1
|
Kreiman AN, Garner SE, Carroll SC, Sutherland MC. Biochemical mapping reveals a conserved heme transport mechanism via CcmCD in System I bacterial cytochrome c biogenesis. mBio 2025; 16:e0351524. [PMID: 40167305 PMCID: PMC12077264 DOI: 10.1128/mbio.03515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Heme is a redox-active cofactor for essential processes across all domains of life. Heme's redox capabilities are responsible for its biological significance but also make it highly cytotoxic, requiring tight intracellular regulation. Thus, the mechanisms of heme trafficking are still not well understood. To address this, the bacterial cytochrome c biogenesis pathways are being developed into model systems to elucidate mechanisms of heme trafficking. These pathways function to attach heme to apocytochrome c, which requires the transport of heme from inside to outside of the cell. Here, we focus on the System I pathway (CcmABCDEFGH) which is proposed to function in two steps: CcmABCD transports heme across the membrane and attaches it to CcmE. HoloCcmE then transports heme to the holocytochrome c synthase, CcmFH, for attachment to apocytochrome c. To interrogate heme transport across the membrane, we focus on CcmCD, which can form holoCcmE independent of CcmAB, leading to the hypothesis that CcmCD is a heme transporter. A structure-function analysis via cysteine/heme crosslinking identified a heme acceptance domain and heme transport channel in CcmCD. Bioinformatic analysis and structural predictions across prokaryotic organisms determined that the heme acceptance domains are structurally variable, potentially to interact with diverse heme delivery proteins. In contrast, the CcmC transmembrane heme channel is structurally conserved, indicating a common mechanism for transmembrane heme transport. We provide direct biochemical evidence mapping the CcmCD heme channel and providing insights into general mechanisms of heme trafficking by other putative heme transporters. IMPORTANCE Heme is a biologically important cofactor for proteins involved with essential cellular functions, such as oxygen transport and energy production. Heme can also be toxic to cells and thus requires tight regulation and specific trafficking pathways. As a result, much effort has been devoted to understanding how this important, yet cytotoxic, molecule is transported. While several heme transporters/importers/exporters have been identified, the biochemical mechanisms of transport are not well understood, representing a major knowledge gap. Here, the bacterial cytochrome c biogenesis pathway, System I (CcmABCDEFGH), is used to elucidate the transmembrane transport of heme via CcmCD. We utilize a cysteine/heme crosslinking approach, which can trap endogenous heme in specific domains, to biochemically map the heme transport channel in CcmCD, demonstrating that CcmCD is a heme transporter. These results suggest a model for heme trafficking by other heme transporters in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Alicia N. Kreiman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sarah E. Garner
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Susan C. Carroll
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Molly C. Sutherland
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Zhao C, Zhao T, Liu Y, Xia X, Li X. Role of ygaD in mediating polymyxin B resistance in Bacillus subtilis via efflux mechanisms. Microb Pathog 2025; 201:107345. [PMID: 39924090 DOI: 10.1016/j.micpath.2025.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE The aim of this study is to analyze the resistance function and mechanism of the putative ATP-binding cassette (ABC) transporter YgaD against polymyxin B in Bacillus subtilis. METHODS The interaction between the YgaD protein and the antimicrobial peptide polymyxin B was initially assessed using molecular docking and molecular dynamics simulation. Subsequently, resistance assays and intracellular polymyxin B content measurements were conducted on Bacillus subtilis with a knockout of the ygaD gene and on Escherichia coli with heterologous expression of the ygaD gene to validate the resistance function mediated by the YgaD protein and deduce its potential resistance mechanism. RESULTS The results demonstrated that the YgaD protein could form stable complexes with polymyxin B and facilitated its efflux from bacterial cells, thereby reducing its intracellular accumulation and conferring resistance to polymyxin B. CONCLUSION Our study revealed that YgaD regulates polymyxin B resistance in Bacillus subtilis through an efflux mechanism. These findings contribute to the understanding of microbial resistance mechanisms against antimicrobial peptides and provide a theoretical basis for the future design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Chongyi Zhao
- Department of Gynecology, The First People's Hospital of Yunnan Province, (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan Province, China
| | - Ting Zhao
- Department of Gynecology, The First People's Hospital of Yunnan Province, (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan Province, China
| | - Ying Liu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| | - Xiao Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, (the Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Mahfouz AM, Eraqi WA, El Hifnawi HNED, Shawky AED, Samir R, Ramadan MA. Genetic determinants of silver nanoparticle resistance and the impact of gamma irradiation on nanoparticle stability. BMC Microbiol 2025; 25:18. [PMID: 39806286 PMCID: PMC11727503 DOI: 10.1186/s12866-024-03682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens. Therefore, there is an urgent need for greater knowledge regarding the effects of improper and excessive use of these medications. The current study describes the consequences of long-term exposure to sub-lethal concentrations of AgNPs on the bacterial sensitivity to NPs and the reflection of this change on the bacterial genome. RESULTS Chemical methods have been used to prepare AgNPs and gamma irradiation has been utilized to produce more stable AgNPs. Different techniques were used to characterize and identify the prepared AgNPs including UV-visible spectrophotometer, Fourier Transform Infrared (FT-IR), Dynamic light scattering (DLS), and zeta potential. Transmission electron microscope (TEM) and Scanning electron microscope (SEM) showed 50-100 nm spherical-shaped AgNPs. Eleven gram-negative and gram-positive bacterial isolates were collected from different wound infections. The minimum inhibitory concentrations (MICs) of AgNPs against the tested isolates were evaluated using the agar dilution method. This was followed by the induction of bacterial resistance to AgNPs using increasing concentrations of AgNPs. All isolates changed their susceptibility level to become resistant to high concentrations of AgNPs upon recultivation at increasing concentrations of AgNPs. Whole genome sequencing (WGS) was performed on selected susceptible isolates of gram-positive Staphylococcus lentus (St.L.1), gram-negative Klebsiella pneumonia (KP.1), and their resistant isolates St.L_R.Ag and KP_R.Ag to detect the genomic changes and mutations. CONCLUSIONS For the detection of single-nucleotide polymorphisms (SNPs) and the identification of all variants (SNPs, insertions, and deletions) in our isolates, the Variation Analysis Service tool available in the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) was used. Compared to the susceptible isolates, the AgNPs-resistant isolates St.L_R.Ag and KP_R.Ag had unique mutations in specific efflux pump systems, stress response, outer membrane proteins, and permeases. These findings might help to explain how single-nucleotide variants contribute to AgNPs resistance. Consequently, strict regulations and rules regarding the use and disposal of nano waste worldwide, strict knowledge of microbe-nanoparticle interaction, and the regulated disposal of NPs are required to prevent pathogens from developing nanoparticle resistance.
Collapse
Affiliation(s)
- Amira M Mahfouz
- Department of Drug Radiation Research, Division of Biotechnology, Laboratory of Drug Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Hala Nour El Din El Hifnawi
- Department of Drug Radiation Research, Division of Biotechnology, Laboratory of Drug Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Alaa El Din Shawky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Mohamed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Kim Y, Kim D, Hieu NM, Byun H, Ahn JH. PySupercharge: a python algorithm for enabling ABC transporter bacterial secretion of all proteins through amino acid mutation. Microb Cell Fact 2024; 23:115. [PMID: 38643109 PMCID: PMC11031901 DOI: 10.1186/s12934-024-02342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/19/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible. RESULTS In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters. CONCLUSIONS PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan, South Korea
| | - Danny Kim
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan, South Korea
| | - Nguyen-Mihn Hieu
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan, South Korea
| | - Hyunjong Byun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan, South Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
5
|
Mao L, Kang J, Sun R, Liu J, Ge J, Ping W. Ecological succession of abundant and rare subcommunities during aerobic composting in the presence of residual amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133456. [PMID: 38211525 DOI: 10.1016/j.jhazmat.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
6
|
Martins I, Mateus C, Domingues F, Oleastro M, Ferreira S. Putative Role of an ABC Efflux System in Aliarcobacter butzleri Resistance and Virulence. Antibiotics (Basel) 2023; 12:antibiotics12020339. [PMID: 36830250 PMCID: PMC9951867 DOI: 10.3390/antibiotics12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Aliarcobacter butzleri is considered a ubiquitous microorganism and emergent pathogen, for which increasing rates of multidrug resistance have been described. In line with this, the present work aimed to evaluate for the first time the contribution of an ABC efflux system, the YbhFSR, in the resistance and virulence of this bacterium. Following the in silico characterization of the YbhFSR transporter, a mutant strain was constructed by inactivating the gene responsible for ATP-binding. After ensuring that the mutation did not have an impact on bacterial growth, the resistance profile of parental and mutant strains to different antimicrobial agents was evaluated. The results suggest that the efflux pump may influence the resistance to benzalkonium chloride, ethidium bromide, and cadmium, and several other compounds were identified as potential substrates. Regarding the evaluation of the accumulation of ethidium bromide, a slight increase was observed for the mutant strain, demonstrating a potential role of the YbhFSR efflux pump in the extrusion of toxic compounds from A. butzleri. Subsequently, the role of this efflux pump on the A. butzleri known virulence properties was evaluated, but no difference was seen among mutant and parental strains for the motility, biofilm formation ability, susceptibility to oxidative stress, or the ability to adhere and invade Caco-2 cells. However, in contrast to the parental strain, the mutant strain showed a resistance to human serum. Overall, the results support the role of efflux pumps in A. butzleri resistance to antimicrobials, highlighting the particular role of the YbhFSR system.
Collapse
Affiliation(s)
- Inês Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence:
| |
Collapse
|
7
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
8
|
Li P, Hendricks AL, Wang Y, Villones RLE, Lindkvist-Petersson K, Meloni G, Cowan JA, Wang K, Gourdon P. Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria. Nat Commun 2022; 13:4339. [PMID: 35896548 PMCID: PMC9329353 DOI: 10.1038/s41467-022-32006-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/11/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, iron-sulfur clusters are essential cofactors for numerous physiological processes, but these clusters are primarily biosynthesized in mitochondria. Previous studies suggest mitochondrial ABCB7-type exporters are involved in maturation of cytosolic iron-sulfur proteins. However, the molecular mechanism for how the ABCB7-type exporters participate in this process remains elusive. Here, we report a series of cryo-electron microscopy structures of a eukaryotic homolog of human ABCB7, CtAtm1, determined at average resolutions ranging from 2.8 to 3.2 Å, complemented by functional characterization and molecular docking in silico. We propose that CtAtm1 accepts delivery from glutathione-complexed iron-sulfur clusters. A partially occluded state links cargo-binding to residues at the mitochondrial matrix interface that line a positively charged cavity, while the binding region becomes internalized and is partially divided in an early occluded state. Collectively, our findings substantially increase the understanding of the transport mechanism of eukaryotic ABCB7-type proteins.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Amber L Hendricks
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Yong Wang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Kaituo Wang
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
9
|
Breeding of a High-Nisin-Yielding Bacterial Strain and Multiomics Analysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nisin is a green, safe and natural food preservative. With the expansion of nisin application, the demand for nisin has gradually increased, which equates to increased requirements for nisin production. In this study, Lactococcus lactis subsp. lactis lxl was used as the original strain, and the compound mutation method was applied to induce mutations. A high-yielding and genetically stable strain (Lactobacillus lactis A32) was identified, with the nisin titre raised by 332.2% up to 5089.29 IU/mL. Genome and transcriptome sequencing was used to analyse A32 and compare it with the original lxl strain. The comparative genomics results show that 107 genes in the A32 genome had mutations and most base mutations were not located in the four well-researched nisin-related operons, nisABTCIPRK, nisI, nisRK and nisFEG: 39 single-nucleotide polymorphisms (SNPs), 34 insertion mutations and 34 deletion mutations. The transcription results show that the expression of 92 genes changed significantly, with 27 of these differentially expressed genes upregulated, while 65 were downregulated. Our findings suggest that the output of nisin increased in L. lactis strain A32, which was accompanied by changes in the DNA replication-related gene dnaG, the ABC-ATPase transport-related genes patM and tcyC, the cysteine thiometabolism-related gene cysS, and the purine metabolism-related gene purL. Our study provides new insights into the traditional genetic mechanisms involved nisin production in L. lactis, which could provide clues for a more efficient metabolic engineering process.
Collapse
|
10
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
11
|
Finn DR, Bergk-Pinto B, Hazard C, Nicol GW, Tebbe CC, Vogel TM. Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiol Ecol 2021; 97:6271318. [PMID: 33960387 DOI: 10.1093/femsec/fiab068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Functional, physiological traits are the underlying drivers of niche differentiation. A common framework related to niches occupied by terrestrial prokaryotes is based on copiotrophy or oligotrophy, where resource investment is primarily in either rapid growth or stress tolerance, respectively. A quantitative trait-based approach sought relationships between taxa, traits and niche in terrestrial prokaryotes. With 175 taxa from 11 Phyla and 35 Families (n = 5 per Family), traits were considered as discrete counts of shared genome-encoded proteins. Trait composition strongly supported non-random functional distributions as preferential clustering of related taxa via unweighted pair-group method with arithmetic mean. Trait similarity between taxa increased as taxonomic rank decreased. A suite of Random Forest models identified traits significantly enriched or depleted in taxonomic groups. These traits conveyed functions related to rapid growth, nutrient acquisition and stress tolerance consistent with their presence in copiotroph-oligotroph niches. Hierarchical clustering of traits identified a clade of competitive, copiotrophic Families resilient to oxidative stress versus glycosyltransferase-enriched oligotrophic Families resistant to antimicrobials and environmental stress. However, the formation of five clades suggested a more nuanced view to describe niche differentiation in terrestrial systems is necessary. We suggest considering traits involved in both resource investment and acquisition when predicting niche.
Collapse
Affiliation(s)
- Damien R Finn
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Brisbane 4072, Australia.,Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36 Écully 69134, France.,Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Bundesallee 65 Braunschweig 38116, Germany
| | - Benoît Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36 Écully 69134, France
| | - Christina Hazard
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36 Écully 69134, France
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36 Écully 69134, France
| | - Christoph C Tebbe
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Bundesallee 65 Braunschweig 38116, Germany
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36 Écully 69134, France
| |
Collapse
|
12
|
Isolation of gene conferring salt tolerance from halophilic bacteria of Lunsu, Himachal Pradesh, India. J Genet Eng Biotechnol 2020; 18:57. [PMID: 33025336 PMCID: PMC7538504 DOI: 10.1186/s43141-020-00070-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
Background Halophiles offer an attractive source of genes conferring salt tolerance. Halobacillus trueperi SS1 strain of Lunsu, Himachal Pradesh, India, a strict halophile, was exploited to isolate and clone the genes for salt tolerance. The genomic library of BamH1 digest of H. trueperi SS1 was constructed in pUC19, and recombinants were screened for salt tolerance on an LB medium containing ampicillin (100 μg/ml) and NaCl (0 to 1.5 M). Results One recombinant clone named as salt-tolerant clone (STC) conferred salt tolerance to host Escherichia coli/DH5α, which showed growth in the LB medium supplemented with ampicillin and 1.2 M NaCl. Restriction digestion and PCR analysis revealed the presence of an insert of approximately 2000 bp in the STC. DNA sequencing of the 2-kb insert on both strands yielded a sequence of 2301 nucleotides. Protein BLAST analysis of 2301-bp sequence of H. trueperi SS1 present in STC showed 97% identity to multidrug transport ATP binding/permease protein of Halobacillus karajensis. The insert contained in STC was subcloned into pGEX4T2 vector, and the recombinant clone STC/pGEX4T2 conferred salt tolerance to the bacterial host E. coli. Conclusions The present study led to the isolation of salt tolerance gene encoding a putative multidrug transport ATP binding/permease protein from H. trueperi SS1. The salt tolerance gene can be subcloned for transferring salt tolerance traits into agricultural crop plants for cultivation in saline and coastal lands.
Collapse
|
13
|
Kitichalermkiat A, Katsuki M, Sato J, Sonoda T, Masuda Y, Honjoh KI, Miyamoto T. Effect of epigallocatechin gallate on gene expression of Staphylococcus aureus. J Glob Antimicrob Resist 2020; 22:854-859. [DOI: 10.1016/j.jgar.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/26/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
|
14
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
15
|
Feng Z, Liu D, Wang L, Wang Y, Zang Z, Liu Z, Song B, Gu L, Fan Z, Yang S, Chen J, Cui Y. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na +(Li +)/H + Transport. Front Microbiol 2020; 11:556. [PMID: 32390957 PMCID: PMC7190983 DOI: 10.3389/fmicb.2020.00556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
ATP-binding cassette transporters are ubiquitous in almost all organisms. The Escherichia coli genome is predicted to encode 69 ABC transporters. Eleven of the ABC transporters are presumed to be exporters, of which seven are possible drug export transporters. There has been minimal research on the function of YbhFSR, which is one of the putative drug resistance exporters. In this study, the ybhF gene of this transporter was characterized. Overexpression and knockout strains of ybhF were constructed. The ATPase activity of YbhF was studied using the malachite green assay, and the efflux abilities of knockout strains were demonstrated by using ethidium bromide (EB) as a substrate. The substrates of YbhFSR efflux, examined with the minimum inhibitory concentration (MIC), were determined to be tetracycline, oxytetracycline, chlortetracycline, doxycycline, EB, and Hoechst33342. Furthermore, tetracycline and EB efflux and accumulation experiments confirmed that the substrates of YbhFSR were tetracyclines and EB. The MIC assay and the fluorescence test results showed that tetracyclines are likely to be the major antibiotic substrate of YbhFSR. The existence of the signature NatA motif suggested that YbhFSR may also function as a Na+/H+ transporter. Overexpression of YbhF in E. coli KNabc lacking crucial Na+/H+ transporters conferred tolerance to NaCl, LiCl, and an alkaline pH. Together, the results showed that YbhFSR exhibited dual functions as a drug efflux pump and a Na+ (Li+)/H+ antiporter.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liwei Gu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
16
|
A Gene Cluster That Encodes Histone Deacetylase Inhibitors Contributes to Bacterial Persistence and Antibiotic Tolerance in Burkholderia thailandensis. mSystems 2020; 5:5/1/e00609-19. [PMID: 32047060 PMCID: PMC7018527 DOI: 10.1128/msystems.00609-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management. Persister cells are genetically identical variants in a bacterial population that have phenotypically modified their physiology to survive environmental stress. In bacterial pathogens, persisters are able to survive antibiotic treatment and reinfect patients in a frustrating cycle of chronic infection. To better define core persistence mechanisms for therapeutics development, we performed transcriptomics analyses of Burkholderia thailandensis populations enriched for persisters via three methods: flow sorting for low proton motive force, meropenem treatment, and culture aging. Although the three persister-enriched populations generally displayed divergent gene expression profiles that reflect the multimechanistic nature of stress adaptations, there were several common gene pathways activated in two or all three populations. These include polyketide and nonribosomal peptide synthesis, Clp proteases, mobile elements, enzymes involved in lipid metabolism, and ATP-binding cassette (ABC) transporter systems. In particular, identification of genes that encode polyketide synthases (PKSs) and fatty acid catabolism factors indicates that generation of secondary metabolites, natural products, and complex lipids could be part of the metabolic program that governs the persistence state. We also found that loss-of-function mutations in the PKS-encoding gene locus BTH_I2366, which plays a role in biosynthesis of histone deacetylase (HDAC) inhibitors, resulted in increased sensitivity to antibiotics targeting DNA replication. Furthermore, treatment of multiple bacterial pathogens with a fatty acid synthesis inhibitor, CP-640186, potentiated the efficacy of meropenem against the persister populations. Altogether, our results suggest that bacterial persisters may exhibit an outwardly dormant physiology but maintain active metabolic processes that are required to maintain persistence. IMPORTANCE The discovery of antibiotics such as penicillin and streptomycin marked a historic milestone in the 1940s and heralded a new era of antimicrobial therapy as the modern standard for medical treatment. Yet, even in those early days of discovery, it was noted that a small subset of cells (∼1 in 105) survived antibiotic treatment and continued to persist, leading to recurrence of chronic infection. These persisters are phenotypic variants that have modified their physiology to survive environmental stress. In this study, we have performed three transcriptomic screens to identify persistence genes that are common between three different stressor conditions. In particular, we identified genes that function in the synthesis of secondary metabolites, small molecules, and complex lipids, which are likely required to maintain the persistence state. Targeting universal persistence genes can lead to the development of clinically relevant antipersistence therapeutics for infectious disease management.
Collapse
|
17
|
Ahmad A, Majaz S, Nouroz F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology (Reading) 2020; 166:4-20. [DOI: 10.1099/mic.0.000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria offer resistance to a broad range of antibiotics by activating their export channels of ATP-binding cassette transporters. These transporters perform a central role in vital processes of self-immunity, antibiotic transport and resistance. The majority of ATP-binding cassette transporters are capable of detecting the presence of antibiotics in an external vicinity and are tightly regulated by two-component systems. The presence of an extracellular loop and an adjacent location of both the transporter and two-component system offers serious assistance to induce a quick and specific response against antibiotics. Both systems have demonstrated their ability of sensing such agents, however, the exact mechanism is not yet fully established. This review highlighted the three key functions of antibiotic resistance, transport and self-immunity of ATP-binding cassette transporters and an adjacent two-component regulatory system.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
18
|
Ihling N, Uhde A, Scholz R, Schwarz C, Schmitt L, Büchs J. Scale-up of a Type I secretion system in E. coli using a defined mineral medium. Biotechnol Prog 2019; 36:e2911. [PMID: 31513739 DOI: 10.1002/btpr.2911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Secretion of heterologous proteins into the culture supernatant in laboratory strains of Escherichia coli is possible by utilizing a Type I secretion system (T1SS). One prominent example for a T1SS is based on the hemolysin A toxin. With this system, heterologous protein secretion has already been achieved. However, no cultivations in a defined mineral medium and in stirred tank bioreactors have been described in literature up to now, hampering the broad applicability of the system. In this study, a mineral medium was developed for cultivation under defined conditions. With this medium, the full potential and advantage of a secretion system in E. coli (low secretion of host proteins, no contamination with proteins from complex media compounds) can now be exploited. Additionally, quantification of the protein amount in the supernatant was demonstrated by application of the Bradford assay. In this work, host cell behavior was described in small scale by online monitoring of the oxygen transfer rate. Scalability was demonstrated by stirred tank fermentation yielding 540 mg/L HlyA1 in the supernatant. This work enhances the applicability of a protein secretion system in E. coli and paves the way for an industrial application.
Collapse
Affiliation(s)
- Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| | | | - Romy Scholz
- Bioeconomy Science Center (BioSC), Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Lutz Schmitt
- Bioeconomy Science Center (BioSC), Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| |
Collapse
|
19
|
Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W, Wang L, Meng Q. Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:534-545. [PMID: 30721776 DOI: 10.1016/j.fsi.2019.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.
Collapse
Affiliation(s)
- Mingxiao Ning
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Shen
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Mingjian Jin
- Rudong Center for Control and Prevention of Aquatic Animal Infectious Disease, 25# Changjiang Road, Rudong, 226400, China
| | - Xiangqian Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hao Shi
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yi Qiao
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Ge Jiang
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
20
|
Soni A, Oey I, Silcock P, Permina E, Bremer PJ. Effect of cold storage and different ions on the thermal resistance of B. cereus NZAS01 spores- analysis of differential gene expression and ion exchange. Food Res Int 2019; 116:578-585. [PMID: 30716983 DOI: 10.1016/j.foodres.2018.08.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Bacillus cereus spores in food are able to survive pasteurization, and if conditions are favourable, subsequently germinate, grow and produce toxins causing food poisoning. The objectives of this study were to firstly determine the impact of cold storage and ion uptake on the thermal resistance of B. cereus spores and secondly to use differential gene expression to help elucidate possible molecular mechanisms for the changes detected in their thermal resistance. B. cereus spores were held at 4 °C in either 0.05 or 0.5 M solutions of cations (Na+, Ca2+ Mg2+,K+, Zn2+) for 6 days and their D88-values were estimated. In the presence of sodium chloride (0.05 and 0.5 M), sodium phosphate buffer, (pH 7, 0.05 and 0.5 M) or zinc acetate (0.05 M), D88 values decreased by 8.8, 10.9, 11.2, 12.9, and 10.2 min respectively, with no evidence of germination (plating methods). Exposure of spores to Na+ in sodium phosphate buffer (pH 7, 0.05 and 0.5 M) or sodium chloride (0.05 and 0.5 M) resulted in the accumulation of Na+ (66.0 ± 2.9, 193.1 ± 4.6, 136.2 ± 9.9 and 70.5 ± 2.7 μg/g) by spores at the significant expense of K+ (10.8 ± 0.5, 7.5 ± 0.2, 8.1 ± 0.4 and 3.6 ± 0.4 μg/g respectively). The mechanism behind the loss of resistance in sodium phosphate buffer (0.05 M) was further investigated by monitoring the differential gene expression using mRNA sequencing. Genes encoding for uracil permease (BC_3890), Mg2+ P-type ATPase-like protein (BC_1581), ABC transporter ATP-binding protein (BC_0815), and 2-keto-3-deoxygluconate permease (BC_4841) were significantly (FDR value ≤0.05) upregulated. This upregulation indicated a possible increase in permeability, which is suggested to account for the increased uptake of sodium ions and the reduction measured in the spore's thermal resistance. This data suggests that during storage at 4 °C in the presence of sodium ions, spores should not be considered to be completely dormant.
Collapse
Affiliation(s)
- Aswathi Soni
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Elizabeth Permina
- Otago Genomics & Bioinformatics Facility, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Phil J Bremer
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Food Safety Science Research Centre, New Zealand.
| |
Collapse
|
21
|
Park DM, Overton KW, Jiao Y. The UzcRS two‐component system in
Caulobacter crescentus
integrates regulatory input from diverse auxiliary regulators. Mol Microbiol 2019; 111:678-699. [DOI: 10.1111/mmi.14180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Dan M. Park
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| | - K. Wesley Overton
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore CA USA
| |
Collapse
|
22
|
Rahman SJ, Kaur P. Conformational changes in a multidrug resistance ABC transporter DrrAB: Fluorescence-based approaches to study substrate binding. Arch Biochem Biophys 2018; 658:31-45. [PMID: 30243711 DOI: 10.1016/j.abb.2018.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023]
Abstract
Bacterial multidrug transporter DrrAB exhibits overlapping substrate specificity with mammalian P-glycoprotein. DrrA hydrolyzes ATP, and the energy is transduced to carrier DrrB resulting in export of drugs. Previous studies suggested that DrrB contains a large and flexible drug-binding pocket made of aromatic residues contributed by several transmembrane helices with different drugs binding to both specific and shared residues in this pocket. However, direct binding of drugs to DrrAB or the mechanism of substrate-induced conformational changes between DrrA and DrrB has so far not been investigated. We used two fluorescence-based approaches to determine substrate binding to purified DrrAB. Our analysis shows that DrrB binds drugs with variable affinities and contains multiple drug binding sites. This work also provides evidence for two asymmetric nucleotide binding sites in DrrA with strikingly different binding affinities. Using targeted fluorescence labeling, we provide clear evidence of long-range conformational changes occurring between DrrA and DrrB. It is proposed that the transduction pathway from the nucleotide-binding DrrA subunit to the substrate binding DrrB subunit includes Q-loop and CREEM motifs in DrrA and EAA-like motif in DrrB. This study lays a solid groundwork for examining roles of various conserved regions of DrrA and DrrB in transduction of conformational changes.
Collapse
Affiliation(s)
- Sadia J Rahman
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States.
| |
Collapse
|
23
|
Firrman J, Liu L, Argoty GA, Zhang L, Tomasula P, Wang M, Pontious S, Kobori M, Xiao W. Analysis of Temporal Changes in Growth and Gene Expression for Commensal Gut Microbes in Response to the Polyphenol Naringenin. Microbiol Insights 2018; 11:1178636118775100. [PMID: 30013359 PMCID: PMC6044793 DOI: 10.1177/1178636118775100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, the effect of the flavanone naringenin on the growth and genetic expression of the commensal gut microbes, Ruminococcus gauvreauii, Bifidobacterium catenulatum, and Enterococcus caccae, was analyzed. Analysis of growth curves revealed that Ruminococcus gauvreauii was unaffected by naringenin, Bifidobacterium catenulatum was slightly enhanced by naringenin, and Enterococcus caccae was severely inhibited by naringenin. Changes in genetic expression due to naringenin were determined using single-molecule RNA sequencing. Analysis revealed the following responses to naringenin: Ruminococcus gauvreauii upregulated genes involved in iron uptake; Bifidobacterium catenulatum upregulated genes involved in cellular metabolism, DNA repair and molecular transport, and downregulated genes involved in thymidine biosynthesis and metabolism; Enterococcus caccae upregulated pathways involved in transcription and protein transport and downregulated genes responsible for sugar transport and purine synthesis. For the first time, changes in growth and gene expression for commensal gut bacteria in response to naringenin were documented.
Collapse
Affiliation(s)
- Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Gustavo Arango Argoty
- Department of Computer Science, Virginia Tech College of Engineering, Blacksburg, VA, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech College of Engineering, Blacksburg, VA, USA
| | - Peggy Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Minqian Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Sherri Pontious
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Wang X, Kondakova AN, Zhu Y, Knirel YA, Han A. The O-antigen structure of bacterium Comamonas aquatica CJG. MICROBIOLOGY-SGM 2017; 163:1637-1640. [PMID: 29034863 DOI: 10.1099/mic.0.000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.
Collapse
Affiliation(s)
- Xiqian Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Anna N Kondakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yutong Zhu
- Center for Qinhao Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| |
Collapse
|
25
|
The oppD Gene and Putative Peptidase Genes May Be Required for Virulence in Mycoplasma gallisepticum. Infect Immun 2017; 85:IAI.00023-17. [PMID: 28348054 DOI: 10.1128/iai.00023-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022] Open
Abstract
Relatively few virulence genes have been identified in pathogenic mycoplasmas, so we used signature-tagged mutagenesis to identify mutants of the avian pathogen Mycoplasma gallisepticum with a reduced capacity to persist in vivo and compared the levels of virulence of selected mutants in experimentally infected chickens. Four mutants had insertions in one of the two incomplete oppABCDF operons, and a further three had insertions in distinct hypothetical genes, two containing peptidase motifs and one containing a member of a gene family. The three hypothetical gene mutants and the two with insertions in oppD1 were used to infect chickens, and all five were shown to have a reduced capacity to induce respiratory tract lesions. One oppD1 mutant and the MGA_1102 and MGA_1079 mutants had a greatly reduced capacity to persist in the respiratory tract and to induce systemic antibody responses against M. gallisepticum The other oppD1 mutant and the MGA_0588 mutant had less capacity than the wild type to persist in the respiratory tract but did elicit systemic antibody responses. Although M. gallisepticum carries two incomplete opp operons, one of which has been acquired by horizontal gene transfer, our results suggest that one of the copies of oppD may be required for full expression of virulence. We have also shown that three hypothetical genes, two of which encode putative peptidases, may be required for full expression of virulence in M. gallisepticum. None of these genes has previously been shown to influence virulence in pathogenic mycoplasmas.
Collapse
|
26
|
Garai P, Chandra K, Chakravortty D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2017; 8:297-309. [PMID: 27589415 PMCID: PMC5411238 DOI: 10.1080/21505594.2016.1221025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Bacteria possess numerous peptide transporters for importing peptides as nutrients. However, these peptide transporters are now consistently reported to play a role in the virulence of various bacterial pathogens. Their ability to transport peptides has implications in antibacterial therapy as well. Therefore, it would be instrumental to have complete knowledge about the role of peptide transporters in mediating this cross connection between metabolism and pathogenesis. Studies on various peptide transporters in bacterial pathogens have improved our understanding of this field. In this review, we have given an overview of the functioning of bacterial peptide transporters and their contribution in virulence of major bacterial pathogens.
Collapse
Affiliation(s)
- Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
27
|
Firrman J, Liu L, Zhang L, Arango Argoty G, Wang M, Tomasula P, Kobori M, Pontious S, Xiao W. The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii. Anaerobe 2016; 42:130-141. [PMID: 27742572 DOI: 10.1016/j.anaerobe.2016.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 11/27/2022]
Abstract
Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota.
Collapse
Affiliation(s)
- Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Liqing Zhang
- Virginia Tech College of Engineering, Department of Computer Science, 1425 S Main St., Blacksburg, VA, 24061, USA
| | - Gustavo Arango Argoty
- Virginia Tech College of Engineering, Department of Computer Science, 1425 S Main St., Blacksburg, VA, 24061, USA
| | - Minqian Wang
- Rutgers University, Department of Food Science, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Peggy Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Sherri Pontious
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA
| |
Collapse
|
28
|
Clinical Pharmacogenetics of the Major Adenosine Triphosphate−Binding Cassette and Solute Carrier Drug Transporters. J Pharm Pract 2016. [DOI: 10.1177/0897190007304823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interindividual variability in drug response is a significant problem in clinical practice, and it is likely that genetic variation among the drug transport genes are major contributors to such variability. Numerous genetic alterations affecting the members of the adenosine triphosphate-binding cassette (ABC) and solute carrier (SLC) families of transporters have been identified. Considerable data exist regarding how mutations in the ABCB1 gene that encodes p-glycoprotein impact drug disposition and response in vivo, but many study reports are conflicting on both the direction of any effect as well as the significance of any alteration. Many possible reasons for such discrepant study results have been identified, and efforts to improve the quality of such pharmacogenetic clinical association studies are ongoing. For most other clinically important transporters relatively, little clinical data exist regarding the significance of known genetic variants despite in vitro evidence of altered function for many of these transporters. What clinical data do exist suggest that certain mutations in ABCG2 and SLCO1B1 may be of importance clinically. Until the current uncertainties regarding the importance of genetic variants in drug transporter genes are clarified, the clinical application of existing pharmacogenetic data should be done with caution.
Collapse
|
29
|
Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci Rep 2015; 5:16724. [PMID: 26577702 PMCID: PMC4649718 DOI: 10.1038/srep16724] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/19/2015] [Indexed: 01/12/2023] Open
Abstract
The ATP binding cassette (ABC) transporters superfamily is one of the largest classes of membrane proteins. The core of the ABC transporter protein is composed of transmembrane domains (TMDs) and nucleotide binding domains (NBD). Eukaryotes ABC transporters are classified into seven main families (ABCA to ABCG) based on sequence similarity and domain organizations. With different domain number and domain organizations, eukaryote ABC transporters show diverse structures: the single structure (NBD or TMD), the ABC2 structure (NBD-NBD), the half structure (TMD-NBD or NBD-TMD) and the full structure (TMD-NBD-TMD-NBD or NBD-TMD-NBD-TMD). However, studies on how various ABC transporter gene structures evolved is still absent. Therefore, in this study, we comprehensively investigated the structural evolution of eukaryotic ABC transporters. The seven eukaryote ABC transporter families (A to G) fell into three groups: A&G group, B,C&D group and E&F group. There were at least four times the number of NBD and TMD fusion events in the origin of the half structure transporter. Two fusion modes were found in the full and ABC2 structure origination. Based on these findings, we present a putative structural evolutionary path of eukaryote ABC transporters that will increase our understanding on their origin, divergence and function.
Collapse
|
30
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
31
|
A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species. Appl Environ Microbiol 2014; 81:1744-53. [PMID: 25548043 DOI: 10.1128/aem.03514-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species.
Collapse
|
32
|
Characterization and protective property of Brucella abortus cydC and looP mutants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1573-80. [PMID: 25253663 DOI: 10.1128/cvi.00164-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Collapse
|
33
|
Ardin AC, Fujita K, Nagayama K, Takashima Y, Nomura R, Nakano K, Ooshima T, Matsumoto-Nakano M. Identification and functional analysis of an ammonium transporter in Streptococcus mutans. PLoS One 2014; 9:e107569. [PMID: 25229891 PMCID: PMC4167856 DOI: 10.1371/journal.pone.0107569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 12/26/2022] Open
Abstract
Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.
Collapse
Affiliation(s)
- Arifah Chieko Ardin
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuyo Fujita
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kayoko Nagayama
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
34
|
Thomas S, Bakkes PJ, Smits SHJ, Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1500-10. [PMID: 24865936 DOI: 10.1016/j.bbapap.2014.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca(2+) binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca(2+) is essential for stability as well as correct folding of the whole protein. In the absence of Ca(2+), pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca(2+) addition, indicating that these are not dead-end species and that Ca(2+) drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6-7M urea, relates to Ca(2+) dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca(2+) induced folding is not restricted to the RTX domain. Taken together, Ca(2+) binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Hirata N, Nakagawa M, Fujibayashi Y, Yamauchi K, Murata A, Minami I, Tomioka M, Kondo T, Kuo TF, Endo H, Inoue H, Sato SI, Ando S, Kawazoe Y, Aiba K, Nagata K, Kawase E, Chang YT, Suemori H, Eto K, Nakauchi H, Yamanaka S, Nakatsuji N, Ueda K, Uesugi M. A chemical probe that labels human pluripotent stem cells. Cell Rep 2014; 6:1165-1174. [PMID: 24613351 DOI: 10.1016/j.celrep.2014.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs) and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1]) that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1) and ABCG2 (BCRP), both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.
Collapse
Affiliation(s)
- Nao Hirata
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuto Fujibayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kaori Yamauchi
- Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Asako Murata
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Maiko Tomioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ting-Fang Kuo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Endo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shin-Ichi Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin Ando
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshinori Kawazoe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuhiro Aiba
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Koh Nagata
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Eihachiro Kawase
- Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Young-Tae Chang
- Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore; Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138667, Singapore
| | - Hirofumi Suemori
- Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Eto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromitsu Nakauchi
- Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shinya Yamanaka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Kazumitsu Ueda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
36
|
Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Natl Acad Sci U S A 2014; 111:2710-5. [PMID: 24550299 DOI: 10.1073/pnas.1317834111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a common osmolyte found in a variety of marine biota and has been detected at nanomolar concentrations in oceanic surface waters. TMAO can serve as an important nutrient for ecologically important marine heterotrophic bacteria, particularly the SAR11 clade and marine Roseobacter clade (MRC). However, the enzymes responsible for TMAO catabolism and the membrane transporter required for TMAO uptake into microbial cells have yet to be identified. We show here that the enzyme TMAO demethylase (Tdm) catalyzes the first step in TMAO degradation. This enzyme represents a large group of proteins with an uncharacterized domain (DUF1989). The function of TMAO demethylase in a representative from the SAR11 clade (strain HIMB59) and in a representative of the MRC (Ruegeria pomeroyi DSS-3) was confirmed by heterologous expression of tdm (the gene encoding Tdm) in Escherichia coli. In R. pomeroyi, mutagenesis experiments confirmed that tdm is essential for growth on TMAO. We also identified a unique ATP-binding cassette transporter (TmoXWV) found in a variety of marine bacteria and experimentally confirmed its specificity for TMAO through marker exchange mutagenesis and lacZ reporter assays of the promoter for genes encoding this transporter. Both Tdm and TmoXWV are particularly abundant in natural seawater assemblages and actively expressed, as indicated by a number of recent metatranscriptomic and metaproteomic studies. These data suggest that TMAO represents a significant, yet overlooked, nutrient for marine bacteria.
Collapse
|
37
|
Çakır B, Kılıçkaya O. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera. PLoS One 2013; 8:e78860. [PMID: 24244377 PMCID: PMC3823996 DOI: 10.1371/journal.pone.0078860] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.
Collapse
Affiliation(s)
- Birsen Çakır
- Department of Horticulture, Faculty of Agriculture, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| | - Ozan Kılıçkaya
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
38
|
Tseng CW, Kanci A, Citti C, Rosengarten R, Chiu CJ, Chen ZH, Geary SJ, Browning GF, Markham PF. MalF is essential for persistence of Mycoplasma gallisepticum in vivo. MICROBIOLOGY-SGM 2013; 159:1459-1470. [PMID: 23657682 DOI: 10.1099/mic.0.067553-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is limited understanding of the molecular basis of virulence in the important avian pathogen Mycoplasma gallisepticum. To define genes that may be involved in colonization of chickens, a collection of mutants of the virulent Ap3AS strain of M. gallisepticum were generated by signature-tagged transposon mutagenesis. The collection included mutants with single insertions in the genes encoding the adhesin GapA and the cytadherence-related protein CrmA, and Western blotting confirmed that these mutants did not express these proteins. In two separate in vivo screenings, two GapA-deficient mutants (ST mutants 02-1 and 06-1) were occasionally recovered from birds, suggesting that GapA expression may not always be essential for persistence of strain Ap3AS. CrmA-deficient ST mutant 33-1 colonized birds poorly and had reduced virulence, indicating that CrmA was a significant virulence factor, but was not absolutely essential for colonization. ST mutant 04-1 contained a single transposon insertion in malF, a predicted ABC sugar transport permease, and could not be reisolated even when inoculated by itself into a group of birds, suggesting that expression of MalF was essential for persistence of M. galliseptium strain Ap3AS in infected birds.
Collapse
Affiliation(s)
- Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anna Kanci
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Citti
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine, Vienna, A-1210 Vienna, Austria.,INRA, ENVT, UMR 1225, 31076 Toulouse, France
| | - Renate Rosengarten
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine, Vienna, A-1210 Vienna, Austria
| | - Chien-Ju Chiu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zheng-Hong Chen
- Microbiology Department, Basic Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, PR China
| | - Steven J Geary
- Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, The University of Connecticut, Storrs, Connecticut 06269, USA
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
39
|
Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci. Antimicrob Agents Chemother 2011; 56:1539-47. [PMID: 22155816 DOI: 10.1128/aac.05397-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide.
Collapse
|
40
|
Siddaramappa S, Challacombe JF, Duncan AJ, Gillaspy AF, Carson M, Gipson J, Orvis J, Zaitshik J, Barnes G, Bruce D, Chertkov O, Detter JC, Han CS, Tapia R, Thompson LS, Dyer DW, Inzana TJ. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses. BMC Genomics 2011; 12:570. [PMID: 22111657 PMCID: PMC3339403 DOI: 10.1186/1471-2164-12-570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jean F Challacombe
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alison J Duncan
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Allison F Gillaspy
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Matthew Carson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jenny Gipson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Joshua Orvis
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jeremy Zaitshik
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Gentry Barnes
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - David Bruce
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Olga Chertkov
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Chris Detter
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Cliff S Han
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Linda S Thompson
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David W Dyer
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
41
|
Wagner C, Polke M, Gerlach RG, Linke D, Stierhof YD, Schwarz H, Hensel M. Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica. Cell Microbiol 2011; 13:1286-301. [PMID: 21729227 DOI: 10.1111/j.1462-5822.2011.01621.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enterica deploys the giant non-fimbrial adhesin SiiE to adhere to the apical side of polarized epithelial cells. The establishment of close contact is a prerequisite for subsequent invasion mediated by translocation of effector proteins of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type III secretion system (T3SS). Although SiiE is secreted into the culture medium, the adhesin is retained on the bacterial envelope in the phase of highest bacterial invasiveness. To dissect the structural requirements for secretion, retention and adhesive properties, comprehensive deletional and functional analyses of various domains of SiiE were performed. We observed that β-sheet and coiled-coil domains in the N-terminal moiety of SiiE are required for the control of SiiE retention on the surface and co-ordinated release. These results indicate a novel molecular mechanism for the control of surface display of a T1SS-secreted adhesin that acts cooperatively with the SPI1-T3SS.
Collapse
Affiliation(s)
- Carolin Wagner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses. Appl Environ Microbiol 2011; 77:5110-22. [PMID: 21666011 DOI: 10.1128/aem.00337-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella novicida is a close relative of Francisella tularensis, the causative agent of tularemia. The genomes of F. novicida-like clinical isolates 3523 (Australian strain) and Fx1 (Texas strain) were sequenced and compared to F. novicida strain U112 and F. tularensis strain Schu S4. The strain 3523 chromosome is 1,945,310 bp and contains 1,854 protein-coding genes. The strain Fx1 chromosome is 1,913,619 bp and contains 1,819 protein-coding genes. NUCmer analyses revealed that the genomes of strains Fx1 and U112 are mostly colinear, whereas the genome of strain 3523 has gaps, translocations, and/or inversions compared to genomes of strains Fx1 and U112. Using the genome sequence data and comparative analyses with other members of the genus Francisella, several strain-specific genes that encode putative proteins involved in RTX toxin production, polysaccharide biosynthesis/modification, thiamine biosynthesis, glucuronate utilization, and polyamine biosynthesis were identified. The RTX toxin synthesis and secretion operon of strain 3523 contains four open reading frames (ORFs) and was named rtxCABD. Based on the alignment of conserved sequences upstream of operons involved in thiamine biosynthesis from various bacteria, a putative THI box was identified in strain 3523. The glucuronate catabolism loci of strains 3523 and Fx1 contain a cluster of nine ORFs oriented in the same direction that appear to constitute an operon. Strains U112 and Schu S4 appeared to have lost the loci for RTX toxin production, thiamine biosynthesis, and glucuronate utilization as a consequence of host adaptation and reductive evolution. In conclusion, comparative analyses provided insights into the common ancestry and novel genetic traits of these strains.
Collapse
|
43
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li M, Chen Z, Zhang X, Song Y, Wen Y, Li J. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. BIORESOURCE TECHNOLOGY 2010; 101:9228-9235. [PMID: 20655739 DOI: 10.1016/j.biortech.2010.06.132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 05/29/2023]
Abstract
We investigated the function of maltose ABC transporter system encoded by malEFG-a and the effect of its overexpression on antibiotic production in Streptomyces avermitilis. A malEFG-a deletion mutant was unable to grow in a minimal medium with maltose as sole carbon source and produce avermectin. Maltose utilization and avermectin production were restored by introduction of a single copy of malEFG-a. RT-PCR analysis showed that the expression of malE-a was induced by maltose, and was strongly repressed by glucose. When multi-copy, integrative malEFG-a gene expression vectors were introduced into wild-type strain ATCC31267 and ivermectin-producer OI-31, antibiotic production increased by 2.6- to 3.3-fold and the time required for fermentation decreased by about 10%. The overexpression of malEFG-a improved the utilization rate of starch, and thereby enhanced avermectin production. Such an approach would be useful for the improvement of commercial antibiotic production using starch as the main carbon source in the fermentation process.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
45
|
Ford RC, Kamis AB, Kerr ID, Callaghan R. The ABC Transporters: Structural Insights into Drug Transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627424.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Konovalova A, Petters T, Søgaard-Andersen L. Extracellular biology ofMyxococcus xanthus. FEMS Microbiol Rev 2010; 34:89-106. [DOI: 10.1111/j.1574-6976.2009.00194.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Stauff DL, Skaar EP. The heme sensor system of Staphylococcus aureus. CONTRIBUTIONS TO MICROBIOLOGY 2009; 16:120-135. [PMID: 19494582 PMCID: PMC4905552 DOI: 10.1159/000219376] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The important human pathogen Staphylococcus aureus is able to satisfy its nutrient iron requirement by acquiring heme from host hemoglobin in the context of infection. However, heme acquisition exposes S. aureus to heme toxicity. In order to detect the presence of toxic levels of exogenous heme, S. aureus is able to sense heme through the heme sensing system (HssRS) two-component system. Upon sensing heme, HssRS directly regulates the expression of the heme-regulated ABC transporter HrtAB, which alleviates heme toxicity. Importantly, the inability to sense or respond to heme alters the virulence of S. aureus, highlighting the importance of heme sensing and detoxification to staphylococcal pathogenesis. Furthermore, potential orthologues of the Hss and Hrt systems are found in many species of Gram-positive bacteria, a possible indication that heme stress is a challenge faced by bacteria whose habitats include host tissues rich in heme.
Collapse
|
48
|
Identification and characterization of hemolysin-like proteins similar to RTX toxin in Pasteurella pneumotropica. J Bacteriol 2009; 191:3698-705. [PMID: 19363112 DOI: 10.1128/jb.01527-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella pneumotropica is an opportunistic pathogen that causes lethal pneumonia in immunodeficient rodents. The virulence factors of this bacterium remain unknown. In this study, we identified the genes encoding two RTX toxins, designated as pnxI and pnxII, from the genomic DNA of P. pneumotropica ATCC 35149 and characterized with respect to hemolysis. The pnxI operon was organized according to the manner in which the genes encoded the structural RTX toxin (pnxIA), the type I secretion systems (pnxIB and pnxID), and the unknown orf. The pnxII gene was involved only with the pnxIIA that coded for a structural RTX toxin. Both the structural RTX toxins of deduced PnxIA and PnxIIA were involved in seven of the RTX repeat and repeat-like sequences. By quantitative PCR analysis of the structural RTX toxin-encoding genes in P. pneumotropica ATCC 35149, the gene expression of pnxIA was found to have increased from the early log phase, while that of pnxIIA increased from the late log to the early stationary phase. As expressed in Escherichia coli, both the recombinant proteins of PnxIA and PnxIIA showed weak hemolytic activity in both sheep and murine erythrocytes. On the basis of the results of the Southern blotting analysis, the pnxIA gene was detected in 82% of the isolates, while the pnxIIA gene was detected in 39%. These results indicate that the products of both pnxIA and pnxIIA were putative associations of virulence factors in the rodent pathogen P. pneumotropica.
Collapse
|
49
|
Domenech P, Kobayashi H, LeVier K, Walker GC, Barry CE. BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J Bacteriol 2009; 191:477-85. [PMID: 18996991 PMCID: PMC2620812 DOI: 10.1128/jb.01132-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/31/2008] [Indexed: 11/20/2022] Open
Abstract
BacA is an inner membrane protein associated with maintenance of chronic infections in several diverse host-pathogen interactions. To understand the function of the bacA gene in Mycobacterium tuberculosis (Rv1819c), we insertionally inactivated this gene and analyzed the resulting mutant for a variety of phenotypes. BacA deficiency in M. tuberculosis did not affect sensitivity to detergents, acidic pH, and zinc, indicating that there was no global compromise in membrane integrity, and a comprehensive evaluation of the major lipid constituents of the cell envelope failed to reveal any significant differences. Infection of mice with this mutant revealed no impact on establishment of infection but a profound effect on maintenance of extended chronic infection and ultimate outcome. As in alphaproteobacteria, deletion of BacA in M. tuberculosis led to increased bleomycin resistance, and heterologous expression of the M. tuberculosis BacA homolog in Escherichia coli conferred sensitivity to antimicrobial peptides. These results suggest a striking conservation of function for BacA-related proteins in transport of a critical molecule that determines the outcome of the host-pathogen interaction.
Collapse
Affiliation(s)
- Pilar Domenech
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, 33 North Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Extracellular secretion of Pseudoalteromonas sp. cold-adapted esterase in Escherichia coli in the presence of Pseudoalteromonas sp. components of ABC transport system. Protein Expr Purif 2008; 62:179-84. [PMID: 18700165 DOI: 10.1016/j.pep.2008.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/21/2022]
Abstract
Recently we described identification and characterization of GDSL esterase EstA from psychrotrophic bacterium Pseudoalteromonas sp. 643A. Attempts to obtain heterologous overexpression of this enzyme in Escherichia coli system were not satisfactory. The EstA protein was expressed as inclusion bodies, most of that were inactive after purification step, and the recovery of esterolytic activity was very low after refolding. Based on the sequence analysis we found that the esterase EstA gene is clustered with three genes encoding components of ABC transport system. These genes, designated abc1, abc2, and abc3 encode an ATP-binding protein (ABC1) and two permease proteins (ABC2 and ABC3). In present study, to obtain larger amounts of the active cold-adapted EstA esterase from Pseudoalteromonas sp. 643A, we designed a two-plasmid E. coli expression system where the gene encoding EstA enzyme was cloned into pET30b(+) expression vector and three genes encoding components of ABC transport system were cloned into pACYC-pBAD vector. It was shown that the created expression system was useful for extracellular production of active EstA enzyme which was purified from the culture medium. In the presence of all the three transporter proteins the secretion of EstA was at the highest level. When one or two of these components were missing, EstA secretion was also possible, but not so effective. It indicates that ABC2 and ABC3 proteins of Pseudoalteromonas sp. 643A could be replaced with their homologous proteins of E. coli.
Collapse
|