1
|
Joseph D, Pidathala S, Mallela AK, Penmatsa A. Structure and Gating Dynamics of Na +/Cl - Coupled Neurotransmitter Transporters. Front Mol Biosci 2019; 6:80. [PMID: 31555663 PMCID: PMC6742698 DOI: 10.3389/fmolb.2019.00080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neurotransmitters released at the neural synapse through vesicle exocytosis are spatiotemporally controlled by the action of neurotransmitter transporters. Integral membrane proteins of the solute carrier 6 (SLC6) family are involved in the sodium and chloride coupled uptake of biogenic amine neurotransmitters including dopamine, serotonin, noradrenaline and inhibitory neurotransmitters including glycine and γ-amino butyric acid. This ion-coupled symport works through a well-orchestrated gating of substrate through alternating-access, which is mediated through movements of helices that resemble a rocking-bundle. A large array of commercially prescribed drugs and psychostimulants selectively target neurotransmitter transporters thereby modulating their levels in the synaptic space. Drug-induced changes in the synaptic neurotransmitter levels can be used to treat depression or neuropathic pain whereas in some instances prolonged usage can lead to habituation. Earlier structural studies of bacterial neurotransmitter transporter homolog LeuT and recent structure elucidation of the Drosophila dopamine transporter (dDAT) and human serotonin transporter (hSERT) have yielded a wealth of information in understanding the transport and inhibition mechanism of neurotransmitter transporters. Computational studies based on the structures of dDAT and hSERT have shed light on the dynamics of varied components of these molecular gates in affecting the uphill transport of neurotransmitters. This review seeks to address structural dynamics of neurotransmitter transporters at the extracellular and intracellular gates and the effect of inhibitors on the ligand-binding pocket. We also delve into the effect of additional factors including lipids and cytosolic domains that influence the translocation of neurotransmitters across the membrane.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Post-translational modifications of serotonin transporter. Pharmacol Res 2019; 140:7-13. [PMID: 30394319 DOI: 10.1016/j.phrs.2018.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. Studies using in vivo and in vitro model systems demonstrated that diverse post-translational modifications, including phosphorylation, glycosylation, serotonylation, and disulfide bond formation, all favorably influences SERT conformation and allows the transporter to function most efficiently. This review discusses the post-translational modifications and their importance on the structure, maturation, and serotonin (5-HT) uptake ability of SERT. Finally, we discuss how these modifications are altered in diabetes mellitus and subsequently impairs the 5-HT uptake ability of SERT.
Collapse
|
3
|
Li Y, Yu Y, Li S, Zhang M, Zhang Z, Zhang X, Shi Y, Zhang S. Isobaric tags for relative and absolute quantification-based proteomic analysis that reveals the roles of progesterone receptor, inflammation, and fibrosis for slow-transit constipation. J Gastroenterol Hepatol 2018; 33:385-392. [PMID: 28699285 DOI: 10.1111/jgh.13873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Progesterone receptor, inflammation, neurotransmitter expression, and fibrosis are involved in slow-transit constipation. The aim of the present study was to examine whether patients with slow-transit constipation have an overexpression of progesterone receptor and serotonin, which may impair the fibrosis of muscularis propria in colorectal wall. METHODS High-resolution colon manometry was used to record the colorectal peristaltic contractions of the proximal ascending and sigmoid colon in patients. Protein samples prepared from frozen sigmoid colon tissue and the proximal margin of the ascending colon of four female patients were compared using isobaric tags for relative and absolute quantification labeling technique coupled to 2D liquid chromatography-tandem mass spectrometry analysis. Immunohistochemical staining of progesterone receptor, serotonin, and fibronectin was performed in paraffin-embedded sigmoid colon tissues and the proximal margin of the ascending colon or ileum from 43 patients with slow-transit constipation. RESULTS Among these differentially regulated proteins based on isobaric tags for relative and absolute quantification and liquid chromatography-tandem mass spectrometry analysis, 56 proteins involved in the response to progesterone, inflammation, matrix remodeling, fibrosis, and muscle metabolism. Immunohistochemical staining confirmed that there was significantly higher expression of progesterone receptor (t = 19.19, P = 0.000) and serotonin (t = 13.52, P = 0.004) in sigmoid colon than in the proximal margin of the ascending colon and ileum. Progesterone receptor and fibronectin expression in the outer layer of muscularis propria were higher than in the middle layer. CONCLUSIONS These results demonstrate that progesterone receptor, along with inflammation and fibrosis, may take part in slow-transit constipation development.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuyuan Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yang Shi
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Haase J, Grudzinska-Goebel J, Müller HK, Münster-Wandowski A, Chow E, Wynne K, Farsi Z, Zander JF, Ahnert-Hilger G. Serotonin Transporter Associated Protein Complexes Are Enriched in Synaptic Vesicle Proteins and Proteins Involved in Energy Metabolism and Ion Homeostasis. ACS Chem Neurosci 2017; 8:1101-1116. [PMID: 28362488 DOI: 10.1021/acschemneuro.6b00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The serotonin transporter (SERT) mediates Na+-dependent high-affinity serotonin uptake and plays a key role in regulating extracellular serotonin concentration in the brain and periphery. To gain novel insight into SERT regulation, we conducted a comprehensive proteomics screen to identify components of SERT-associated protein complexes in the brain by employing three independent approaches. In vivo SERT complexes were purified from rat brain using an immobilized high-affinity SERT ligand, amino-methyl citalopram. This approach was combined with GST pulldown and yeast two-hybrid screens using N- and C-terminal cytoplasmic transporter domains as bait. Potential SERT associated proteins detected by at least two of the interaction methods were subjected to gene ontology analysis resulting in the identification of functional protein clusters that are enriched in SERT complexes. Prominent clusters include synaptic vesicle proteins, as well as proteins involved in energy metabolism and ion homeostasis. Using subcellular fractionation and electron microscopy we provide further evidence that SERT is indeed associated with synaptic vesicle fractions, and colocalizes with small vesicular structures in axons and axon terminals. We also show that SERT is found in close proximity to mitochondrial membranes in both, hippocampal and neocortical regions. We propose a model of the SERT interactome, in which SERT is distributed between different subcellular compartments through dynamic interactions with site-specific protein complexes. Finally, our protein interaction data suggest novel hypotheses for the regulation of SERT activity and trafficking, which ultimately impact on serotonergic neurotransmission and serotonin dependent brain functions.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Joanna Grudzinska-Goebel
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Heidi Kaastrup Müller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Department
of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Risskov DK-8240, Denmark
| | | | - Elysian Chow
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Proteomic Core Facility, UCD Conway Institute, School
of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zohreh Farsi
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
6
|
Physical and functional interactions between the serotonin transporter and the neutral amino acid transporter ASCT2. Biochem J 2016; 473:1953-65. [DOI: 10.1042/bcj20160315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
The activity of serotonergic systems depends on the reuptake of extracellular serotonin via its plasma membrane serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT), a member of the Na+/Cl−-dependent solute carrier 6 family. SERT is finely regulated by multiple molecular mechanisms including its physical interaction with intracellular proteins. The majority of previously identified SERT partners that control its functional activity are soluble proteins, which bind to its intracellular domains. SERT also interacts with transmembrane proteins, but its association with other plasma membrane transporters remains to be established. Using a proteomics strategy, we show that SERT associates with ASCT2 (alanine–serine–cysteine–threonine 2), a member of the solute carrier 1 family co-expressed with SERT in serotonergic neurons and involved in the transport of small neutral amino acids across the plasma membrane. Co-expression of ASCT2 with SERT in HEK (human embryonic kidney)-293 cells affects glycosylation and cell-surface localization of SERT with a concomitant reduction in its 5-HT uptake activity. Conversely, depletion of cellular ASCT2 by RNAi enhances 5-HT uptake in both HEK-293 cells and primary cultured mesencephalon neurons. Mimicking the effect of ASCT2 down-regulation, treatment of HEK-293 cells and neurons with the ASCT2 inhibitor D-threonine also increases 5-HT uptake. Moreover, D-threonine does not enhance further the maximal velocity of 5-HT uptake in cells depleted of ASCT2. Collectively, these findings provide evidence for a complex assembly involving SERT and a member of another solute carrier family, which strongly influences the subcellular distribution of SERT and the reuptake of 5-HT.
Collapse
|
7
|
Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism. Mol Autism 2014; 5:33. [PMID: 24834316 PMCID: PMC4022412 DOI: 10.1186/2040-2392-5-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/24/2014] [Indexed: 01/23/2023] Open
Abstract
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested.
Collapse
Affiliation(s)
- Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan ; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan ; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koji Ohno
- Department of Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Saori Yoshimura
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Hironori Takamura
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Kohei Yamada
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Faculty of Contemporary Sociology, Chukyo University, Toyota, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiichi Katayama
- Department of Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan ; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
8
|
Calcineurin interacts with the serotonin transporter C-terminus to modulate its plasma membrane expression and serotonin uptake. J Neurosci 2013; 33:16189-99. [PMID: 24107951 DOI: 10.1523/jneurosci.0076-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homeostasis of serotonergic transmission critically depends on the rate of serotonin reuptake via its plasma membrane transporter (SERT). SERT activity is tightly regulated by multiple mechanisms, including physical association with intracellular proteins and post-translational modifications, such as phosphorylation, but these mechanisms remain partially understood. Here, we show that SERT C-terminal domain recruits both the catalytic and regulatory subunits of the Ca(2+)-activated protein phosphatase calcineurin (CaN) and that the physical association of SERT with CaN is promoted by CaN activity. Coexpression of constitutively active CaN with SERT increases SERT cell surface expression and 5-HT uptake in HEK-293 cells. It also prevents the reduction of 5-HT uptake induced by an acute treatment of cells with the protein kinase C activator β-PMA and concomitantly decreases PMA-elicited SERT phosphorylation. In addition, constitutive activation of CaN in vivo favors 5-HT uptake in the adult mouse brain, whereas CaN inhibition reduces cerebral 5-HT uptake. Constitutive activation of CaN also decreases immobility in the forced swim test, indicative of an antidepressant-like effect of CaN. These results identify CaN as an important regulator of SERT activity in the adult brain and provide a novel molecular substrate of clinical interest for the understanding of increased risk of mood disorders in transplanted patients treated with immunosuppressive CaN inhibitors.
Collapse
|
9
|
Lau T, Schloss P. Differential regulation of serotonin transporter cell surface expression. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Diversity of metabotropic glutamate receptor-interacting proteins and pathophysiological functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:63-79. [PMID: 22351051 DOI: 10.1007/978-3-7091-0932-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the mammalian brain, the large majority of excitatory synapses express pre- and postsynaptic glutamate receptors. These are ion channels and G protein-coupled membrane proteins that are organized into functional signaling complexes. Here, we will review the nature and pathophysiological functions of the scaffolding proteins associated to these receptors, focusing on the G protein-coupled subtypes.
Collapse
|
11
|
Zhong H, Sánchez C, Caron MG. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. Biochem Pharmacol 2011; 83:435-42. [PMID: 21983034 DOI: 10.1016/j.bcp.2011.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 11/25/2022]
Abstract
The serotonin transporter (SERT) functions to transport serotonin (5-HT) from the extracellular space into neurons to maintain homeostatic control of 5-HT. It is the molecular target for selective serotonin reuptake inhibitor (SSRI) antidepressants. Preclinical research has shown that some SERT inhibitors can bind to two distinct binding sites on the SERT, a primary high affinity binding site and a low affinity allosteric binding site. Mutational studies of the SERT and computational modeling methods with escitalopram resulted in the identification of key amino acid residues important for the function of the allosteric binding site. While this allosteric binding site appears to influence the clinical efficacy of escitalopram under physiological conditions, the molecular mechanism of this effect is still poorly understood and may involve a large network of protein-protein interactions with the SERT. Dynamic interfaces between the SERT and the SERT interacting proteins (SIPs) potentially influence not only the SERT on its uptake function, its regulation, and trafficking, but also on known as well as yet to be identified non-canonical signaling pathways through SIPs. In this commentary, we outline approaches in the areas of selective small-molecule allosteric compound discovery, biochemistry, in vivo genetic knock-in mouse models, as well as computational and structural biology. These studies of the intra-molecular allosteric modulation of the SERT in the context of the myriad of potential inter-molecular signaling interactions with SIPs may help uncover unknown physiological functions of the SERT.
Collapse
Affiliation(s)
- Huailing Zhong
- U-Pharm Laboratories LLC, 239 New Road, Suite A-107, Parsippany, NJ 07054, USA.
| | | | | |
Collapse
|
12
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 617] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol Interv 2010; 10:231-41. [PMID: 20729489 DOI: 10.1124/mi.10.4.6] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serotonin transporter (SERT) on platelets is a primary mechanism for serotonin (5HT) uptake from the blood plasma. Alteration in plasma 5HT level is associated with a number of cardiovascular diseases and disorders. Therefore, the regulation of the transporter's activity represents a key mechanism to stabilize the concentration of plasma 5HT. There is a biphasic relationship between plasma 5HT elevation, loss of surface SERT, and depletion of platelet 5HT. Specifically, in platelets, plasma membrane SERT levels and platelet 5HT uptake initially rise as plasma 5HT levels are increased but then fall below normal as the plasma 5HT level continues to rise. Therefore, we propose that elevated plasma 5HT limits its own uptake in platelets by down-regulating SERT as well as modifying the characteristics of SERT partners in the membrane trafficking pathway. This review will summarize current findings regarding the biochemical mechanisms by which elevated 5HT downregulates the expression of SERT on the platelet membrane. Intriguing aspects of this regulation include the intracellular interplay of SERT with the small G protein Rab4 and the concerted 5HT-mediated phosphorylation of vimentin.
Collapse
Affiliation(s)
- Charles P Mercado
- Department of Biochemistry and Molecular Biology College of Medicine, The University of Arkansas for Medical Sciences Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
14
|
Ahmed BA, Bukhari IA, Jeffus BC, Harney JT, Thyparambil S, Ziu E, Fraer M, Rusch NJ, Zimniak P, Lupashin V, Tang D, Kilic F. The cellular distribution of serotonin transporter is impeded on serotonin-altered vimentin network. PLoS One 2009; 4:e4730. [PMID: 19270731 PMCID: PMC2648896 DOI: 10.1371/journal.pone.0004730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/15/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The C-terminus of the serotonin transporter (SERT) contains binding domains for different proteins and is critical for its functional expression. In endogenous and heterologous expression systems, our proteomic and biochemical analysis demonstrated that an intermediate filament, vimentin, binds to the C-terminus of SERT. It has been reported that 5HT-stimulation of cells leads to disassembly and spatial reorientation of vimentin filaments. METHODOLOGY/PRINCIPAL FINDINGS We tested the impact of 5HT-stimulation on vimentin-SERT association and found that 5HT-stimulation accelerates the translocation of SERT from the plasma membrane via enhancing the level of association between phosphovimentin and SERT. Furthermore a progressive truncation of the C-terminus of SERT was performed to map the vimentin-SERT association domain. Deletion of up to 20, but not 14 amino acids arrested the transporters at intracellular locations. Although, truncation of the last 14 amino acids, did not alter 5HT uptake rates of transporter but abolished its association with vimentin. To understand the involvement of 5HT in phosphovimentin-SERT association from the plasma membrane, we further investigated the six amino acids between Delta14 and Delta20, i.e., the SITPET sequence of SERT. While the triple mutation on the possible kinase action sites, S(611), T(613), and T(616) arrested the transporter at intracellular locations, replacing the residues with aspartic acid one at a time altered neither the 5HT uptake rates nor the vimentin association of these mutants. However, replacing the three target sites with alanine, either simultaneously or one at a time, had no significant effect on 5HT uptake rates or the vimentin association with transporter. CONCLUSIONS/SIGNIFICANCE Based on our findings, we propose that phosphate modification of the SITPET sequence differentially, one at a time exposes the vimentin binding domain on the C-terminus of SERT. Conversely, following 5HT stimulation, the association between vimentin-SERT is enhanced which changes the cellular distribution of SERT on an altered vimentin network.
Collapse
Affiliation(s)
- Billow A. Ahmed
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Irfan A. Bukhari
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Brandon C. Jeffus
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Justin T. Harney
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sheeno Thyparambil
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Endrit Ziu
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Mony Fraer
- Department of Internal Medicine, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nancy J. Rusch
- Department of Pharmacology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Piotr Zimniak
- Department of Pharmacology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Vladimir Lupashin
- Department of Physiology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Dale Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, United States of America
| | - Fusun Kilic
- Department of Biochemistry and Molecular Biology, College of Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nobukuni M, Mochizuki H, Okada S, Kameyama N, Tanaka A, Yamamoto H, Amano T, Seki T, Sakai N. The C-Terminal Region of Serotonin Transporter Is Important for Its Trafficking and Glycosylation. J Pharmacol Sci 2009; 111:392-404. [DOI: 10.1254/jphs.09195fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Venardos K, Enriquez C, Marshall T, Chin-Dusting JPF, Ahlers B, Kaye DM. Protein kinase C mediated inhibition of endothelial L-arginine transport is mediated by MARCKS protein. J Mol Cell Cardiol 2008; 46:86-92. [PMID: 18977358 DOI: 10.1016/j.yjmcc.2008.09.712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/04/2008] [Accepted: 09/19/2008] [Indexed: 11/19/2022]
Abstract
The endothelium plays a vital role in the maintenance of vascular tone and structural vascular integrity, principally mediated via the actions of nitric oxide (NO). L-arginine is the immediate substrate for NO synthesis, and the availability of extracellular L-arginine is critical for the production of NO. Activation of protein kinase C (PKC) dependent signalling pathways are a feature of a number of cardiovascular disease states, and in this study we aimed to systematically evaluate the mechanism by which PKC regulates L-arginine transport in endothelial cells. In response to PKC activation (PMA 100 nM, 30 min), [(3)H]L-arginine uptake by bovine aortic endothelial cells (BAEC) was reduced to 45+4% of control (p<0.05). This resulted from a 53% reduction in the Vmax (p<0.05), with no change in the K(m) for L-arginine. Western blot analysis and confocal microscopy revealed no change in the expression or membrane distribution of CAT-1, the principal BAEC L-arginine transporter. Moreover in (32)P-labeling studies, PMA exposure did not result in CAT-1 phosphorylation. We therefore explored the possibility that PKC altered and interaction with MARCKS protein, a candidate membrane associated protein. By co-immunoprecipitation we show that CAT-1 interacts with, a membrane associated protein, that was significantly inhibited by PKC activation (p<0.05). Moreover antisense inhibition of MARCKS abolished the PMA effect on L-arginine transport. PKC dependent mechanisms regulate the transport of L-arginine, mediated via process involving MARCKS.
Collapse
Affiliation(s)
- Kylie Venardos
- Heart Failure Research Group, Baker Heart Research Institute, Melbourne VIC, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Ahmed BA, Jeffus BC, Bukhari SIA, Harney JT, Unal R, Lupashin VV, van der Sluijs P, Kilic F. Serotonin transamidates Rab4 and facilitates its binding to the C terminus of serotonin transporter. J Biol Chem 2008; 283:9388-98. [PMID: 18227069 DOI: 10.1074/jbc.m706367200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) on the plasma membrane is the major mechanism for the clearance of plasma serotonin (5-hydroxytryptamine (5HT)). The uptake rates of cells depend on the density of SERT molecules on the plasma membrane. Interestingly, the number of SERT molecules on the platelet surface is down-regulated when plasma 5HT ([5HT](ex)) is elevated. It is well reported that stimulation of cells with high [5HT](ex) induces transamidation of a small GTPase, Rab4. Modification with 5HT stabilizes Rab4 in its active, GTP-bound form, Rab4-GTP. Although investigating the mechanism by which elevated plasma 5HT level down-regulates the density of SERT molecules on the plasma membrane, we studied Rab4 and SERT in heterologous and platelet expression systems. Our data demonstrate that, in response to elevated [5HT](ex), Rab4-GTP co-localizes with and binds to SERT. The association of SERT with Rab4-GTP depends on: (i) 5HT modification and (ii) the GTP-binding ability of Rab4. Their association retains transporter molecules intracellularly. Furthermore, we mapped the Rab4-SERT association domain to amino acids 616-624 in the cytoplasmic tail of SERT. This finding provides an explanation for the role of the C terminus in the localization and trafficking of SERT via Rab4 in a plasma 5HT-dependent manner. Therefore, we propose that elevated [5HT](ex)"paralyzes" the translocation of SERT from intracellular locations to the plasma membrane by controlling transamidation and Rab4-GTP formation.
Collapse
Affiliation(s)
- Billow A Ahmed
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 301 West Markham Street, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chanrion B, Mannoury la Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P. Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A 2007; 104:8119-24. [PMID: 17452640 PMCID: PMC1876581 DOI: 10.1073/pnas.0610964104] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The spatiotemporal regulation of neurotransmitter transporters involves proteins that interact with their intracellular domains. Using a proteomic approach, we identified several proteins that interact with the C terminus of the serotonin transporter (SERT). These included neuronal nitric oxide synthase (nNOS), a PSD-95/Disc large/ZO-1 (PDZ) domain-containing protein recruited by the atypical PDZ binding motif of SERT. Coexpression of nNOS with SERT in HEK293 cells decreased SERT cell surface localization and 5-hydroxytryptamine (5-HT) uptake. These effects were absent in cells transfected with SERT mutated in its PDZ motif to prevent physical association with nNOS, and 5-HT uptake was unaffected by activation or inhibition of nNOS enzymatic activity. 5-HT uptake into brain synaptosomes was increased in both nNOS-deficient and wild-type mice i.v. injected with a membrane-permeant peptidyl mimetic of SERT C terminus, which disrupted interaction between SERT and nNOS, suggesting that nNOS reduces SERT activity in vivo. Furthermore, treating cultured mesencephalic neurons with the mimetic peptide similarly increased 5-HT uptake. Reciprocally, indicating that 5-HT uptake stimulates nNOS activity, NO production was enhanced on exposure of cells cotransfected with nNOS and SERT to 5-HT. This effect was abolished by 5-HT uptake inhibitors and absent in cells expressing SERT mutated in its PDZ motif. In conclusion, physical association between nNOS and SERT provides a molecular substrate for their reciprocal functional modulation. In addition to showing that nNOS controls cell surface localization of SERT, these findings provide evidence for regulation of cellular signaling (NO production) by a substrate-carrying transporter.
Collapse
Affiliation(s)
- B. Chanrion
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, F-34094 Montpellier, France
- Institut National de la Santé de la Recherche Médicale, U661, F-34094 Montpellier, France
- Université de Montpellier I, F-34094 Montpellier, France
- Université Montpellier II, F-34094 Montpellier, France
- Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
- I.d.R Servier, 78290 Croissy, Paris, France; and
| | | | - F. Bertaso
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, F-34094 Montpellier, France
- Institut National de la Santé de la Recherche Médicale, U661, F-34094 Montpellier, France
- Université de Montpellier I, F-34094 Montpellier, France
- Université Montpellier II, F-34094 Montpellier, France
- Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | - M. Lerner-Natoli
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, F-34094 Montpellier, France
- Institut National de la Santé de la Recherche Médicale, U661, F-34094 Montpellier, France
- Université de Montpellier I, F-34094 Montpellier, France
- Université Montpellier II, F-34094 Montpellier, France
- Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | - M. Freissmuth
- **Institute of Pharmacology, University of Vienna, Wahringer Strasse 13a, A-1090 Vienna, Austria
| | - M. J. Millan
- I.d.R Servier, 78290 Croissy, Paris, France; and
| | - J. Bockaert
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, F-34094 Montpellier, France
- Institut National de la Santé de la Recherche Médicale, U661, F-34094 Montpellier, France
- Université de Montpellier I, F-34094 Montpellier, France
- Université Montpellier II, F-34094 Montpellier, France
- Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
- To whom correspondence should be addressed. E-mail:
| | - P. Marin
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, F-34094 Montpellier, France
- Institut National de la Santé de la Recherche Médicale, U661, F-34094 Montpellier, France
- Université de Montpellier I, F-34094 Montpellier, France
- Université Montpellier II, F-34094 Montpellier, France
- Institut de Génomique Fonctionnelle, Département de Neurobiologie, 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Bertaso F, Lill Y, Airas JM, Espeut J, Blahos J, Bockaert J, Fagni L, Betz H, El-Far O. MacMARCKS interacts with the metabotropic glutamate receptor type 7 and modulates G protein-mediated constitutive inhibition of calcium channels. J Neurochem 2006; 99:288-98. [PMID: 16987251 DOI: 10.1111/j.1471-4159.2006.04121.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that the interaction of Ca2+/calmodulin with the metabotropic glutamate receptor type 7 (mGluR7) promotes the G-protein-mediated inhibition of voltage-sensitive Ca2+ channels (VSCCs) seen upon agonist activation. Here, we performed a yeast two-hybrid screen of a new-born rat brain cDNA library using the cytoplasmic C-terminal tail of mGluR7 as bait and identified macrophage myristoylated alanine-rich c-kinase substrate (MacMARCKS) as a binding protein. The interaction was confirmed in vitro and in vivo by pull-down assays, immunoprecipitation, and colocalization of mGluR7 and MacMARCKS in transfected HEK293 cells and cultured cerebellar granule cells. Binding of MacMARCKS to mGluR7 was antagonized by Ca2+/calmodulin. In neurons, cotransfection of MacMARCKS with mGluR7, but not mGluR7 mutants unable to bind MacMARCKS, reduced the G-protein-mediated tonic inhibition of VSCCs in the absence of mGluR7 agonist. These results suggest that competitive interactions of Ca2+/calmodulin and MacMARCKS with mGluR7 control the tonic inhibition of VSCCs by G-proteins.
Collapse
Affiliation(s)
- Federica Bertaso
- CNRS, UMR5203, Montpellier; INSERM, U661, Montpellier, University Montpellier I & II, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ravna AW. Three-dimensional models of neurotransmitter transporters and their interactions with cocaine and S-citalopram. World J Biol Psychiatry 2006; 7:99-109. [PMID: 16684682 DOI: 10.1080/15622970500402144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Drugs that act on the human serotonin transporter (hSERT), human dopamine transporter (hDAT) and human noradrenaline transporter (hNET) are important in antidepressant treatment and well known in drug abuse. The investigation of their molecular mechanisms of action is very useful for designing new ligands with a therapeutic potential. The detailed three-dimensional molecular structure of any monoamine transporter is not known, but the three-dimensional electron density projection map of Escherichia coli Na+/H+ antiporter (NhaA) has provided structural basis for constructing models of such transporters using molecular modelling techniques. Three-dimensional models of these drug targets give insight into their structure, mechanisms and drug interactions. In these molecular modelling studies, an Escherichia coli NhaA model was first constructed based on its three-dimensional electron density projection map and experimental studies on NhaA and the Escherichia coli lactose permease symporter (Lac permease). Then three-dimensional models of the neurotransmitter transporters hDAT, hSERT and hNET were constructed based on the NhaA model and studies of ligand binding to mutated dopamine transporter (DAT) and serotonin transporter (SERT). The structural properties of these neurotransmitter transporter models have been examined, and their interactions with cocaine and S-citalopram have been investigated.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
21
|
Müller HK, Wiborg O, Haase J. Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem 2006; 281:28901-9. [PMID: 16870614 DOI: 10.1074/jbc.m602848200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) belongs to the SLC6 family of sodium- and chloride-dependent neurotransmitter transporters responsible for uptake of amino acids and biogenic amines from extracellular spaces. Their activities and subcellular distributions are regulated by various cellular mechanisms, including interactions with other proteins. Using the yeast two-hybrid approach we screened a human brain cDNA library and identified secretory carrier membrane protein 2 (SCAMP2) as a novel SERT-interacting protein. GST-pulldown assays confirmed the physical interaction between SCAMP2 and the N-terminal domain of SERT. In addition, SERT was found to form a complex with SCAMP2 as demonstrated by co-immunoprecipitation from a heterologous expression system and from rat brain homogenate. Co-expression of SERT and SCAMP2 in mammalian cells results in the subcellular redistribution of SERT with a decrease in cell surface SERT and a concomitant reduction in 5-HT uptake activity. Using confocal microscopy we show that in neuronal cells endogenous SERT co-localizes with SCAMP2 in discrete structures also containing the lipid raft marker flotillin-1 and the SNARE protein syntaxin 1A. In contrast, SERT immunoreactivity is clearly segregated from transferrin receptor-containing endosomes. A single amino acid mutation, cysteine-201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, abolished SCAMP2-mediated down-regulation of SERT, although this mutation had no effect on the physical interaction between SERT and SCAMP2. Taken together, our results suggest that SCAMP2 plays an important role in the regulation of the subcellular distribution of SERT.
Collapse
Affiliation(s)
- Heidi Kaastrup Müller
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland, Trinity College Dublin 2, Ireland
| | | | | |
Collapse
|
22
|
Wersinger C, Rusnak M, Sidhu A. Modulation of the trafficking of the human serotonin transporter by human alpha-synuclein. Eur J Neurosci 2006; 24:55-64. [PMID: 16882008 DOI: 10.1111/j.1460-9568.2006.04900.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-Synuclein (alpha-Syn), a protein primarily localized in the presynaptic compartment of neurons, is known to regulate dopaminergic neurotransmission by negatively modulating dopamine transporter activity and regulating its trafficking to or away from the cell surface. Given the considerable homology between dopamine transporters and the serotonin (5-HT) transporter (SERT), we examined whether alpha-Syn could similarly regulate SERT function. Increasing expression levels of human alpha-Syn gradually decreased [(3)H]5-HT uptake by human SERT in cotransfected Ltk(-) cells, by diminishing its V(max) without changing its K(m), as compared to cells expressing only SERT. Biotinylation studies to label cell-surface proteins showed that alpha-Syn decreased the levels of SERT present at the plasma membrane. alpha-Syn and SERT were able to coimmunoprecipitate (co-IP), suggesting heteromeric complexes between these two proteins through direct protein-protein interactions. The negative modulation of SERT activity by alpha-Syn occurred through the non-Abeta-amyloid component (NAC) domain of alpha-Syn (aa58-107); DNA constructs encoding this region mimicked the full-length alpha-Syn protein by decreasing [(3)H]5-HT uptake by the transporter. Furthermore, only the constructs encoding the NAC domain of alpha-Syn prevented the co-IPs between full-length alpha-Syn and SERT, in both transfected cells and in rat solubilized lysates isolated from the prefrontal cortex. These studies suggest a novel physiological role for alpha-Syn in regulating SERT activity and may be of relevance in certain mental illnesses and in depression, in which SERT function is believed to be dysregulated.
Collapse
Affiliation(s)
- Christophe Wersinger
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University, The Research Building, Room W222, 3970 Reservoir Road, NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
23
|
Park SK, George R, Cai Y, Chang HY, Krantz DE, Friggi-Grelin F, Birman S, Hirsh J. Cell-type-specific limitation on in vivo serotonin storage following ectopic expression of the Drosophila serotonin transporter, dSERT. ACTA ACUST UNITED AC 2006; 66:452-62. [PMID: 16470720 DOI: 10.1002/neu.20222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The synaptic machinery for neurotransmitter storage is cell-type specific. Although most elements of biosynthesis and transport have been identified, it remains unclear whether additional factors may be required to maintain this specificity. The Drosophila serotonin transporter (dSERT) is normally expressed exclusively in serotonin (5-HT) neurons in the CNS. Here we examine the effects of ectopic transcriptional expression of dSERT in the Drosophila larval CNS. We find a surprising limitation on 5-HT storage following ectopic expression of dSERT and green fluorescence protein-tagged dSERT (GFP-dSERT). When dSERT transcription is driven ectopically in the CNS, 5-HT is detectable only in 5-HT, dopamine (DA), and a very limited number of additional neurons. Addition of exogenous 5-HT does not dramatically broaden neuronal storage sites, so this limitation is only partly due to restricted intercellular diffusion of 5-HT. Furthermore, this limitation is not due to gross mislocalization of dSERT, because cells lacking or containing 5-HT show similar levels and subcellular distribution of GFP-dSERT protein, nor is it due to lack of the vesicular transporter, dVMAT. These data suggest that a small number of neurons selectively express factor(s) required for 5-HT storage, and potentially for function of dSERT.
Collapse
Affiliation(s)
- Sang Ki Park
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Carneiro AMD, Blakely RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 2006; 281:24769-80. [PMID: 16803896 PMCID: PMC3875312 DOI: 10.1074/jbc.m603877200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging data indicate the existence of multiple regulatory processes supporting serotonin (5HT) transporter (SERT) capacity including regulated trafficking and catalytic activation, influenced by post-translational modifications and transporter-associated proteins. In the present study, using differential extraction and sedimentation procedures optimized for the purification of cytoskeletal and membrane-skeletal associated proteins, we analyze SERT localization in platelets. We find that most of the plasma membrane SERT is associated with the membrane skeleton. This association can be enhanced by both transporter activation and 5HT2A receptor activation. Inactivation of transport activity by phorbol ester treatment of intact platelets relocates SERT to the cytoskeleton fraction, consequently leading to transporter internalization. The translocation of SERT between these compartments is correlated with changes in the interaction with the LIM domain adaptor protein Hic-5. Co-immunoprecipitation and uptake activity studies suggest that Hic-5 is a determinant of transporter inactivation and relocation to a compartment subserving endocytic regulation. Associations of SERT with Hic-5 are evident in brain synaptosomes, suggesting the existence of parallel mechanisms operating to regulate SERT at serotonergic synapses.
Collapse
Affiliation(s)
- Ana Marin D. Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D. Blakely
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- Department of Psychiatry, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- To whom correspondence should be addressed: 7140 MRBIII, Vanderbilt School of Medicine, Nashville, TN 37232-8548. Tel.: 615-936-3705; Fax: 615-936-3040;
| |
Collapse
|
25
|
Zhao S, Edwards J, Carroll J, Wiedholz L, Millstein RA, Jaing C, Murphy DL, Lanthorn TH, Holmes A. Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 2006; 140:321-34. [PMID: 16542782 DOI: 10.1016/j.neuroscience.2006.01.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 01/23/2006] [Accepted: 01/27/2006] [Indexed: 11/17/2022]
Abstract
The 5-hydroxytryptamine transporter (5-HTT) regulates 5-hydroxytryptamine (5-HT) neurotransmission by removing 5-HT from the synaptic cleft. Emerging evidence from clinical and genetic studies implicates the 5-HTT in various neuropsychiatric conditions, including anxiety and depression. Here we report that a 5-HTT null mutant mouse line was generated by gene trapping that disrupted the sequence encoding the C-terminus of 5-HTT. This mutation resulted in significant reduction of 5-HTT mRNA and loss of 5-HTT protein. Brain levels of 5-HT and its major metabolite, 5-hydroxyindoleacetic acid, were markedly decreased in C-terminus 5-HTT -/- mice, while 5-HT uptake or 5-HT content in platelets was absent. Behavioral phenotyping showed that C-terminus 5-HTT -/- mice were normal on a screen for gross behavioral, neurological, and sensory functions. In the tail suspension test for depression-related behavior, C-terminus 5-HTT -/- mice showed increased immobility relative to their +/+ controls. By comparison, a previously generated line of 5-HTT -/- mice lacking exon 2, encoding the N-terminus of the 5-HTT, showed abnormally high immobility in response to repeated, but not acute, exposure to the tail suspension test. In a novel, brightly-lit open field, both C-terminus 5-HTT -/- mice and N-terminus 5-HTT -/- mice displayed decreased center time and reduced locomotor activity compared with their +/+ controls. Both mutant lines buried significantly fewer marbles than their +/+ controls in the marble burying test. These findings further demonstrate the neurobiological functions of the 5-HTT and add to a growing literature linking genetic variation in 5-HTT function with emotional abnormalities.
Collapse
Affiliation(s)
- S Zhao
- Lexicon Genetics Incorporated, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 2005; 102:11545-50. [PMID: 16055563 PMCID: PMC1183547 DOI: 10.1073/pnas.0501432102] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 06/08/2005] [Indexed: 12/31/2022] Open
Abstract
Human serotonin [5-hydroxytryptamine (5-HT)] transporters (hSERT, 5HTT, and SLC6A4) inactivate 5-HT after release and are prominent targets for therapeutic intervention in mood, anxiety, and obsessive-compulsive disorders. Multiple hSERT coding variants have been identified, although to date no comprehensive functional analysis of these variants has been reported. We transfected hSERT or 10 hSERT coding variants and examined total and surface protein expression, antagonist recognition, and transporter modulation by posttranslational, regulatory pathways. Two variants, Pro339Leu and Ile425Val, demonstrated significant changes in surface expression supporting alterations in 5-HT transport capacity (V(max)). Regardless of basal transport activity, all SERT variants displayed a capacity for rapid, phorbol ester-triggered down-regulation. Remarkably, five variants (Thr4Ala, Gly56Ala, Glu215Lys, Lys605Asn, and Pro612Ser) demonstrated no capacity for 5-HT uptake stimulation after acute protein kinase G (PKG)/p38 mitogen-activated protein kinase (MAPK) activation. Epstein-Barr virus (EBV)-transformed lymphocytes natively expressing the most common of these variants (Gly56Ala) exhibited a similar loss of 5-HT uptake stimulation by PKG/p38 MAPK activators. HeLa cells transfected with the Gly56Ala variant demonstrated elevated basal phosphorylation and, unlike hSERT, could not be further phosphorylated after 8-bromo cGMP (8BrcGMP) treatments. These studies reveal cellular phenotypes associated with naturally occurring human SERT coding variants and suggest that altered transporter regulation by means of PKG/p38 MAPK-linked pathways may influence risk for disorders attributed to compromised 5-HT signaling.
Collapse
Affiliation(s)
- Harish C Prasad
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rausch JL. Initial conditions of psychotropic drug response: studies of serotonin transporter long promoter region (5-HTTLPR), serotonin transporter efficiency, cytokine and kinase gene expression relevant to depression and antidepressant outcome. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1046-61. [PMID: 16005136 DOI: 10.1016/j.pnpbp.2005.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2005] [Indexed: 12/29/2022]
Abstract
The Hypothesis of Initial Conditions posits that differences in psychotropic drug response result from individual differences in receptor site kinetics, and differences in the sensitivity of downstream receptor-linked responses. This work examines data consistent with the hypothesis, specific to genetic and kinetic differences of the serotonin (5-HT) transporter (SERT), as they may be linked to divergent antidepressant response (ADR). The mechanisms for divergent ADR in association with different initial SERT function are considered within the context of SERT trafficking as sensitive to various different kinase and cytokine signals, some of which are dependent on the 5-HTTLPR polymorphism of the SERT gene. Pilot data suggest that human lymphocytes show kinase changes similar to those found in rat brain with ADT. These studies additionally suggest that ADT prompts a shift in cytokine gene expression toward a greater anti-inflammatory/inflammatory ratio. These latter findings are discussed within the context of a literature suggesting increased inflammatory cytokine levels in depression, and recent observations of increased temperature associated with depression. In sum, the data suggest the opportunity to identify response dependent protein (RDP) expression patterns that may differ with dichotomous ADR, and suggest new insights into understanding the mechanisms of psychotropic drug response through an understanding of initial differences in potential for psychotropic drug target regulation during therapy.
Collapse
Affiliation(s)
- Jeffrey L Rausch
- Veterans Administration, Department of Psychiatry and Health Behavior, The Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Gonzalo E Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
29
|
Wang D, Quick MW. Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool. J Biol Chem 2005; 280:18703-9. [PMID: 15778221 DOI: 10.1074/jbc.m500381200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane neurotransmitter transporters rapidly traffic to and from the cell surface in neurons. This trafficking may be important in regulating neuronal signaling. Such regulation will be subject to the number of trafficking transporters and their trafficking rates. In the present study, we define an acutely recycling pool of endogenous gamma-aminobutyric acid transporters (GAT1) in cortical neurons that comprises approximately one-third of total cellular GAT1. Kinetic analysis of this pool estimates exocytosis and endocytosis time constants of 1.6 and 0.9 min, respectively, and thus approximately one-third of the recycling pool is plasma membrane resident in the basal state. Recent evidence shows that GAT1 substrates, second messengers, and interacting proteins regulate GAT1 trafficking. These triggers could act by altering trafficking rates or by changing the recycling pool size. In the present study we examine three GAT1 modulators. Calcium depletion decreases GAT1 surface expression by diminishing the recycling pool size. Sucrose increases GAT1 surface expression by blocking clathrin- and dynamin-dependent endocytosis, but it does not change the recycling pool size. Protein kinase C decreases surface GAT1 expression by increasing the endocytosis rate, but it does not change the exocytosis rate or the recycling pool size. Based upon estimates of GAT1 molecules in cortical boutons, the present data suggest that approximately 1000 transporters comprise the acutely recycling pool, of which 300 are on the surface in the basal state, and five transporters insert into the plasma membrane every second. This insertion could represent the fusion of one transporter-containing vesicle.
Collapse
Affiliation(s)
- Dan Wang
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089-2520, USA
| | | |
Collapse
|
30
|
Mochizuki H, Amano T, Seki T, Matsubayashi H, Mitsuhata C, Morita K, Kitayama S, Dohi T, Mishima HK, Sakai N. Role of C-terminal region in the functional regulation of rat serotonin transporter (SERT). Neurochem Int 2005; 46:93-105. [PMID: 15627510 DOI: 10.1016/j.neuint.2004.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/25/2004] [Accepted: 08/26/2004] [Indexed: 11/21/2022]
Abstract
Previously, we revealed that the state of the actin cytoskeleton affects the uptake activity of the serotonin transporter (SERT). Recently, it was reported that the C-terminus of SERT interacts with MacMARCKS, a substrate of PKC that can bind to the actin cytoskeleton. To elucidate the importance of the C-terminal region in the regulation of SERT activity and the interaction with the actin cytoskeleton, we examined whether the overexpression of the C-terminus affects the transport activity of SERT. To this end, we overexpressed a GFP-fused 30-amino acid construct of the SERT C-terminus (GFP-SERT-CT) in HEK293 cells stably expressing FLAG-tagged SERT (FL-SERT-HEK293 cells). The SERT uptake activity and transporter current were attenuated in GFP-SERT-CT-expressing FL-SERT-HEK293 cells, as compared with GFP-expressing FL-SERT-HEK293 cells. Eadie-Hofstee analysis revealed that GFP-SERT-CT overexpression attenuated the SERT uptake activity by reducing the Vmax, but not changing the Km, which was consistent with the results of experiments on the cell-surface expression of SET using biotinylation/immunoblot analysis. Immunocytochemical analysis demonstrated that GFP-SERT-CT was co-localized with FLAG-SERT and cortical actin at the plasma membrane. In addition, the SERT C-terminus did not affect dopamine transporter activity. These findings showed the significance of the C-terminal region to the functional regulation of SERT, suggesting that GFP-SERT-CT acts as a molecular decoy to disrupt the interaction between SERT and the actin cytoskeleton.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Ophthalmology and Visual sciences, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohno K, Koroll M, El Far O, Scholze P, Gomeza J, Betz H. The neuronal glycine transporter 2 interacts with the PDZ domain protein syntenin-1. Mol Cell Neurosci 2004; 26:518-29. [PMID: 15276154 DOI: 10.1016/j.mcn.2004.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/08/2004] [Accepted: 04/14/2004] [Indexed: 11/26/2022] Open
Abstract
The glycine transporter subtype 2 (GlyT2) is localized at glycinergic axon terminals where it mediates the re-uptake of glycine from the extracellular space. In this study, we used the yeast two-hybrid system to search for proteins that interact with the cytoplasmic carboxy terminal tail region of GlyT2. Screening of a rat brain cDNA library identified the PDZ domain protein syntenin-1 as an intracellular binding partner of GlyT2. In pull-down experiments, the interaction between GlyT2 and syntenin-1 was found to involve the C-terminal amino acid residues of GlyT2 and the PDZ2 domain of syntenin-1. Syntenin-1 is widely expressed in brain and co-localizes with GlyT2 in brainstem sections. Furthermore, syntenin-1 binds syntaxin 1A, which is known to regulate the plasma membrane insertion of GlyT2. Thus, syntenin-1 may be an in vivo binding partner of GlyT2 that regulates its trafficking and/or presynaptic localization in glycinergic neurons.
Collapse
Affiliation(s)
- Koji Ohno
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Just H, Sitte HH, Schmid JA, Freissmuth M, Kudlacek O. Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J Biol Chem 2003; 279:6650-7. [PMID: 14660642 DOI: 10.1074/jbc.m306092200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na+/Cl--dependent neurotransmitter transporters form constitutive oligomers. The topological arrangement is not known, but a leucine heptad repeat in transmembrane domain (TM) 2 and a glycophorin-like motif in TM6 have been proposed to stabilize the oligomer. To determine the topology, we generated versions of the human serotonin transporter (hSERT) that carried cyan or yellow fluorescent proteins at their amino and/or carboxyl terminus. Appropriate pairs were coexpressed to measure fluorescence resonance energy transfer (FRET). Donor photobleaching FRET microscopy was employed to deduce the following arrangement: within the monomer, the amino and carboxyl termini are in close vicinity. In addition, in the oligomer, the carboxyl termini are closer to each other than the amino termini. Hence, a separate interaction domain (i.e. distinct from TM2 and TM6) must reside in the carboxyl-terminal half of hSERT. This was confirmed by expressing the amino- and carboxyl-terminal halves of hSERT. These were retained intracellularly; they also retained the coexpressed full-length transporter by forming export-deficient oligomers and, when cotransfected in all possible combinations, supported FRET. Hence, both the carboxyl and amino termini contain elements that drive oligomerization. By employing fragments comprising two neighboring TM helices, we unequivocally identified TM11/12 as a new contact site by donor photobleaching FRET and beta-lactamase protein fragment complementation assay. TM1/2 was also found to self-associate. Thus, oligomerization of hSERT involves at least two discontinuous interfaces. The currently identified interaction sites drive homophilic interactions. This is consistent with assembly of SERT oligomers in an array-like structure containing multimers of dimers.
Collapse
Affiliation(s)
- Herwig Just
- Institute of Pharmacology, University of Vienna Medical School, Währinger Strasse 13A, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
33
|
Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003; 4:13-25. [PMID: 12511858 DOI: 10.1038/nrn1008] [Citation(s) in RCA: 666] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo E Torres
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|