Zhao Y, Hammond RW, Lee IM, Roe BA, Lin S, Davis RE. Cell division gene cluster in Spiroplasma kunkelii: functional characterization of ftsZ and the first report of ftsA in mollicutes.
DNA Cell Biol 2004;
23:127-34. [PMID:
15000753 DOI:
10.1089/104454904322759948]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spiroplasma kunkelii is a helical, wall-less bacterium that causes corn stunt disease. In adaptation to its phloem-inhabiting parasitic lifestyle, the bacterium has undergone a reductive evolutionary process and, as a result, possesses a compact genome with a gene set approaching the minimal complement necessary for multiplication and pathogenesis. We cloned a much-reduced cell division gene cluster from S. kunkelii and functionally characterized the key division gene, ftsZ(sk). The 1236-bp open reading frame of ftsZ(sk) is capable of encoding a protein with a calculated molecular mass of 44.1 kDa. Protein sequence alignment revealed that FtsZ(sk) is remarkably similar to FtsZ proteins from other eubacteria, and possesses the conserved GTP-binding and hydrolyzing motifs. We demonstrated that overexpression of ftsZ(sk) in Escherichia coli causes transgression of the host cell division, resulting in a filamentous phenotype. We also report, for the first time, the presence of a ftsA gene in the cell division cluster of a mollicute species.
Collapse