FETRKNAIPF YAFYGCYCGW GGQGRPKDAT DRCCIVHDCC YGKLAKCNTK WDFYRYSLRS GYFQCGKGTW CEQQICECDR VAAECLRRSL STYRYGYMIY PDSRCREPSE TC and pI value 8.37 and Cdr-13: SLVQFEKMIK EETGKNAVPF YAFYGCYCGW GGRGRPKDAT DRCCIVHDCC YEKLVKCNTK WDFYRYSLRS GYFQCGKGTW CEQQICECDR VAAECLRRSL STYRYGKMIY PDSRCREPSE TC with a pI value of 8.13 This sequence shows high identity values when compared to other D49 PLA2s isolated from venoms of crotalics snakes. Skeletal muscle preparations from the young chicken have been previously used in order to study the effects of toxins on neuromuscular transmission, providing an important opportunity to study the differentiated behavior of a toxin before more than one model, because it shows differences in its sensibilities. In mice, the PLA2 isoforms Cdr-12 and Cdr-13 induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. In vitro, Cdr-12 and Cdr-13 isoforms of PLA2, caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparation and produced cytotoxicity in murine C2C12 skeletal muscle myotubes and lack cytolytic activity upon myoblasts in vitro. Thus, the combined structural and functional information obtained identify Cdr-12 and Cdr-13 isoforms as members of the PLA2 family, which presents the typical bioactivities described for such proteins.
Collapse
Affiliation(s)
- Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, State University of Campinas, P.O. Box 6109, Zip code 13083-970, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Ponce-Soto LA, Lomonte B, Rodrigues-Simioni L, Novello JC, Marangoni S. Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a) from Crotalus durissus collilineatus Snake Venom. Protein J 2007; 26:221-30. [PMID: 17203389 DOI: 10.1007/s10930-006-9063-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new crotoxin B isoform PLA(2) (F6a), from Crotalus durissus collilineatus was purified from by one step reverse phase HPLC chromatography using mu-Bondapack C-18 column analytic. The new crotoxin B isoform PLA(2) (F6a), complex crotoxin, the catalytic subunit crotoxin B isoform PLA(2) (F6a) and two crotapotin isoforms (F3 and F4), were isolated from the venom of Crotalus durissus collilineatus. The crotapotins isoforms F3 and F4 had similar chemical properties, the two proteins different in their ability to inhibit of isoforms of PLA(2) (F6 and F6a). The molecular masses estimated by MALDI-TOF mass spectrometry were: crotoxin B: 14,943.14 Da, crotapotin F3: 8,693.24 Da, and crotapotin F4: 9 314.56 Da. The new crotoxin B isoform PLA(2) (F6a) contained 122 amino acid residues and a pI of 8.58. Its amino acid sequence presents high identity with those of other PLA(2)s, particularly in the calcium binding loop and active site helix 3. It also presents similarities in the C-terminal region with other myotoxic PLA(2)s. The new crotoxin B isoform PLA(2) (F6a) contained 122 amino acid residues, with a primary structure of HLLQFNKMIK FETRRNAIPP YAFYGCYCGW GGRGRPKDAT DRCCFVHDCC YGKLAKCNTK WDFYRYSLKS GYITCGKGTW CEEQICECDR VAAECLRRSL STYRYGYMIY PDSRCRGPSE TC. A neuromuscular blocking activity was induced by crotoxin and new crotoxin B isoform PLA(2) (F6a) in the isolated mouse phrenic nerve diaphragm and the biventer cervicis chick nerve-muscle preparation. Whole crotoxin was devoid of cytolytic activity upon myoblasts and myotubes in vitro, whereas new crotoxin B isoform PLA(2) (F6a) was clearly cytotoxic to these cells.
Collapse
Affiliation(s)
- Luis Alberto Ponce-Soto
- Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Izidoro LFM, Ribeiro MC, Souza GRL, Sant'Ana CD, Hamaguchi A, Homsi-Brandeburgo MI, Goulart LR, Beleboni RO, Nomizo A, Sampaio SV, Soares AM, Rodrigues VM. Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorg Med Chem 2006; 14:7034-43. [PMID: 16809041 DOI: 10.1016/j.bmc.2006.06.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/29/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
In this work we describe the isolation of a new l-amino acid oxidase (LAAO) referred to as BpirLAAO-I from Bothrops pirajai snake venom, which was highly purified using a combination of molecular exclusion, affinity, and hydrophobic chromatography steps. BpirLAAO-I homodimeric acid glycoprotein (approximate Mr and pI of 130,000 and 4.9, respectively) displays high specificity toward hydrophobic/aromatic amino acids, while deglycosylation does not alter its enzymatic activity. The N-terminal LAAO sequence of its first 49 amino acids presented a high similarity between a amino acid sequence with other LAAOs from: Bothrops spp., Crotalus spp., Calloselasma rhodostoma, Agkistrodon spp., Trimeresurus spp., Pseudechis australis, Oxyuranus scutellatus, and Notechis scutatus. BpirLAAO-I induces time-dependent platelet aggregation, mouse paw edema, cytotoxic activity against Escherichia coli, Pseudomonas aeruginosa, Leishmania sp., and tumor cells, and also a typical fago (M13mp18) DNA fragmentation. Platelet aggregation, leishmanicidal and antitumoral activities were reduced by catalase. Thus, BpirLAAO-I is a multifunctional protein with promising biotechnological and medical applications.
Collapse
Affiliation(s)
- Luiz Fernando M Izidoro
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, 38400-902 Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rouault M, Rash LD, Escoubas P, Boilard E, Bollinger J, Lomonte B, Maurin T, Guillaume C, Canaan S, Deregnaucourt C, Schrével J, Doglio A, Gutiérrez JM, Lazdunski M, Gelb MH, Lambeau G. Neurotoxicity and other pharmacological activities of the snake venom phospholipase A2 OS2: the N-terminal region is more important than enzymatic activity. Biochemistry 2006; 45:5800-16. [PMID: 16669624 PMCID: PMC2796912 DOI: 10.1021/bi060217r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, a homologous but nontoxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1-22) of OS2, but not the central one (residues 58-89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102-119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera, which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity.
Collapse
Affiliation(s)
- Morgane Rouault
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Lachlan D. Rash
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Pierre Escoubas
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Eric Boilard
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - James Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Bruno Lomonte
- Universidad de Costa Rica, Faculdad de Microbiologia, Instituto Clodomiro Picado, San José, Costa Rica
| | - Thomas Maurin
- Laboratoire de Virologie, IFR50, Faculté de Médecine, 06107 Nice cedex 2, France
| | - Carole Guillaume
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Stéphane Canaan
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS-UPR 9025, 31 Chemin Joseph-Aiguier, 13402 Marseille cedex 20, France
| | - Christiane Deregnaucourt
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Joseph Schrével
- USM 0504, Biologie Fonctionnelle des Protozoaires, Laboratoire de Biologie Parasitaire, Museum National d’Histoire Naturelle, 61 rue Buffon, 75231 Paris cedex 05, France
| | - Alain Doglio
- Laboratoire de Virologie, IFR50, Faculté de Médecine, 06107 Nice cedex 2, France
| | - José María Gutiérrez
- Universidad de Costa Rica, Faculdad de Microbiologia, Instituto Clodomiro Picado, San José, Costa Rica
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Address correspondence to: Gérard Lambeau, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France, Tel. +33 (0) 4 93 95 77 33; Fax. +33 (0) 4 93 95 77 08;
| |
Collapse
|
18
|
Angulo Y, Gutiérrez JM, Soares AM, Cho W, Lomonte B. Myotoxic and cytolytic activities of dimeric Lys49 phospholipase A2 homologues are reduced, but not abolished, by a pH-induced dissociation. Toxicon 2005; 46:291-6. [PMID: 15970303 DOI: 10.1016/j.toxicon.2005.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 12/01/2022]
Abstract
Lys49 phospholipase A2 (PLA2) homologues are myotoxic proteins devoid of catalytic activity. Their toxic determinants map to the C-terminal region 115-129, which plays an effector role in membrane damage. The dimeric state was reported to be essential for a Lys49 PLA2 which lost its liposome-disrupting activity after dissociating into monomers at pH 5.0. This study, evaluated the effects of a pH-induced dissociation on the toxicity of four Lys49 PLA2s, using biological targets instead. Both their cytolytic and myotoxic activities were lower at pH 5.0 than at pH 7.2. However, in contrast with experiments using artificial bilayers, toxic effects upon biological targets were not abolished at pH 5.0. Importantly, C-terminal synthetic peptides of two Lys49 PLA2s also showed lower cytolytic action at pH 5.0 than at pH 7.2, indicating that factors other than the dimeric/monomeric state of the proteins may also be involved in these differences of toxicity. Results support the view that the dimeric state of Lys49 PLA2s could play an enhancing, although not essential role, in their C-terminal region-mediated mechanism of myotoxicity.
Collapse
Affiliation(s)
- Yamileth Angulo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | |
Collapse
|
19
|
Wang YM, Peng HF, Tsai IH. Unusual venom phospholipases A2 of two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis. FEBS J 2005; 272:3015-25. [PMID: 15955061 DOI: 10.1111/j.1742-4658.2005.04715.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the venom diversity of Asian pit vipers, we investigated the structure and function of venom phospholipase A2 (PLA2) derived from two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis. We purified six novel PLA2s from T. puniceus venom and another three from T. borneensis venom. All cDNAs encoding these PLA2s except one were cloned, and the molecular masses and N-terminal sequences of the purified enzymes closely matched those predicted from the cDNA. Three contain K49 and lack a disulfide bond at C61-C91, in contrast with the D49-containing PLA2s in both venom species. They are less thermally stable than other K49-PLA2s which contain seven disulfide bonds, as indicated by a decrease of 8.8 degrees C in the melting temperature measured by CD spectroscopy. The M110D mutation in one of the K49-PLA2s apparently reduced its edematous potency. A phylogenetic tree based on the amino-acid sequences of 17 K49-PLA2s from Asian pit viper venoms illustrates close relationships among the Trimeresurus species and intergeneric segregations. Basic D49-PLA2s with a unique Gly6 substitution were also purified from both venoms. They showed edema-inducing and anticoagulating activities. It is notable that acidic PLA2s from both venoms inhibited blood coagulation rather than platelet aggregation, and this inhibition was only partially dependent on enzyme activity. These results contribute to our understanding of the evolution of Trimeresurus pit vipers and the structure-function relationships between various subtypes of crotalid venom PLA2.
Collapse
Affiliation(s)
- Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
20
|
Santamaría C, Larios S, Angulo Y, Pizarro-Cerda J, Gorvel JP, Moreno E, Lomonte B. Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon 2005; 45:807-15. [PMID: 15904676 DOI: 10.1016/j.toxicon.2004.09.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/06/2004] [Accepted: 09/21/2004] [Indexed: 11/29/2022]
Abstract
A short peptide derived from the C-terminal region of Bothrops asper myotoxin II, a Lys49 phospholipase A(2) (PLA(2)), was previously found to reproduce the bactericidal activity of its parent molecule. In this study, a panel of eight PLA(2) myotoxins purified from crotalid snake venoms, including both Lys49 and Asp49-type isoforms, were all found to express bactericidal activity, indicating that this may be a common action of the group IIA PLA(2) protein family. A series of 10 synthetic peptide variants, based on the original C-terminal sequence 115-129 of myotoxin II and its triple Tyr-->Trp substituted peptide p115-W3, were characterized. In vitro assays for bactericidal, cytolytic and anti-endotoxic activities of these peptides suggest a general correlation between the number of tryptophan substitutions introduced and microbicidal potency, both against Gram-negative (Salmonella typhimurium) and Gram-positive (Staphylococcus aureus) bacteria. Peptide variants with high bactericidal activity also tended to be more cytolytic towards skeletal muscle C2C12 myoblasts, thus limiting their potential in vivo use. However, the peptide variant pEM-2 (KKWRWWLKALAKK) showed reduced toxicity towards muscle cells, while retaining high bactericidal potency. This peptide also showed the highest endotoxin-neutralizing activity in vitro, and was shown to functionally interact with lipopolysaccharide (LPS) using a chimeric bacteria model. The bactericidal and anti-endotoxic properties of pEM-2, combined with its relatively low toxicity towards eukaryotic cells, highlight it as a promising candidate for further evaluation of its antimicrobial potential in vivo.
Collapse
Affiliation(s)
- Carlos Santamaría
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José
| | | | | | | | | | | | | |
Collapse
|
21
|
Santamaría C, Larios S, Quirós S, Pizarro-Cerda J, Gorvel JP, Lomonte B, Moreno E. Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrob Agents Chemother 2005; 49:1340-5. [PMID: 15793109 PMCID: PMC1068596 DOI: 10.1128/aac.49.4.1340-1345.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activities of short synthetic, nonhemolytic peptides derived from the C-terminal region of myotoxin II, a catalytically inactive phospholipase A2 homologue present in the venom of the snake Bothrops asper, have been shown to reproduce the bactericidal activity of the parent protein. They combine cationic and hydrophobic-aromatic amino acids, thus functionally resembling the antimicrobial peptides of innate defenses. This study evaluated the antimicrobial and antiendotoxic properties of a 13-mer derivative peptide of the C-terminal sequence from positions 115 to 129 of myotoxin II, named pEM-2. This peptide (KKWRWWLKALAKK) showed bactericidal activity against both gram-positive and gram-negative bacteria. In comparison to previously described peptide variants derived from myotoxin II, the toxicity of pEM-2 toward eukaryotic cells in culture was significantly reduced, being similar to that of lactoferricin B but lower than that of polymyxin B. The all-D enantiomer of pEM-2 [pEM-2 (D)] retained the same bactericidal potency of its L-enantiomeric counterpart, but it showed an enhanced ability to counteract the lethal activity of an intraperitoneal lipopolysaccharide challenge in mice, which correlated with a significant reduction of the serum tumor necrosis factor alpha levels triggered by this endotoxin. Lethality induced by intraperitoneal infection of mice with Escherichia coli or Salmonella enterica serovar Typhimurium was reduced by the administration of pEM-2 (D). These results demonstrate that phospholipase A2-derived peptides may have the potential to counteract microbial infections and encourage further evaluations of their actions in vivo.
Collapse
Affiliation(s)
- Carlos Santamaría
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
22
|
Murakami MT, Gava LM, Zela SP, Arruda EZ, Melo PA, Gutierrez JM, Arni RK. Crystallization and preliminary X-ray diffraction analysis of suramin, a highly charged polysulfonated napthylurea, complexed with a myotoxic PLA2 from Bothrops asper venom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1703:83-5. [PMID: 15588706 DOI: 10.1016/j.bbapap.2004.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 10/26/2022]
Abstract
Suramin is a highly charged polysulfonated napthylurea that interferes in a number of physiologically relevant processes such as myotoxicity, blood coagulation and several kinds of cancers. This synthetic compound was complexed with a myotoxic Lys49 PLA(2) from Bothrops asper venom and crystallized by the hanging-drop vapor diffusion method at 18 degrees C. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a=49.05, b=63.84 and c=85.67 angstroms. Diffraction data was collected to 1.78 angstroms.
Collapse
Affiliation(s)
- Mário T Murakami
- Departamento de Física, IBILCE, Universidade Estadual Paulista, Cristóvão Colombo, 2265, Nazareth, 15054-000, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Soares AM, Giglio JR. Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. Toxicon 2004; 42:855-68. [PMID: 15019487 DOI: 10.1016/j.toxicon.2003.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipases A2 (PLA2s) constitute major components of snake venoms and have been extensively investigated not only because they are very abundant in these venoms but mainly because they display a wide range of biological effects, including neurotoxic, myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anti-coagulant, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoral, anti-malarial and anti-parasitic. Due to this functional diversity, these structurally similar proteins aroused the interest of many researchers as molecular models for study of structure-function relationships. One of the main experimental strategies used for the study of myotoxic PLA2s is the traditional chemical modification of specific amino acid residues (His, Met, Lys, Tyr, Trp and others) and examination of the consequent effects upon the enzymatic, toxic and pharmacological activities. This line of research has provided useful insights into the structural determinants of the action of these enzymes and, together with additional strategies, supports the concept of the presence of 'pharmacological sites' distinct from the catalytic site in snake venom myotoxic PLA2s.
Collapse
Affiliation(s)
- Andreimar M Soares
- Departamento de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirão Presto, SP, Brazil.
| | | |
Collapse
|
24
|
Abstract
Venom phospholipase A2 (PLA2) enzymes share similarity in structure and catalytic function with mammalian enzymes. However, in contrast to mammalian enzymes, many are toxic and induce a wide spectrum of pharmacological effects. Thus structure-function relationship of this group of small proteins is subtle, but complex puzzle to protein biochemists, molecular biologists, toxinologists, pharmacologists and physiologists. This review describes the present status of our understanding of their structure, function and mechanism. It was proposed that their unique ability to 'target' themselves to a specific organ or tissue is due to their high affinity binding to specific proteins which act as receptors (more precisely, acceptors). This specific binding of PLA2 is conferred by the presence of a 'pharmacological site' on its surface which is independent of the catalytic site. The high affinity interaction of PLA2 with its acceptor (or target protein) is probably due to the complementarity, in terms of charges, hydrophobicity and van der Waal's contact surfaces, between the pharmacological site and the binding site on the surface of the acceptor protein. Upon binding to the target, the PLA2 can induce its pharmacological effects by mechanisms either dependent on or independent of its catalytic activity. Because of the unprecedented wide spectrum of specific targeting to various tissues and organs, identification of the pharmacological sites has potential for exploitation in development of novel systems useful for 'delivering' specific proteins to a particular target tissue or organ. Thus research in this field will provide a lot of exciting opportunities.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543.
| |
Collapse
|
25
|
Lomonte B, Angulo Y, Calderón L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 2003; 42:885-901. [PMID: 15019489 DOI: 10.1016/j.toxicon.2003.11.008] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In 1984, the first venom phospholipase A2 (PLA2) with a lysine substituting for the highly conserved aspartate 49 was discovered, in the North American crotalid snake Agkistrodon p. piscivorus [J. Biol. Chem. 259 (1984) 13839]. Ten years later, the first mapping of a 'toxic region' on a Lys49 PLA2 was reported, in Bothrops asper myotoxin II [J. Biol. Chem. 269 (1994) 29867]. After a further decade of research on the Lys49 PLA2s, a better understanding of their structural determinants of toxicity and mode of action is rapidly emerging, with myotoxic effector sites identified at the C-terminal region in at least four proteins: B. asper myotoxin II, A. p. piscivorus K49 PLA2, A. c. laticinctus ACL myotoxin, and B. jararacussu bothropstoxin I. Although important features still remain to be established, their toxic mode of action has now been understood in its more general concepts, and a consistent working hypothesis can be experimentally supported. It is proposed that all the toxic activities of Lys49 PLA2s are related to their ability to destabilize natural (eukaryotic and prokaryotic) and artificial membranes, using a cationic/hydrophobic effector site located at their C-terminal loop. This review summarizes the general properties of the Lys49 PLA2 myotoxins, emphasizing the development of current concepts and hypotheses concerning the molecular basis of their toxic activities.
Collapse
Affiliation(s)
- Bruno Lomonte
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | | | | |
Collapse
|
26
|
Murakami MT, Arni RK. A structure based model for liposome disruption and the role of catalytic activity in myotoxic phospholipase A2s. Toxicon 2003; 42:903-13. [PMID: 15019490 DOI: 10.1016/j.toxicon.2003.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Venom phospholipase A2s (PLA2s) display a wide spectrum of pharmacological activities and, based on the wealth of biochemical and structural data currently available for PLA2s, mechanistic models can now be inferred to account for some of these activities. A structural model is presented for the role played by the distribution of surface electrostatic potential in the ability of myotoxic D49/K49 PLA2s to disrupt multilamellar vesicles containing negatively charged natural and non-hydrolyzable phospholipids. Structural evidence is provided for the ability of K49 PLA2s to bind phospholipid analogues and for the existence of catalytic activity in K49 PLA2s. The importance of the existence of catalytic activity of D49 and K49 PLA2s in myotoxicity is presented.
Collapse
Affiliation(s)
- M T Murakami
- Department of Biophysics, IBILCE/UNESP, R. Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto-SP, Brazil
| | | |
Collapse
|
27
|
Lomonte B, Angulo Y, Santamaría C. Comparative study of synthetic peptides corresponding to region 115–129 in Lys49 myotoxic phospholipases A2 from snake venoms. Toxicon 2003; 42:307-12. [PMID: 14559083 DOI: 10.1016/s0041-0101(03)00149-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lys49 phospholipase A2 homologues constitute a group of catalytically-inactive proteins, present in the venoms of many crotalid snakes, which induce myonecrosis. Current evidence supports the mapping of their toxic site to the C-terminal region, where amino acids comprised within the sequence 115-129 appear to play a central role in toxicity. This study evaluated the possible toxic effects of several synthetic peptides corresponding to the sequence 115-129 of different Lys49 myotoxins, using in vitro cytotoxicity and in vivo myotoxicity assays. Peptides varied widely in their activities, ranging from fully toxic to harmless. Thus, the toxic actions of Lys49 myotoxins cannot always be reproduced by their free peptides 115-129. Peptides from Agkistrodon p. piscivorus (AppK) and A. contortrix laticinctus Lys49 myotoxins exerted both cytotoxicity and myotoxicity. Random scrambling of peptide AppK resulted in complete loss of toxicity, demonstrating that its specific sequence of residues, rather than their simple presence or frequency, confers its ability to damage muscle. Peptide AppK synthesized with D-amino acids retained both activities of the natural L-enantiomer, suggesting that its mechanism of action does not involve the recognition of a proteic receptor/acceptor site on muscle cells, but possibly the binding to other structures, such as negatively-charged membrane phospholipids.
Collapse
Affiliation(s)
- Bruno Lomonte
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | | | | |
Collapse
|
28
|
Chacur M, Longo I, Picolo G, Gutiérrez JM, Lomonte B, Guerra JL, Teixeira CFP, Cury Y. Hyperalgesia induced by Asp49 and Lys49 phospholipases A2 from Bothrops asper snake venom: pharmacological mediation and molecular determinants. Toxicon 2003; 41:667-78. [PMID: 12727271 DOI: 10.1016/s0041-0101(03)00007-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ability of Lys49 and Asp49 phospholipases A(2) (PLA(2)), from Bothrops asper snake venom, to cause hyperalgesia was investigated in rats, using the paw pressure test. Intraplantar injection of both toxins (5-20 micro g/paw) caused hyperalgesia, which peaked 1h after injections. Incubation of both proteins with heparin, prior to their injection, partially reduced this response. Chemical modification of Asp49 PLA(2) with p-bromophenacyl bromide (p-BPB), which abrogates its PLA(2) activity, also abolished hyperalgesia. Intraplantar injection of a synthetic peptide corresponding to the C-terminal sequence 115-129 of Lys49 PLA(2), caused hyperalgesia of similar time course, but varying magnitude, than that induced by the native protein. In contrast, a homologous peptide derived from the Asp49 PLA(2) did not show any nociceptive effect. Hyperalgesia induced by both PLA(2)s was blocked by the histamine and serotonin receptor antagonists promethazine and methysergide, respectively, by the bradykinin B(2) receptor antagonist HOE 140 and by antibodies to tumor necrosis factor alfa (TNFalpha) and interleukin 1 (IL-1). Pretreatment with guanethidine, atenolol, prazosin and yohimbine, inhibitors of sympathomimetic amines, or with indomethacin, inhibitor of the cyclo-oxygenase pathway, reduced Lys49 PLA(2)-induced hyperalgesia without interfering with the nociceptive activity of Asp49 PLA(2). The hyperalgesic response to both myotoxins was not modified by pretreatment with celecoxib, an inhibitor of the cyclo-oxygenase type II, by zileuton, an inhibitor of the lipoxygenase pathway or by N(g)-methyl-L-arginine (LNMMA), an inhibitor of nitric oxide synthase. These results suggest that Asp49 and Lys49 PLA(2)s are important hyperalgesic components of B. asper venom, and that Lys49 and Asp49 PLA(2)s exert their algogenic actions through different molecular mechanisms.
Collapse
Affiliation(s)
- M Chacur
- Laboratório de Fisiopatologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Georgieva DN, Genov N, Nikolov P, Aleksiev B, Rajashankar KR, Voelter W, Betzel C. Structure-function relationships in the neurotoxin Vipoxin from the venom of Vipera ammodytes meridionalis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:617-627. [PMID: 12524132 DOI: 10.1016/s1386-1425(02)00212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The neurotoxic complex Vipoxin is the lethal component of the venom of Vipera ammodytes meridionalis, the most toxic snake in Europe. It is a complex between a toxic phospholipase A2 (PLA2) and a non-toxic and catalytically inactive protein, stabilizing the enzyme and reducing the activity and toxicity. Structure-function relationships in this complex were studied by spectroscopic methods. A good correlation between the ionization behaviour and accessible surface area (ASA) of the tyrosyl residues was observed. In the toxic PLA2 subunit phenolic groups participate in H-bonding network that stabilizes the catalytically and pharmacologically active conformation. The tryptophan fluorescence decay of Vipoxin is well fitted by two exponentials with lifetimes of 0.1 (54%) and 2.5 (46%) ns. W20P, W31P and W31I are located in the interface between the two subunits and participate in hydrophobic interactions stabilizing the complex. Dissociation of the complex leads to a transition of the tryptophans from hydrophobic to hydrophilic environment, which influences mainly tau2. The longer lifetime is more sensitive to the polarity of the environment. Circular dichroism measurements demonstrate that the two components of the neurotoxin preserve their secondary structure after dissociation of the complex. The results of the spectroscopic studies are in accordance with a mechanism of blockade of transmission across the neuromuscular junctions of the breathing muscles by interaction of a dissociated toxic PLA2 with a membrane. The loss of toxicity is connected with slight changes in the secondary structure of PLA2. CD studies also show a substantial contribution of disulfide bonds to the stability of the neurotoxic complex and its components.
Collapse
|
30
|
Angulo Y, Olamendi-Portugal T, Alape-Girón A, Possani LD, Lomonte B. Structural characterization and phylogenetic relationships of myotoxin II from Atropoides (Bothrops) nummifer snake venom, a Lys49 phospholipase A(2) homologue. Int J Biochem Cell Biol 2002; 34:1268-78. [PMID: 12127577 DOI: 10.1016/s1357-2725(02)00060-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to analyze its structure-function relationships, the complete amino acid sequence of myotoxin II from Atropoides (Bothrops) nummifer from Costa Rica was determined. This toxin is a Lys49-type phospholipase A(2) (PLA(2)) homologue, devoid of catalytic activity, structurally belonging to class IIA. In addition to the Asp49 --> Lys change in the (inactive) catalytic center, substitutions in the calcium-binding loop suggest that its lack of enzymatic activity is due to the loss of ability to bind Ca(2+). The toxin occurs as a homodimer of basic subunits of 121 residues. Its sequence has highest similarity to Lys49 PLA(2)s from Cerrophidion, Trimeresurus, Bothrops and Agkistrodon species, which form a subfamily of proteins that diverged early from Asp49 PLA(2)s present in the same species, as shown by phylogenetic analysis. The tertiary structure of the toxin was modeled, based on the coordinates of Cerrophidion godmani myotoxin II. Its exposed C-terminal region 115-129 shows several differences in comparison to the homologous sequences of other Lys49 PLA(2)s, i.e. from Agkistrodon p. piscivorus and Bothrops asper. Region 115-129 of the latter two proteins has been implicated in myotoxic activity, on the basis of the direct membrane-damaging of their corresponding synthetic peptides. However, peptide 115-129 of A. nummifer myotoxin II did not exert toxicity upon cultured skeletal muscle cells or mature muscle in vivo. Differences in several amino acid residues, either critical for toxicity, or influencing the conformation of free peptide 115-129 from A. nummifer myotoxin II, may account for its lack of direct membrane-damaging properties.
Collapse
Affiliation(s)
- Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
31
|
Chioato L, De Oliveira AHC, Ruller R, Sá JM, Ward RJ. Distinct sites for myotoxic and membrane-damaging activities in the C-terminal region of a Lys49-phospholipase A2. Biochem J 2002; 366:971-6. [PMID: 12079495 PMCID: PMC1222840 DOI: 10.1042/bj20020092] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Revised: 03/22/2002] [Accepted: 06/21/2002] [Indexed: 11/17/2022]
Abstract
Bothropstoxin-I (BthTx-I) is a Lys(49)-phospholipase A(2) from the venom of Bothrops jararacussu which demonstrates both myotoxic and Ca(2+)-independent membrane-damaging activities. The structural determinants of these activities are poorly defined, therefore site-directed mutagenesis has been used to substitute all cationic and aromatic residues between positions 115 and 129 in the C-terminal loop region of the protein. Substitution of lysine and arginine residues with alanine in the region 117-122 resulted in a significant reduction of myotoxic activity of the recombinant BthTx-I. With the exception of Lys(122), these same substitutions did not significantly alter the Ca(2+)-independent membrane-damaging activity. In contrast, substitution of the positively-charged residues at positions 115, 116 and 122 resulted in reduced Ca(2+)-independent membrane-damaging activity but, with the exception of Lys(122), had no effect on myotoxicity. These results indicate that the two activities are independent and are determined by discrete yet partially overlapping motifs in the C-terminal loop. Results from site-directed mutagenesis of the aromatic residues in the same part of the protein suggest that a region including residues 115-119 interacts superficially with the membrane interface and that the residues around position 125 partially insert into the lipid membrane. These results represent the first detailed mapping of a myotoxic site in a phospholipase A(2), and support a model of a Ca(2+)-independent membrane-damaging mechanism in which the C-terminal region of BthTx-I interacts with and contributes to the perturbation of the phospholipid bilayer.
Collapse
Affiliation(s)
- Lucimara Chioato
- Departamento de Bioqui;mica e Imunologia, FMRP-USP, Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
32
|
Ward RJ, Chioato L, de Oliveira AHC, Ruller R, Sá JM. Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem J 2002; 362:89-96. [PMID: 11829743 PMCID: PMC1222363 DOI: 10.1042/0264-6021:3620089] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bothropstoxin-I (BthTx-I) is a myotoxic phospholipase A(2) variant present in the venom of Bothrops jararacussu, in which the Asp(49) residue is replaced with a lysine, which damages artificial membranes by a Ca(2+)-independent mechanism. Wild-type BthTx-I and the mutants Lys(49)-->Asp, His(48)-->Gln and Lys(122)-->Ala were expressed in Escherichia coli BL21(DE3) cells, and the hydrolytic, myotoxic and membrane-damaging activities of the recombinant proteins were compared with native BthTx-I purified from whole venom. The Ca(2+)-independent membrane-damaging and myotoxic activities of the native and wild-type recombinant BthTx-I, His(48)Gln and Lys(49)Asp mutants were similar; however, the Lys(122)Ala mutant demonstrated reduced levels of both activities. Although a low hydrolytic activity against a mixed phospholipid substrate was observed with native BthTx-I, no substrate hydrolysis was detected with the wild-type recombinant enzyme or any of the mutants. In the case of the Lys(49)Asp mutant, this demonstrates that the absence of catalytic activity in Lys(49)-PLA(2) is not a consequence of the single Asp(49)-->Lys replacement. Furthermore, these results provide unambiguous evidence that the Ca(2+)-independent membrane-damaging and myotoxic activities are maintained in the absence of hydrolysis. The evidence favours a model for a hydrolysis-independent, membrane-damaging mechanism involving an interaction of the C-terminal region of BthTx-I with the target membrane.
Collapse
Affiliation(s)
- Richard J Ward
- Departamento de Química, FFCLRP-USP, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Núñez CE, Angulo Y, Lomonte B. Identification of the myotoxic site of the Lys49 phospholipase A(2) from Agkistrodon piscivorus piscivorus snake venom: synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert membrane-damaging activities. Toxicon 2001; 39:1587-94. [PMID: 11478967 DOI: 10.1016/s0041-0101(01)00141-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group II phospholipase A(2) (PLA(2)) myotoxins found in the venoms of Crotalidae snakes can be divided into 'Asp49' and 'Lys49' isoforms, the latter being considered catalytically-inactive variants. Previous studies on one Lys49 isoform, myotoxin II from Bothrops asper, indicated that its myotoxic activity is due to the presence of a short cationic/hydrophobic sequence (115-129) near its C-terminus, which displays membrane-damaging properties. Since the C-terminal region of different group II PLA(2) myotoxins presents considerable sequence variability, synthetic peptides homologous to region 115-129 of myotoxin II, but corresponding to B. asper myotoxin III (Asp49), Agkistrodon piscivorus piscivorus Asp49 PLA(2) and Lys49 PLA(2), were studied to determine the possible functional relevance of such region for the toxic activities of these proteins. Results showed that both Lys49-derived peptides (p-BaK49 and p-AppK49) were able to lyse skeletal muscle C2C12 cells in culture, and to induce edema in the mouse footpad assay. Moreover, p-AppK49, which showed a markedly stronger cytotoxic potency than p-BaK49, additionally induced skeletal muscle necrosis when injected into mice. These observations unequivocally identify the sequence 115-129 (KKYKAYFKLKCKK) of the Lys49 PLA(2) of A. p. piscivorus as containing the key structural determinants needed for myotoxicity, and represent the first report of an unmodified, PLA(2)-derived short synthetic peptide with the ability to reproduce this effect of a parent toxin in vivo. On the other hand, the two Asp49-derived peptides did not show any toxic effects in vitro or in vivo, even at high concentrations. These findings suggests that Lys49 and Asp49 group II PLA(2)s might exert their myotoxic actions through different molecular mechanisms, by implying that the latter may not utilize their C-terminal regions as main membrane-destabilizing elements.
Collapse
Affiliation(s)
- C E Núñez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
34
|
Angulo Y, Núñez CE, Lizano S, Soares AM, Lomonte B. Immunochemical properties of the N-terminal helix of myotoxin II, a lysine-49 phospholipase A(2) from Bothrops asper snake venom. Toxicon 2001; 39:879-87. [PMID: 11137549 DOI: 10.1016/s0041-0101(00)00227-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myotoxic class II phospholipases A(2) from snake venoms can be divided into Asp49 and Lys49 types. The latter, including Bothrops asper myotoxin II, exert membrane damage despite lacking catalytic activity. A heparin-binding, hydrophobic/cationic region, near the C-terminus of myotoxin II (115-129) has been shown to be relevant in its membrane-damaging actions. However, some observations suggest also a potential participation of its N-terminal region. An immunochemical approach was utilized to examine the properties and possible role in toxicity of the N-terminal helix of myotoxin II. Rabbit antibodies raised to a synthetic peptide comprising residues 1-15 recognized the native protein. These antibodies were utilized to compare the antigenic characteristics of the N-terminal helix of several myotoxic phospholipases A(2), showing generally stronger binding to Lys49 myotoxins, in comparison to Asp49 counterparts. However, three Lys49 myotoxins (Cerrophidion godmani myotoxin II, Atropoides nummifer myotoxin II, and Trimeresurus flavoviridis basic protein I) were not recognized by the antibodies, revealing a significant antigenic variability of the N-terminal region within this group of toxins. In neutralization experiments, pre-incubation of myotoxin II with affinity-purified antibodies to the N-terminal helix did not inhibit its myotoxic activity in mice, nor its cytotoxic effect upon cultured muscle cells. These findings argue against a critical role of the N-terminal region of this protein in toxicity. Thus, the precise role of the N-terminal helix of myotoxin II and related Lys49 phospholipases A(2), regarding their toxic mechanisms, remains controversial, and requires further experimental study to be clarified.
Collapse
Affiliation(s)
- Y Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
35
|
Soares AM, Andrião-Escarso SH, Bortoleto RK, Rodrigues-Simioni L, Arni RK, Ward RJ, Gutiérrez JM, Giglio JR. Dissociation of Enzymatic and Pharmacological Properties of Piratoxins-I and -III, Two Myotoxic Phospholipases A2 from Bothrops pirajai Snake Venom. Arch Biochem Biophys 2001; 387:188-96. [PMID: 11370840 DOI: 10.1006/abbi.2000.2244] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Piratoxins (PrTX) I and III are phospholipases A2 (PLA2s) or PLA2 homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA2, while PrTX-I is a Lys49 PLA2 homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities.
Collapse
Affiliation(s)
- A M Soares
- Departamento de Bioquímica e Immunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Soares AM, Guerra-Sá R, Borja-Oliveira CR, Rodrigues VM, Rodrigues-Simioni L, Rodrigues V, Fontes MR, Lomonte B, Gutiérrez JM, Giglio JR. Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom. Arch Biochem Biophys 2000; 378:201-9. [PMID: 10860537 DOI: 10.1006/abbi.2000.1790] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom, was structurally and functionally characterized. Several biological activities were assayed and compared with those of the chemically modified toxin involving specific amino acid residues. The cDNA produced from the total RNA by RT-PCR contained approximately 400 bp which codified its 121 amino acid residues with a calculated pI and molecular weight of 8.9 and 13,727, respectively. Its amino acid sequence showed strong similarities with several Lys49 phospholipase A(2) homologues from other Bothrops sp. venoms. By affinity chromatography and gel diffusion, it was demonstrated that heparin formed a complex with BnSP-7, held at least in part by electrostatic interactions. BnSP-7 displayed bactericidal activity and promoted the blockage of the neuromuscular contraction of the chick biventer cervicis muscle. In addition to its in vivo myotoxic and edema-inducing activity, it disrupted artificial membranes. Both BnSP-7 and the crude venom released creatine kinase from the mouse gastrocnemius muscle and induced the development of a dose-dependent edema. His, Tyr, and Lys residues of the toxin were chemically modified by 4-bromophenacyl bromide (BPB), 2-nitrobenzenesulfonyl fluoride (NBSF), and acetic anhydride (AA), respectively. Cleavage of its N-terminal octapeptide was achieved with cyanogen bromide (CNBr). The bactericidal action of BnSP-7 on Escherichia coli was almost completely abolished by acetylation or cleavage of the N-terminal octapeptide. The neuromuscular effect induced by BnSP-7 was completely inhibited by heparin, BPB, acetylation, and CNBr treatment. The creatine kinase releasing and edema-inducing effects were partially inhibited by heparin or modification by BPB and almost completely abolished by acetylation or cleavage of the N-terminal octapeptide. The rupture of liposomes by BnSP-7 and crude venom was dose and temperature dependent. Incubation of BnSP-7 with EDTA did not change this effect, suggesting a Ca(2+)-independent membrane lytic activity. BnSP-7 cross-reacted with antibodies raised against B. moojeni (MjTX-II), B. jararacussu (BthTX-I), and B. asper (Basp-II) myotoxins as well as against the C-terminal peptide (residues 115-129) from Basp-II.
Collapse
Affiliation(s)
- A M Soares
- Departamento de Bioquímica, Universidade de Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|