1
|
Soukop J, Kazdová L, Hüttl M, Malínská H, Marková I, Oliyarnyk O, Miklánková D, Gurská S, Rácová Z, Poruba M, Večeřa R. Beneficial Effect of Fenofibrate in Combination with Silymarin on Parameters of Hereditary Hypertriglyceridemia-Induced Disorders in an Animal Model of Metabolic Syndrome. Biomedicines 2025; 13:212. [PMID: 39857794 PMCID: PMC11763318 DOI: 10.3390/biomedicines13010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg). Results: Fenofibrate treatment (100 mg/kg BW/day for four weeks) significantly decreased serum levels of triglyceride, (-77%) and free fatty acids (-29%), the hepatic accumulation of triglycerides, and the expression of genes encoding transcription factors involved in lipid metabolism (Srebf2, Nr1h4. Rxrα, and Slco1a1). In contrast, the hypertriglyceridemia-induced ectopic storage of lipids in muscles, the heart, and kidneys reduced glucose utilization in muscles and was not affected. In addition, fenofibrate reduced the activity of the antioxidant system, including Nrf2 expression (-35%) and increased lipoperoxidation in the liver and, to a lesser extent, in the kidneys and heart. Adding silymarin (micronized form, 600 mg/kg BW/day) to fenofibrate therapy increased the synthesis of glycogen in muscles, (+36%) and reduced hyperinsulinemia (-34%). In the liver, it increased the activity of the antioxidant system, including PON-1 activity and Nrf2 expression, and reduced the formation of lipoperoxides. The beneficial effect of combination therapy on the parameters of oxidative stress and lipoperoxidation was also observed, to a lesser extent, in the heart and kidneys. Conclusions: Our results suggest the potential beneficial use of the combination of FF with SLM in the treatment of hypertriglyceridemia-induced metabolic disorders.
Collapse
Affiliation(s)
- Jan Soukop
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Ludmila Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic
| | - Zuzana Rácová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Rostislav Večeřa
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| |
Collapse
|
2
|
Sasaki T, Sugiyama M, Kuno M, Miyata T, Kobayashi T, Yasuda Y, Onoue T, Takagi H, Hagiwara D, Iwama S, Suga H, Banno R, Arima H. Voluntary exercise suppresses inflammation and improves insulin resistance in the arcuate nucleus and ventral tegmental area in mice on a high-fat diet. Physiol Behav 2024; 287:114703. [PMID: 39342979 DOI: 10.1016/j.physbeh.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
A high-fat diet (HFD) causes inflammation with an increase in microglial activity in the hypothalamic arcuate nucleus (ARC) and ventral tegmental area (VTA), resulting in insulin resistance in both regions. This leads to a deterioration in glucose and energy metabolism. The effect of voluntary exercise on HFD-induced inflammation in the central nervous system (CNS) remains unclear. To clarify the effects of voluntary exercise on the CNS, 8-week-old male C57BL6 mice were fed a chow diet (CHD) or HFD for 4 weeks; each group was further divided into running exercise (EX+) on a wheel and no exercise (EX-) groups. The expression of the inflammatory cytokine, tumor necrosis factor alpha (TNFα), in the ARC and VTA was significantly increased in the HFD/EX- group, with an increase of microglial activity noted, compared to the CHD/EX- group. The expression of TNFα was significantly suppressed, with a decrease of microglial activity, in the HFD/EX+ compared to HFD/EX- group. Insulin resistance in the ARC and VTA was improved with the suppression of TNFα expression. The HFD/EX- group showed significant weight gain and impaired glucose metabolism compared to the CHD/EX- group. The HFD/EX+ group showed an improvement in glucose and energy metabolism compared to the HFD/EX- group. In addition, voluntary wheel running suppressed HFD-induced inflammation in the ARC, with a decrease in microglial activity observed independently of weight changes. Our data suggest that voluntary exercise prevents obesity and improves glucose metabolism by suppressing inflammation in the ARC and VTA under HFD conditions.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Mitsuhiro Kuno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Azizi M, Bouyeh M, Seidavi A. Effects of different levels of fenofibrate on growth performance, carcase characteristics, abdominal fat, serum constitutes, immune system, caeca and microbial flora of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2032417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Azizi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mehrdad Bouyeh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
4
|
Abdelmoneim D, El-Adl M, El-Sayed G, El-Sherbini ES. Protective effect of fenofibrate against high-fat-high-fructose diet induced non-obese NAFLD in rats. Fundam Clin Pharmacol 2020; 35:379-388. [PMID: 32757283 DOI: 10.1111/fcp.12597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The present study evaluated the protective effects of fenofibrate on liver function, oxidant-antioxidant balance, and insulin resistance (IR) in rats fed high-fat-high-fructose diet (HFFD). Twenty-four male Sprague-Dawley rats (110-130 gm) were allocated into four equal groups (n = 6). Rats in group I were fed a normal diet for 4 weeks. Rats in group II were fed a normal diet with fenofibrate at 50 mg/kg/day orally for four weeks. Rats in group III were fed a normal diet mixed with 25% palm oil and given 60% fructose solution orally for 4 weeks. Rats in group IV were fed a normal diet mixed with 25% palm oil, 60% oral fructose solution, and fenofibrate at 50 mg/kg/day orally for four weeks. After experimental induction, serum and liver tissue samples were collected to determine lipid profiles, glycemic status, antioxidant status, oxidative and stress markers, and histopathology of liver tissues. The results of the present study revealed that fenofibrate prevents the occurrence of fatty liver, enhancing glycemic status, decreasing oxidative stress, and improving antioxidant status. It can be concluded that fenofibrate has a lipotropic and antidiabetic role.
Collapse
Affiliation(s)
- Doaa Abdelmoneim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Gehad El-Sayed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - El Said El-Sherbini
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| |
Collapse
|
5
|
da Rosa-Junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Frusciante MR, Dutra Filho CS, Wajner M, Leipnitz G. In vivo evidence that bezafibrate prevents oxidative stress and mitochondrial dysfunction caused by 3-methylglutaric acid in rat liver. Biochimie 2020; 171-172:187-196. [DOI: 10.1016/j.biochi.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
|
6
|
An In Vivo/Ex Vivo Study Design to Investigate Effects of Chronic Conditions and Therapeutic Compounds on Adipose Stem Cells in Animal Models. Methods Mol Biol 2020; 2138:101-118. [PMID: 32219742 DOI: 10.1007/978-1-0716-0471-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the dramatic rise in the global prevalence of obesity and lack of success at addressing this public health issue, there is an urgency to develop new tools with which to study obesity and putative weight-loss products. Pre-adipocyte cell lines have been widely used as a model for adipocyte biology and obesity over the past four decades, but the applicability of results from these cell lines is limited. This chapter will describe an in vivo/ex vivo study design that can be employed to examine the effects of diets and other chronic physiological or pathophysiological conditions on the biology of adipose stem cells (ASCs), as a model for the progression and management of obesity. This type of study design is superior to short-term in vitro experiments in pre-adipocyte cell lines or ASCs, as chronic in vivo conditions cannot be recapitulated in cell culture. Rather, this in vivo/ex vivo study design provides researchers the opportunity to assess the progressive effects of long-term insults or interventions on the reprogramming of ASC behavior. In addition, this model allows us to study the metabolic effects of chronic conditions and therapeutic compounds at a systemic level as well as at the level of adipose tissue and ASCs, in order to provide a whole-body context for the findings.
Collapse
|
7
|
Kochansky CJ, Lyman MJ, Fauty SE, Vlasakova K, D'mello AP. Administration of Fenofibrate Markedly Elevates Fabp3 in Rat Liver and Plasma and Confounds Its Use as a Preclinical Biomarker of Cardiac and Muscle Toxicity. Lipids 2018; 53:947-960. [PMID: 30592062 DOI: 10.1002/lipd.12110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023]
Abstract
Proteins involved in lipid homeostasis are often regulated through the nuclear peroxisome proliferator-activated receptors (PPAR). PPARα is the target for the fibrate-class of drugs. Fenofibrate has been approved for its lipid-lowering effects in patients with hypercholesterolemia and hypertriglyceridemia. We were interested in understanding the expression of the energy transporters in energy-utilizing tissues like liver, heart, muscle, and adipose tissues in rat with the hypothesis that the change in transporter expression would align with the known lipid-lowering effects of PPARα agonists like fenofibrate. We found that several fatty-acid transporter proteins had significantly altered levels following 8 days of fenofibrate dosing. The mRNA levels of the highly abundant Fatp2 and Fatp5 in rat liver increased approximately twofold and decreased fourfold, respectively. Several fatty-acid-binding proteins and acyl-CoA-binding proteins had a significant increase in mRNA abundance but not the major liver fatty-acid-binding protein, Fabp1. Of particular interest was the increased liver expression of Fabp3 also known as heart-fatty acid binding protein (H-FABP or FABP3). FABP3 has been proposed as a circulating clinical biomarker for cardiomyopathy and muscle toxicity, as well as a preclinical marker for PPARα-induced muscle toxicity. Here, we show that fenofibrate induces liver mRNA levels of Fabp3 ~5000-fold resulting in an approximately 50-fold increase in FABP3 protein levels in the whole liver. This increased liver expression complicates the interpretation and potential use of FABP3 as a specific biomarker for PPARα-induced muscle toxicities.
Collapse
Affiliation(s)
- Christopher J Kochansky
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA.,Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| | - Michael J Lyman
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA
| | - Scott E Fauty
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Katerina Vlasakova
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| |
Collapse
|
8
|
Haile CN, Kosten TA. The peroxisome proliferator-activated receptor alpha agonist fenofibrate attenuates alcohol self-administration in rats. Neuropharmacology 2017; 116:364-370. [PMID: 28088358 DOI: 10.1016/j.neuropharm.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Fibrates are a class of medications used to treat hypercholesterolemia and dyslipidemia that target nuclear peroxisome proliferator-activated receptors (PPARs). Studies have shown the PPARα agonist fenofibrate decreases voluntary EtOH consumption however its impact on the reinforcing and motivational effects of EtOH is unknown. We evaluated the ability of fenofibrate (25, 50 and 100 mg/kg), to alter EtOH (10%, w/v) and sucrose (2%, w/v) operant self-administration in rats under a FR2 schedule of reinforcement over four days and under a progressive ratio (PR) schedule on day five of treatment. Results showed fenofibrate dose-dependently decreased EtOH self-administration under both schedules of reinforcement with the greatest effects seen after four to five days of treatment. Fenofibrate decreased responding for sucrose only under the PR schedule of reinforcement and this effect was not dose-dependent. These findings provide further evidence for fenofibrate as a potential treatment for alcohol use disorder in humans.
Collapse
Affiliation(s)
- Colin N Haile
- University of Houston, Department of Psychology, Houston, TX 77204-6022, United States; Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States.
| | - Therese A Kosten
- University of Houston, Department of Psychology, Houston, TX 77204-6022, United States; Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| |
Collapse
|
9
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
10
|
Barbosa-da-Silva S, Souza-Mello V, Magliano DC, Marinho TDS, Aguila MB, Mandarim-de-Lacerda CA. Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice. Life Sci 2015; 127:73-81. [PMID: 25748419 DOI: 10.1016/j.lfs.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
AIMS To assess the effects of peroxisome proliferator-activated receptor (PPAR) agonists on glucose tolerance and hepatic lipid metabolism in diet-induced obese mice. MAIN METHODS Male C57BL/6 mice received a standard chow diet (SC, 10% energy as lipids) or high-fat diet (HF, 50% energy as lipids) for 10 weeks, after which treatment was initiated, forming the groups: SC group, HF group, HF-BZ group (HF + bezafibrate, pan-PPAR agonist), HF-WY group (HF + WY-14643, PPARalpha agonist) and HF-GW group (HF + GW1929, PPARgamma agonist). Treatments lasted for four weeks. Insulin resistance and liver remodeling were evaluated by biochemical and molecular approaches. KEY FINDINGS The HF and HF-GW mice were overweight. Conversely, the HF-BZ and HF-WY mice presented with body masses equal to those of the SC mice. All treatments restored insulin sensitivity and blood lipid and adiponectin levels. Hepatic steatosis was prevented in the HF-WY and HF-BZ mice as shown by the elevated mRNA levels of PPARalpha and Carnitine palmitoyl transferase-1a in both groups, which favored enhanced beta-oxidation. Marked decreases in liver triacylglycerol levels confirmed these findings. In contrast, the HF-GW mice exhibited increased PPARgamma and fatty acid translocase/CD136 mRNA levels, contributing to enhanced hepatic lipogenesis. SIGNIFICANCE The WY14643 and bezafibrate treatments most effectively improved the adverse metabolic and hepatic effects caused by obesity and IR. The results reinforce the central role of PPARalpha, as well as its contrary relationship to PPARgamma in the regulation of metabolic homeostasis and lipolytic pathways in the liver.
Collapse
Affiliation(s)
- Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - D'Angelo Carlo Magliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Dietary Fenofibrate Reduces Hepatic Lipid Deposition by Regulating Lipid Metabolism in Yellow Catfish Pelteobagrus fulvidraco Exposed to Waterborne Zn. Lipids 2015; 50:417-26. [DOI: 10.1007/s11745-015-3999-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
|
12
|
Bringhenti I, Ornellas F, Martins MA, Mandarim-de-Lacerda CA, Aguila MB. Early hepatic insult in the offspring of obese maternal mice. Nutr Res 2014; 35:136-45. [PMID: 25582085 DOI: 10.1016/j.nutres.2014.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022]
Abstract
We hypothesized that the maternal obesity initiates metabolic disorders associated with oxidative stress in the liver of offspring since early life. Mouse's mothers were assigned into 2 groups according to the diet offered (n = 10 per group): standard chow (SC) or high-fat diet (HF). The results revealed that HF offspring had an increase in body mass at day 10 (+25%, P < .05) and in glucose levels (+25%, P < .0001). Hepatic triacylglycerol was increased in HF offspring at day 1 and day 10 compared with SC offspring (+30%, P < .01 and +40%, P < .01) as was hepatic steatosis (+110%, P < .001; +145%, P < .0001). Fatty acid synthase was increased in HF offspring at day 1 (+450%, P < .01) and peroxisome proliferator activator receptor-γ was elevated at day 1 and day 10 (+140%, P < .01; +2741%, P < .01). Peroxisome proliferator activator receptor-α was diminished in HF offspring at day 10 compared with SC offspring (-100%, P < .01). Moreover, carnitine palmitoyl-CoA transferase-1 was decreased in HF offspring at day 1 and day 10 (-80%, P < .01; -60%, P < .05). In the HF offspring (compared with the SC offspring), the catalase and the superoxide dismutase were significantly lower in both days 1 and 10 (P < .05). In 10-day-old offspring, glutathione peroxidase 1 and glutathione reductase were lower in HF offspring than in SC offspring (P < .0001). Our findings suggest that the maternal obesity in mice induces an early oxidative dysfunction coupled with hepatic steatosis and might contribute to progressive liver injury later in life.
Collapse
Affiliation(s)
- Isabele Bringhenti
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Anjos Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Jia Y, Kim JH, Nam B, Kim J, Lee JH, Kim KO, Hwang KY, Lee SJ. The dipeptide H-Trp-Arg-OH (WR) Is a PPARα agonist and reduces hepatic lipid accumulation in lipid-loaded H4IIE cells. Appl Biochem Biotechnol 2014; 175:1211-20. [PMID: 25377249 DOI: 10.1007/s12010-014-1302-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022]
Abstract
Dipeptides absorbed by the intestinal epithelium are delivered to circulation, but their metabolic roles are not yet clearly understood. We investigated the biological activities of a dietary dipeptide, H-Trp-Arg-OH (WR), on the regulation of peroxisome proliferator-activated receptor (PPAR) α activity. Reporter gene assays revealed that WR dose-dependently induced PPARα transactivation. Surface plasmon resonance experiments demonstrated that WR interacts directly with the PPARα ligand binding domain, and time-resolved fluorescence energy transfer analyses revealed recruitment of a co-activator peptide, fluorescein-PGC1α, to PPARα, confirming the direct binding of WR to PPARα and occurrence of conformational changes. WR induced cellular fatty acid uptake and the expression of PPARα response genes in fatty acid oxidation, thus reducing intracellular triglyceride accumulation in lipid-loaded hepatocytes. In conclusion, the dietary dipeptide WR activates PPARα and reduces hepatic lipid accumulation in lipid-loaded hepatocytes.
Collapse
Affiliation(s)
- Yaoyao Jia
- Department of Biotechnology, Graduate School of Biotechnology, Korea University, Room 410, College of Life Sciences & Biotechnology EAST Bldg, Anam-5-ga, 136-713, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Okazaki S, Takahashi T, Iwamura T, Nakaki J, Sekiya Y, Yagi M, Kumagai H, Sato M, Sakami S, Nitta A, Kawai K, Kainoh M. HIS-388, a novel orally active and long-acting 11β-hydroxysteroid dehydrogenase type 1 inhibitor, ameliorates insulin sensitivity and glucose intolerance in diet-induced obesity and nongenetic type 2 diabetic murine models. J Pharmacol Exp Ther 2014; 351:181-9. [PMID: 25100752 DOI: 10.1124/jpet.114.216556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is considered a potential therapeutic target in the treatment of type 2 diabetes mellitus. In this study, we investigated the pharmacological properties of HIS-388 (N-[(1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl]-3-(pyridin-2-yl) isoxazole-4-carboxamide), a newly synthesized 11β-HSD1 inhibitor, using several mouse models. In cortisone pellet-implanted mice in which hypercortisolism and hyperinsulinemia occur, single administration of HIS-388 exhibited potent and prolonged suppression of plasma cortisol and lowered plasma insulin levels. These effects were more potent than those achieved using the same dose of other 11β-HSD1 inhibitors (carbenoxolone and compound 544 [3-[(1s,3s)-adamantan-1-yl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine]), indicating that HIS-388 potently and continuously suppresses 11β-HSD1 enzyme activity in vivo. In diet-induced obese mice, HIS-388 significantly decreased fasting blood glucose, plasma insulin concentration, and homeostasis model assessment-insulin resistance score, and ameliorated insulin sensitivity. In addition, HIS-388 significantly reduced body weight and suppressed the elevation of blood glucose during the pyruvate tolerance test. In nongenetic type 2 diabetic mice with disease induced by a high-fat diet and low-dose streptozotocin, HIS-388 also significantly decreased postprandial blood glucose and plasma insulin levels and improved glucose intolerance. The effects of HIS-388 on glucose metabolism were indistinguishable from those of an insulin sensitizer, pioglitazone. Our results suggest that HIS-388 is a potent agent against type 2 diabetes. Moreover, amelioration of diabetic symptoms by HIS-388 was at least in part attributable to an antiobesity effect or improvement of hepatic insulin resistance. Therefore, potent and long-lasting inhibition of 11β-HSD1 enzyme activity may be an effective approach for the treatment of type 2 diabetes and obesity-associated disease.
Collapse
Affiliation(s)
- Seiji Okazaki
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Takehiro Takahashi
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Tomokatsu Iwamura
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Junko Nakaki
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Yumiko Sekiya
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Mai Yagi
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Hiroki Kumagai
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Mikiya Sato
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Satoshi Sakami
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Aiko Nitta
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Koji Kawai
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| | - Mie Kainoh
- Toray Industries, Inc., Pharmaceutical Research Laboratories, Kanagawa, Japan
| |
Collapse
|
15
|
The dipeptide H-Trp-Glu-OH (WE) shows agonistic activity to peroxisome proliferator-activated protein-α and reduces hepatic lipid accumulation in lipid-loaded H4IIE cells. Bioorg Med Chem Lett 2014; 24:2957-62. [DOI: 10.1016/j.bmcl.2014.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/23/2014] [Accepted: 04/07/2014] [Indexed: 01/05/2023]
|
16
|
Lipid-lowering Therapies, Glucose Control and Incident Diabetes: Evidence, Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2014; 28:361-77. [DOI: 10.1007/s10557-014-6534-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Ferreira AVM, Menezes-Garcia Z, Mario EG, Delpuerto HL, Martins AS, Botion LM. Increased expression of oxidative enzymes in adipose tissue following PPARα-activation. Metabolism 2014; 63:456-60. [PMID: 24439670 DOI: 10.1016/j.metabol.2013.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Evaluate the effect of fenofibrate treatment on the expression of PPARα and oxidative enzymes in adipose tissue. MATERIALS/METHODS Wistar male rats were fed a balanced diet supplemented with 100mg.Kg-1 bw.day-1 fenofibrate (Sigma) during nine days. Plasma glucose, free fatty acids (FFA) leptin and insulin were determined. PPARα, ACO and CPT-1 mRNA expression and amount of PPARα and PPARγ protein were assessed in epididymal adipose tissue. Oral glucose tolerance test was evaluated into overnight fasted rats. Glucose uptake was measured in adipocytes isolated from epididymal fat pads in the presence or absence of insulin (25ng/mL). RESULTS Fenofibrate treatment increased PPARα and PPARγ protein abundance in adipose tissue. In addition to it well- known effect on oxidative enzymes in liver, fenofibrate treatment also induces a high expression of Acyl CoA Oxidase (ACO) and Carnitine palmitoyltransferase 1 (CPT-1) in adipose tissue. Furthermore, we have shown that the fenofibrate treatment improves the glucose tolerance and enhance the glucose uptake by adipocytes. CONCLUSION Altogether, the data suggest that fenofibrate have a direct effect in adipose tissue contributing to the low adiposity and improvement of glucose homeostasis.
Collapse
Affiliation(s)
| | - Zélia Menezes-Garcia
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erica Guilhen Mario
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Lima Delpuerto
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Almir Souza Martins
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leida Maria Botion
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
18
|
Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 2014; 29:1025-40. [PMID: 24585709 PMCID: PMC5315418 DOI: 10.1002/jbmr.2210] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/21/2022]
Abstract
Evidence indicating that adult type 2 diabetes (T2D) is associated with increased fracture risk continues to mount. Unlike osteoporosis, diabetic fractures are associated with obesity and normal to high bone mineral density, two factors that are typically associated with reduced fracture risk. Animal models will likely play a critical role in efforts to identify the underlying mechanisms of skeletal fragility in T2D and to develop preventative treatments. In this review we critically examine the ability of current rodent models of T2D to mimic the skeletal characteristics of human T2D. We report that although there are numerous rodent models of T2D, few have undergone thorough assessments of bone metabolism and strength. Further, we find that many of the available rodent models of T2D have limitations for studies of skeletal fragility in T2D because the onset of diabetes is often prior to skeletal maturation and bone mass is low, in contrast to what is seen in adult humans. There is an urgent need to characterize the skeletal phenotype of existing models of T2D, and to develop new models that more closely mimic the skeletal effects seen in adult-onset T2D in humans.
Collapse
Affiliation(s)
- Roberto J. Fajardo
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio
| | - Lamya Karim
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Virginia I. Calley
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| |
Collapse
|
19
|
Salley TN, Mishra M, Tiwari S, Jadhav A, Ndisang JF. The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS One 2013; 8:e79270. [PMID: 24260182 PMCID: PMC3829851 DOI: 10.1371/journal.pone.0079270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty-liver disease (NAFLD) is increasing globally. NAFLD is a spectrum of related liver diseases that progressive from simple steatosis to serious complications like cirrhosis. The major pathophysiological driving of NAFLD includes elevated hepatic adiposity, increased hepatic triglycerides/cholesterol, excessive hepatic inflammation, and hepatocyte ballooning injury is a common histo-pathological denominator. Although heme-oxygenase (HO) is cytoprotective, its effects on hepatocyte ballooning injury have not been reported. We investigated the effects of upregulating HO with hemin or inhibiting it with stannous-mesoporphyrin (SnMP) on hepatocyte ballooning injury, hepatic adiposity and inflammation in Zucker-diabetic-fatty rats (ZDFs), an obese type-2-diabetic model. Hemin administration to ZDFs abated hepatic/plasma triglycerides and cholesterol, and suppressed several pro-inflammatory cytokines and chemokines including, TNF-α, IL-6, IL-1β, macrophage-inflammatory-protein-1α (MIP-1α) and macrophage-chemoattractant-protein-1 (MCP-1), with corresponding reduction of the pro-inflammatory M1-phenotype marker, ED1 and hepatic macrophage infiltration. Correspondingly, hemin concomitantly potentiated the protein expression of several markers of the anti-inflammatory macrophage-M2-phenotype including ED2, IL-10 and CD-206, alongside components of the HO-system including HO-1, HO-activity and cGMP, whereas the HO-inhibitor, SnMP abolished the effects. Furthermore, hemin attenuated liver histo-pathological lesions like hepatocyte ballooning injury and fibrosis, and reduced extracellular-matrix/profibrotic proteins implicated in liver injury such as osteopontin, TGF-β1, fibronectin and collagen-IV. We conclude that hemin restore hepatic morphology by abating hepatic adiposity, suppressing macrophage infiltration, inflammation and fibrosis. The selective enhancement of anti-inflammatory macrophage-M2-phenotype with parallel reduction of pro-inflammatory macrophage-M1-phenotype and related chemokines/cytokines like TNF-α, IL-6, IL-1β, MIP-1α and MCP-1 are among the multifaceted mechanisms by which hemin restore hepatic morphology.
Collapse
Affiliation(s)
- Tatiana Ntube Salley
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Manish Mishra
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Shuchita Tiwari
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Ashok Jadhav
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Joseph Fomusi Ndisang
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Ndisang JF, Jadhav A. Hemin therapy suppresses inflammation and retroperitoneal adipocyte hypertrophy to improve glucose metabolism in obese rats co-morbid with insulin-resistant type-2 diabetes. Diabetes Obes Metab 2013; 15:1029-39. [PMID: 23731386 DOI: 10.1111/dom.12130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/12/2013] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
Abstract
AIM Visceral adiposity and impaired glucose metabolism are common patho-physiological features in patients co-morbid with obesity and type-2 diabetes. We investigated the effects of the heme-oxygenase (HO) inducer hemin and the HO blocker stannous-mesoporphyrin (SnMP) on glucose metabolism, adipocyte hypertrophy and pro-inflammatory cytokines/mediators in Zucker diabetic fatty (ZDF) rats, a model characterized by obesity and type-2 diabetes. METHODS Histological, morphological/morphometrical, Western immunoblotting, enzyme immunoassay, ELISA and spectrophotometric analysis were used. RESULTS Treatment with hemin enhanced HO-1, HO activity and cGMP, but suppressed retroperitoneal adiposity and abated the elevated levels of macrophage-chemoattractant protein-1 (MCP-1), ICAM-1, tumour necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), IL-1β, NF-κB, c-Jun-NH2-terminal-kinase (JNK) and activating-protein (AP-1), with parallel reduction of adipocyte hypertrophy. Correspondingly, important proteins of lipid metabolism and insulin-signalling such as lipoprotein lipase (LPL), insulin-receptor substrate-1 (IRS-1), GLUT4, PKB/Akt, adiponectin, the insulin-sensitizing and anti-inflammatory protein and adenosine-monophosphate-activated protein kinase (AMPK) were significantly enhanced in hemin-treated ZDF rats. CONCLUSION Elevated retroperitoneal adiposity and the high levels of MCP-1, ICAM-1, TNF-α, IL-6, IL-1β, NF-κB, JNK and AP-1 in untreated ZDF are patho-physiological factors that exacerbate inflammatory insults, aggravate adipocyte hypertrophy, with corresponding reduction of adiponectin and deregulation of insulin-signalling and lipid metabolism. Therefore, the suppression of MCP-1, ICAM-1, TNF-α, IL-6, IL-1β, NF-κB, JNK, AP-1 and adipocyte hypertrophy, with the associated enhancement of LPL, adiponectin, AMPK, IRS-1, GLUT4, PKB/Akt and cGMP in hemin-treated ZDF are among the multifaceted mechanisms by which the HO system combats inflammation to potentiate insulin signalling and improve glucose and lipid metabolism. Thus, HO inducers may be explored in the search of novel remedies against the co-morbidities of obesity, dysfunctional lipid metabolism and impaired glucose metabolism.
Collapse
Affiliation(s)
- J F Ndisang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
21
|
Comparative cardiometabolic effects of fibrates and omega-3 fatty acids. Int J Cardiol 2013; 167:2404-11. [DOI: 10.1016/j.ijcard.2013.01.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
22
|
Magliano DC, Bargut TCL, de Carvalho SN, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 2013; 8:e64258. [PMID: 23700465 PMCID: PMC3658968 DOI: 10.1371/journal.pone.0064258] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/13/2013] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma by Bezafibrate (BZ) could attenuate hepatic and white adipose tissue (WAT) abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS C57BL/6 female mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 49% lipids) diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet) started at 12 weeks of age and was maintained for three weeks. RESULTS The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1) in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.
Collapse
Affiliation(s)
- D'Angelo Carlo Magliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Yamada K, Tsunoda K, Kawai K, Ikeda T, Taguchi K, Kajita K, Morita H, Ishizuka T. Mitochondria toxicity of antihyperlipidemic agents bezafibrate and fenofibrate. Diabetol Int 2013. [DOI: 10.1007/s13340-012-0104-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Jadhav A, Ndisang JF. Treatment with heme arginate alleviates adipose tissue inflammation and improves insulin sensitivity and glucose metabolism in a rat model of Human primary aldosteronism. Free Radic Biol Med 2012; 53:2277-86. [PMID: 23089228 DOI: 10.1016/j.freeradbiomed.2012.10.529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Visceral adiposity and insulin resistance are common pathophysiological denominators in patients with primary aldosteronism. Although we recently reported the antidiabetic effects of heme oxygenase (HO), no study has examined the effects of upregulating HO on visceral adiposity in uninephrectomized (UnX) deoxycorticosterone acetate (DOCA-salt) hypertensive rats, a model of human primary aldosteronism characterized by elevated endothelin (ET-1) and oxidative/inflammatory events. Here, we report the effects of the HO inducer heme arginate and the HO blocker chromium mesoporphyrin (CrMP) on visceral adipose tissue obtained from retroperitoneal fat pads of UnX DOCA-salt rats. UnX DOCA-salt rats were hypertensive but normoglycemic. Heme arginate reduced visceral adiposity and enhanced HO activity and cGMP in the adipose tissue, but suppressed ET-1, nuclear-factor κB (NF-κB), activating-protein (AP-1), c-Jun-NH2-terminal kinase (JNK), macrophage chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and 8-isoprostane. These were associated with reduced glycemia, increased insulin, and the insulin-sensitizing protein adiponectin, with corresponding reduction in insulin resistance. In contrast, the HO inhibitor, CrMP, abolished the effects of heme arginate, aggravating insulin resistance, suggesting a role for the HO system in insulin signaling. Importantly, the effects of the HO system on ET-1, NF-κB, AP-1, JNK, MCP-1, and ICAM-1 in visceral or retroperitoneal adiposity in UnX-DOCA-salt rats have not been reported. Because 8-isoprostane stimulates ET-1 to enhance oxidative insults, and increased oxidative events deplete adiponectin and insulin levels, the suppression of oxidative/inflammatory mediators such as 8-isoprostane, NF-κB, AP-1, MCP-1, ICAM-1, and JNK, an inhibitor of insulin biosynthesis, may account for the potentiation of insulin signaling/glucose metabolism by heme arginate. These data indicate that although UnX DOCA-salt rats were normoglycemic, insulin signaling was impaired, suggesting that dysfunctional insulin signaling may be a forerunner to overt diabetes in primary aldosteronism.
Collapse
Affiliation(s)
- Ashok Jadhav
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
25
|
Fatani S, Abubakari AR, Itua I, Wong C, Thomas C, Naderali EK. Effects of diet-induced obesity on protein expression in insulin signaling pathways of skeletal muscle in male Wistar rats. Int J Gen Med 2012; 5:573-82. [PMID: 22866009 PMCID: PMC3410719 DOI: 10.2147/ijgm.s31819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The prevalence of diet-induced obesity is increasing globally, and posing significant health problems for millions of people worldwide. Diet-induced obesity is a major contributor to the global pandemic of type 2 diabetes mellitus. The reduced ability of muscle tissue to regulate glucose homeostasis plays a major role in the development and prognosis of type 2 diabetes. In this study, an animal model of diet-induced obesity was used to elucidate changes in skeletal muscle insulin signaling in obesity-induced diabetes. METHODS Adult male Wistar rats were randomized and assigned to either a control group or to a test group. Controls were fed a standard laboratory pellet diet (chow-fed), while the test group had free access to a highly palatable diet (diet-fed). After 8 weeks, the diet-fed animals were subdivided into three subgroups and their diets were altered as follows: diet-to-chow, diet-fed with addition of fenofibrate given by oral gavage for a further 7 weeks, or diet-fed with vehicle given by oral gavage for a further 7 weeks, respectively. RESULTS Untreated diet-fed animals had a significantly higher body weight and metabolic profile than the control chow-fed animals. Intramuscular triacylglyceride levels in the untreated obese animals were significantly higher than those in the control chow-fed group. Expression of protein kinase C beta, phosphatidylinositol 3, Shc, insulin receptor substrate 1, ERK1/2, and endothelial nitric oxide synthase was significantly increased by dietary obesity, while that of insulin receptor beta, insulin receptor substrate 1, and protein kinase B (Akt) were not affected by obesity. CONCLUSION These data suggest that diet-induced obesity affects insulin signaling mechanisms, leading to insulin resistance in muscle.
Collapse
Affiliation(s)
- Sameer Fatani
- Obesity Biology Unit, School of Clinical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
26
|
Castillero E, Martín AI, Nieto-Bona MP, Fernández-Galaz C, López-Menduiña M, Villanúa MÁ, López-Calderón A. Fenofibrate administration to arthritic rats increases adiponectin and leptin and prevents oxidative muscle wasting. Endocr Connect 2012; 1:1-12. [PMID: 23781298 PMCID: PMC3681315 DOI: 10.1530/ec-12-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/08/2022]
Abstract
Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.
Collapse
Affiliation(s)
| | | | - Maria Paz Nieto-Bona
- Department of Histology, Faculty of Health SciencesRey Juan Carlos University28922 Alcorcón, MadridSpain
| | | | | | | | | |
Collapse
|
27
|
Park MK, Han Y, Kim MS, Seo E, Kang S, Park SY, Koh H, Kim DK, Lee HJ. Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:181-6. [PMID: 22802699 PMCID: PMC3394920 DOI: 10.4196/kjpp.2012.16.3.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/03/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Fenofibrate is a selective peroxisome proliferator-activated receptor α (PPARα) activator and is prescribed to treat hyperlipidemia. The mechanism through which PPARα agonists reduce food intake, body weight, and adiposity remains unclear. One explanation for the reduction of food intake is that fenofibrate promotes fatty acid oxidation and increases the production of ketone bodies upon a standard experimental dose of the drug (100~300 mg/kg/day). We observed that low-dose treatment of fenofibrate (30 mg/kg/day), which does not cause significant changes in ketone body synthesis, reduced food intake in Long-Evans Tokushima (LETO) rats. LETO rats are the physiologically normal controls for Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are obese and cholecystokinin (CCK)-A receptor deficient. We hypothesized that the reduced food intake by fenofibrate-treated LETO rats may be associated with CCK production. To investigate the anorexic effects of fenofibrate in vivo and to determine whether CCK production may be involved, we examined the amount of food intake and CCK production. Fenofibrate-treated OLETF rats did not significantly change their food intake while LETO rats decreased their food intake. Treatment of fenofibrate increased CCK synthesis in the duodenal epithelial cells of both LETO and OLETF rats. The absence of a change in the food intake of OLETF rats, despite the increase in CCK production, may be explained by the absence of CCK-A receptors. Contrary to the OLETF rats, LETO rats, which have normal CCK receptors, presented a decrease in food intake and an increase in CCK production. These results suggest that reduced food intake by fenofibrate treatment may be associated with CCK production.
Collapse
Affiliation(s)
- Mi-Kyoung Park
- Department of Internal Medicine, Medical Science Research Center, Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 602-714, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Restoration of adipose function in obese glucose-tolerant men following pioglitazone treatment is associated with CCAAT enhancer-binding protein β up-regulation. Clin Sci (Lond) 2012; 123:135-46. [PMID: 22309242 DOI: 10.1042/cs20110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPβ (CCAAT enhancer-binding protein β), SREBP1c (sterol-regulatory-element-binding protein 1c), PPARγ2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFα (tumour necrosis factor α) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-α levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPβ mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).
Collapse
|
29
|
Abstract
In patients with diabetes, nerve injury is a common complication that leads to chronic pain, numbness and substantial loss of quality of life. Good glycemic control can decrease the incidence of diabetic neuropathy, but more than half of all patients with diabetes still develop this complication. There is no approved treatment to prevent or halt diabetic neuropathy, and only symptomatic pain therapies, with variable efficacy, are available. New insights into the mechanisms leading to the development of diabetic neuropathy continue to point to systemic and cellular imbalances in metabolites of glucose and lipids. In the PNS, sensory neurons, Schwann cells and the microvascular endothelium are vulnerable to oxidative and inflammatory stress in the presence of these altered metabolic substrates. This Review discusses the emerging cellular mechanisms that are activated in the diabetic milieu of hyperglycemia, dyslipidemia and impaired insulin signaling. We highlight the pathways to cellular injury, thereby identifying promising therapeutic targets, including mitochondrial function and inflammation.
Collapse
|
30
|
Perreault L, Bergman BC, Hunerdosse DM, Howard DJ, Eckel RH. Fenofibrate administration does not affect muscle triglyceride concentration or insulin sensitivity in humans. Metabolism 2011; 60:1107-14. [PMID: 21306746 PMCID: PMC3135750 DOI: 10.1016/j.metabol.2010.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/24/2010] [Accepted: 12/09/2010] [Indexed: 11/21/2022]
Abstract
Animal data suggest that males, in particular, rely on peroxisome proliferator activated receptor-α activity to maintain normal muscle triglyceride metabolism. We sought to examine whether this was also true in men vs women and its relationship to insulin sensitivity (Si). Normolipidemic obese men (n = 9) and women (n = 9) underwent an assessment of Si (intravenous glucose tolerance test) and intramuscular triglyceride (IMTG) metabolism (gas chromatography/mass spectrometry and gas chromatography-combustion isotope ratio mass spectrometry from plasma and muscle biopsies taken after infusion of [U-(13)C]palmitate) before and after 12 weeks of fenofibrate treatment. Women were more insulin sensitive (Si: 5.2 ± 0.7 vs 2.4 ± 0.4 ×10(-4)/ μU/mL, W vs M, P < .01) at baseline despite similar IMTG concentration (41.9 ± 15.5 vs 30.8 ± 5.1 μg/mg dry weight, W vs M, P = .43) and IMTG fractional synthesis rate (FSR) (0.27%/h ± 0.07%/h vs 0.35%/h ± 0.06%/h, W vs M, P = .41) as men. Fenofibrate enhanced FSR in men (0.35 ± 0.06 to 0.54 ± 0.06, P = .05), with no such change seen in women (0.27 ± 0.07 to 0.32 ± 0.13, P = .73) and no change in IMTG concentration in either group (23.0 ± 3.9 in M, P = .26 vs baseline; 36.3 ± 12.0 in W, P = .79 vs baseline). Insulin sensitivity was unaffected by fenofibrate (P ≥ .68). Lower percentage saturation of IMTG in women vs men before (29.1% ± 2.3% vs 35.2% ± 1.7%, P = .06) and after (27.3% ± 2.8% vs 35.1% ± 1.9%, P = .04) fenofibrate most closely related to their greater Si (R(2) = 0.34, P = .10) and was largely unchanged by the drug. Peroxisome proliferator activated receptor-α agonist therapy had little effect on IMTG metabolism in men or women. Intramuscular triglyceride saturation, rather than IMTG concentration or FSR, most closely (but not significantly) related to Si and was unchanged by fenofibrate administration.
Collapse
Affiliation(s)
- Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
31
|
Arakawa M, Masaki T, Nishimura J, Seike M, Yoshimatsu H. The effects of branched-chain amino acid granules on the accumulation of tissue triglycerides and uncoupling proteins in diet-induced obese mice. Endocr J 2011; 58:161-70. [PMID: 21372430 DOI: 10.1507/endocrj.k10e-221] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It has been demonstrated the involvement of branched-chain amino acids (BCAA) on obesity and related metabolic disorder. We investigated the effects of branched-chain amino acids (BCAA) on obesity and on glucose/fat homeostasis in mice fed on a high-fat (45%) diet. BCAA was dissolved in 0.5% methylcellulose and added to the drinking water (BCAA-treated group). A high-fat diet was provided for 6 weeks and BCAA was given for 2 weeks. The BCAA-treated group gained almost 7% less body weight and had less epididymal adipose tissue (WAT) mass than the control group (p<0.05). BCAA supplementation also reduced the hepatic and skeletal muscle triglyceride (TG) concentrations (p<0.05). The hepatic levels of PPAR-alpha and uncoupling protein (UCP) 2, and the level of PPAR-alpha and UCP3 in the skeletal muscle were greater in the BCAA-treated group than in the control mice (p<0.05). These results demonstrate that the liver and muscle TG concentration are less in BCAA-treated group. BCAA affects PPAR-alpha and UCP expression in muscle and liver tissue.
Collapse
Affiliation(s)
- Mie Arakawa
- Department of Internal Medicine1, Faculty of Medicine, Oita University, Japan
| | | | | | | | | |
Collapse
|
32
|
Koh KK, Quon MJ, Lim S, Lee Y, Sakuma I, Lee YH, Han SH, Shin EK. Effects of fenofibrate therapy on circulating adipocytokines in patients with primary hypertriglyceridemia. Atherosclerosis 2011; 214:144-7. [PMID: 21075373 DOI: 10.1016/j.atherosclerosis.2010.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/12/2010] [Accepted: 10/14/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated effects of fenofibrate therapy on endothelial dysfunction and adipocytokine profiles. METHODS A randomized, single-blind, placebo-controlled, cross-over study was conducted in 53 patients with primary hypertriglyceridemia. We administered placebo or fenofibrate 160mg daily for 8 weeks. RESULTS When compared with placebo, fenofibrate therapy substantially lowered plasma levels of TNF-α by 6±3% (P=0.014) and hsCRP from 1.10 to 0.90mg/l (P=0.004). When compared with placebo, fenofibrate therapy increased plasma levels of adiponectin by 17±4% (P=0.001), insulin sensitivity by 4±1% (as assessed by QUICKI, P=0.009), and decreased plasma levels of leptin and resistin by 4±7% (P=0.022) and 10±3% (P=0.001), respectively. There were correlations between percent changes in QUICKI and percent changes in adiponectin levels (r=0.279, P=0.043) or leptin (r=-0.280, P=0.042). CONCLUSIONS Fenofibrate therapy significantly reduced pro-inflammatory biomarkers and improved adipocytokines levels and insulin sensitivity in hypertriglyceridemic patients.
Collapse
|
33
|
Gerbaix M, Metz L, Ringot E, Courteix D. Visceral fat mass determination in rodent: validation of dual-energy X-ray absorptiometry and anthropometric techniques in fat and lean rats. Lipids Health Dis 2010; 9:140. [PMID: 21143884 PMCID: PMC3014952 DOI: 10.1186/1476-511x-9-140] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/09/2010] [Indexed: 11/26/2022] Open
Abstract
Background Because abdominal obesity is predisposed to various metabolic disorders, it is of major importance to assess and track the changes with time of this specific fat mass. The main issue for clinicians or researchers is to use techniques for assessing abdominal fat deposition and its accumulation or changes over time, without sacrificing of experimental subjects. In the rat, techniques to investigate in-vivo visceral fat mass are lacking. The purpose of the study was to validate indirect Dual-energy X-ray Absorptiometry technique and abdominal circumference measurement as tools to predict visceral adipose tissue in rats. Forty-three Wistar male rats from different body weight, fat mass and ages were included in the study. Visceral fat mass was assessed by weighing the total perirenal and peri-epididymal adipose tissues after dissection. Statistical methods were used to discriminate the best region of interest allowing the in-vivo measure of Central Fat Mass by DXA. Abdominal circumference was measured at the same time as the DXA scan. Results A region of interest including Central Fat Mass from the whole body DXA scan (extending from L2 to L5 vertebrae), correlated strongly with ex-vivo Fat Mass (r = 0.94, p < 0.001). Abdominal circumference correlated significantly with ex-vivo Fat Mass (r = 0.82, p < 0.001) and Central Fat Mass (0.90, p < 0.001) in the whole group of rats. When dividing the whole group into lean and fat rats, correlations remained significant between Central Fat Mass and ex-vivo Fat Mass but disappeared for the lean group between abdominal circumference and ex-vivo Fat Mass. Conclusions This study validates the Central Fat Mass determined by DXA as a non-sacrificial technique to assess visceral fat for in-vivo investigations in rats. The abdominal circumference measure appears useful in studying overweight or obese rats. These two techniques could be convenient tools in follow-up and longitudinal studies.
Collapse
Affiliation(s)
- Maude Gerbaix
- Laboratoire de Biologie des APS, EA 3533, PRES Clermont Université, Université Blaise Pascal, 24 Avenue des Landais, BP 80026, 63177 Aubière Cedex, France.
| | | | | | | |
Collapse
|
34
|
Cho KW, Kim YO, Andrade JE, Burgess JR, Kim YC. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr 2010; 50:81-8. [PMID: 20567977 DOI: 10.1007/s00394-010-0117-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/07/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND Naringenin, a flavonoid present in grapefruit, has recently been shown to exert hypolipidemic and hypocholesterolemic effects, which has a particular importance for protecting against chronic diseases. However, the lipid-lowering potential of naringenin at the concentrations in the dietary range and its underlying mechanisms have yet to be fully elucidated. AIM The aim of the present study was (1) to investigate the effects of dietary naringenin on plasma and hepatic triglyceride and cholesterol levels and on adipose deposition in rat and (2) to determine the contribution of hepatic peroxisome proliferators-activated receptor α (PPARα) expression to fatty acid oxidation. METHODS Male Long-Evans hooded rats were fed a diet supplemented with naringenin (0.003, 0.006, and 0.012%) for 6 weeks. We analyzed plasma and hepatic lipid contents and determined the protein expression of PPARα, carnitine-palmitoyl transferase 1L (CPT-1), and uncoupling protein 2 (UCP2), all of which are critical genes for fatty acid oxidation. RESULTS Naringenin supplementation caused a significant reduction in the amount of total triglyceride and cholesterol in plasma and liver. In addition, naringenin supplementation lowered adiposity and triglyceride contents in parametrial adipose tissue. Naringenin-fed animals showed a significant increase in PPARα protein expression in the liver. Furthermore, expression of CPT-1 and UCP2, both of which are known to be regulated by PPARα, was markedly enhanced by naringenin treatment. CONCLUSIONS Our results indicate that the activation of PPARα transcription factor and upregulation of its fatty acid oxidation target genes by dietary naringenin may contribute to the hypolipidemic and anti-adiposity effects in vivo.
Collapse
Affiliation(s)
- Kae Won Cho
- Department of Nutrition, University of Massachusetts, Amherst, MA 10003, USA
| | | | | | | | | |
Collapse
|
35
|
Hahm JR, Ahn JS, Noh HS, Baek SM, Ha JH, Jung TS, An YJ, Kim DK, Kim DR. Comparative analysis of fat and muscle proteins in fenofibratefed type II diabetic OLETF rats: the fenofibrate-dependent expression of PEBP or C11orf59 protein. BMB Rep 2010; 43:337-43. [DOI: 10.5483/bmbrep.2010.43.5.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
36
|
Han Y, Do MH, Kim MS, Seo E, Park MK, Kim DK, Lee HJ, Seo SY. Fenofibrate Reduces Age-related Hypercholesterolemia in Normal Rats on a Standard Diet. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:77-81. [PMID: 20473378 DOI: 10.4196/kjpp.2010.14.2.77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/09/2010] [Accepted: 04/16/2010] [Indexed: 01/22/2023]
Abstract
Plasma cholesterol is increased in normal aging in both rodents and humans. This is associated with reduced elimination of cholesterol and decreased receptor-mediated clearance of plasma low-density lipoprotein (LDL) cholesterol. The aims of this study were: (1) to determine age-related changes in plasma lipid profiles, and (2) to determine the effect of fenofibrate, an activator of peroxisome proliferator activated receptor alpha (PPAR alpha), on plasma lipid profiles in normal rats on a standard diet. Male Sprague-Dawley (SD) rats (n=15) were fed standard chow and water from 10 to 25 weeks of age. During that period, we measured daily food intake, body weight, fasting and random blood glucose levels, plasma total cholesterol (TC), triglycerides (TG), and free fatty acid (FFA) levels. At 20 weeks of age, all rats were randomly divided into two groups: a fenofibrate group (in which rats were gavaged with 300 mg/kg/day of fenofibrate) and a control group (gavaged with water). Fenofibrate treatment lasted 5 weeks. There were no significant changes in daily food intake, blood glucose, and plasma TG level with age. Body weight, plasma TC, and FFA levels were significantly increased with age. Fenofibrate significantly decreased plasma concentrations of TC and FFA, which had been increased with age. However, fenofibrate did not influence the plasma concentration of TG, which had not increased with age. These results suggest that fenofibrate might have a novel role in preventing age-related hypercholesterolemia in SD rats on a normal diet.
Collapse
Affiliation(s)
- Ying Han
- Department of Pharmacology, Dong-A University College of Medicine, Medical Science Research Center, Busan 602-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Baraka A, AbdelGawad H. Targeting apoptosis in the heart of streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol Ther 2010; 15:175-81. [PMID: 20133494 DOI: 10.1177/1074248409356557] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of the current study was to address the issue of cardiomyocyte apoptosis as a possible contributor in the development of diabetic cardiomyopathy and whether it would be possible to suppress this apoptosis by the use of a peroxisome proliferator-activated receptor (PPAR)-alpha agonist (fenofibrate) or a PPAR-gamma agonist (rosiglitazone). METHODS Ten normal male albino rats (group I) were injected intraperitoneally (IP) by a single dose of saline and served as a control for group II. Thirty male albino rats were made diabetic by IP streptozotocin (STZ) injection and were divided into 3 groups: group II (nontreated diabetic rats), groups III and IV (diabetic rats treated with PPAR-gamma agonist (rosiglitazone), and PPAR-alpha agonist (fenofibrate) respectively, for 12 weeks starting 1 week following STZ injection. RESULTS The studied drugs decreased left ventricular to body weight ratio and cardiac: caspase-3, tumor necrosis factor-alpha, hydroxyproline, free fatty acids (FFAs) as well as triglycerides (TGs) and improved oxidative stress parameters as well as left ventricular papillary muscle developed tension (DT). CONCLUSIONS The results of the current study support the hypothesis that apoptosis plays a key role in the pathophysiology of diabetic cardiomyopathy and demonstrate that the use of PPAR-alpha and -gamma agonists might have a protective role against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Azza Baraka
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
38
|
Wensaas AJ, Rustan AC, Rokling-Andersen MH, Caesar R, Jensen J, Kaalhus O, Graff BA, Gudbrandsen OA, Berge RK, Drevon CA. Dietary supplementation of tetradecylthioacetic acid increases feed intake but reduces body weight gain and adipose depot sizes in rats fed on high-fat diets. Diabetes Obes Metab 2009; 11:1034-49. [PMID: 19740081 DOI: 10.1111/j.1463-1326.2009.01092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM The pan-peroxisome proliferator-activated receptor (PPAR) ligand and fatty acid analogue tetradecylthioacetic acid (TTA) may reduce plasma lipids and enhance hepatic lipid metabolism, as well as reduce adipose tissue sizes in rats fed on high-fat diets. This study further explores the effects of TTA on weight gain, feed intake and adipose tissue functions in rats that are fed a high-fat diet for 7 weeks. METHODS The effects on feed intake and body weight during 7 weeks' dietary supplement with TTA ( approximately 200 mg/kg bw) were studied in male Wistar rats fed on a lard-based diet containing approximately 40% energy from fat. Adipose tissue mass, body composition and expression of relevant genes in fat depots and liver were measured at the end of the feeding. RESULTS Despite higher feed intake during the final 2 weeks of the study, rats fed on TTA gained less body weight than lard-fed rats and had markedly decreased subcutaneous, epididymal, perirenal and mesenteric adipose depots. The effects of TTA feeding with reduced body weight gain and energy efficiency (weight gain/feed intake) started between day 10 and 13. Body contents of fat, protein and water were reduced after feeding lard plus TTA, with a stronger decrease in fat relative to protein. Plasma lipids, including Non-Esterified Fatty Acids (NEFA), were significantly reduced, whereas fatty acid beta-oxidation in liver and heart was enhanced in lard plus TTA-fed rats. Hepatic UCP3 was expressed ectopically both at protein and mRNA level (>1900-fold), whereas Ucp1 mRNA was increased approximately 30-fold in epididymal and approximately 90-fold in mesenteric fat after lard plus TTA feeding. CONCLUSION Our data support the hypothesis that TTA feeding may increase hepatic fatty acid beta-oxidation, and thereby reduce the size of adipose tissues. The functional importance of ectopic hepatic UCP3 is unknown, but might be associated with enhanced energy expenditure and thus the reduced feed efficiency.
Collapse
Affiliation(s)
- A J Wensaas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Combination therapy for treatment or prevention of atherosclerosis: focus on the lipid-RAAS interaction. Atherosclerosis 2009; 209:307-13. [PMID: 19800624 DOI: 10.1016/j.atherosclerosis.2009.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/27/2009] [Accepted: 09/04/2009] [Indexed: 12/20/2022]
Abstract
Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by approximately 30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin-angiotensin-aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin-angiotensin-aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance.
Collapse
|
40
|
Abstract
Although specific pathogenic entities contributing to diabetic risk, such as central adiposity, ectopic fat accumulation, hyperlipidaemia and inflammation, are well-characterized, the response of cellular systems to such insults are less well understood. This short review highlights the effect of increasing fat mass on ectopic fat accumulation, the role of triacylglycerols (triglycerides) in Type 2 diabetes mellitus and cardiovascular disease pathogenesis, and selected current therapeutic strategies used to ameliorate these risk factors.
Collapse
|
41
|
Shen H, Zheng PY, Ji G, Xing LJ. Roles of adipocytokines in the pathogenesis of non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2009; 17:1212. [DOI: 10.11569/wcjd.v17.i12.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Koh KK, Oh PC, Quon MJ. Does reversal of oxidative stress and inflammation provide vascular protection? Cardiovasc Res 2008; 81:649-59. [PMID: 19098298 DOI: 10.1093/cvr/cvn354] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation is a pathogenic feature of atherosclerosis and cardiovascular disease mediated by substances including angiotensin II, proinflammatory cytokines, and free fatty acids. This promotes generation of reactive oxygen species in vascular endothelial cells and smooth muscle cells, which mediate injury through several mechanisms. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidaemia and the renin-angiotensin-aldosterone system (RAAS) at multiple levels contribute importantly to a variety of risk factors. Therefore, combination therapy that simultaneously addresses multiple mechanisms for the pathogenesis of atherosclerosis is an attractive emerging concept for slowing progression of atherosclerosis. Combined therapy with statins, peroxisome proliferator-activated receptors, and RAAS blockade demonstrates additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors due to both distinct and interrelated mechanisms. These additive beneficial effects of combined therapies are consistent with laboratory and recent clinical studies. Thus, combination therapy may be an important paradigm for treating and slowing progression of atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kwang Kon Koh
- Vascular Medicine and Atherosclerosis Unit, Division of Cardiology, Gachon University, Gil Medical Center, 1198 Kuwol-dong, Namdong-gu, Incheon 405-760, South Korea.
| | | | | |
Collapse
|
43
|
Zhang HM, Chen SW, Zhang LS, Feng XF. The effects of soy isoflavone on insulin sensitivity and adipocytokines in insulin resistant rats administered with high-fat diet. Nat Prod Res 2008; 22:1637-49. [PMID: 19085422 DOI: 10.1080/14786410701869598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of soy isoflavone (SIF) on insulin sensitivity and adipocytokines in high-fat-diet-induced insulin resistant (IR) rats were studied. Male Sprague Dawley rats (n = 80) were randomly assigned into a basal diet fed group and high-fat diet fed group. The high-fat-diet-induced IR rats were assigned into IR model control group and three SIF-treated groups with different dosages. Thirty days later, the fasting blood glucose, insulin and adipocytokines in serum and mRNA expressions of adipocytokines in perirenal white adipose tissue were measured. The Homeostasis Model Assessment of IR was calculated. The administration of 450 mg kg(-1) d(-1) SIF decreased the body weights and depositions of visceral adipose tissue as well as improved insulin resistance in high-fat-diet-induced IR rats. The mechanisms were associated with SIF regulating the expression of adipocytokines, including adiponectin, leptin, resistin and TNF-alpha. SIF supplements may have favourable effects on insulin resistance in high-fat-diet-induced IR rats.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Henan Eye Institute and Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, PR China
| | | | | | | |
Collapse
|
44
|
Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 2008; 295:E1269-76. [PMID: 18796548 DOI: 10.1152/ajpendo.90207.2008] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.
Collapse
Affiliation(s)
- J Cacho
- Facultades de Farmacia y Medicina, Universidad CEU (Centro de Estudios Universitarios) San Pablo, Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Yamada K, Hosokawa M, Yamada C, Watanabe R, Fujimoto S, Fujiwara H, Kunitomo M, Miura T, Kaneko T, Tsuda K, Seino Y, Inagaki N. Dietary corosolic acid ameliorates obesity and hepatic steatosis in KK-Ay mice. Biol Pharm Bull 2008; 31:651-5. [PMID: 18379057 DOI: 10.1248/bpb.31.651] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corosolic acid (CRA), a constituent of Banaba leaves, has been reported to exert anti-hypertension, anti-hyperinsulinemia, anti-hyperglycemia, and anti-hyperlipidemia effects as well as to induce anti-inflammatory and anti-oxidative activities. The aim of this study was to investigate the inhibitory effects of CRA on the development of obesity and hepatic steatosis in KK-Ay mice, a genetically obese mouse model. Six-week-old KK-Ay mice were fed a high fat diet for 9 weeks with or without 0.023% CRA. Nine-week CRA treatment resulted in 10% lower body weight and 15% lower total fat (visceral plus subcutaneous fat) mass than in control mice. CRA treatment reduced fasting plasma levels of glucose, insulin, and triglyceride by 23%, 41%, and 22%, respectively. The improved insulin sensitivity in CRA-treated mice may be due on part to the increased plasma adiponectin and white adipose tissue (WAT) AdipoR1 levels. In addition, CRA treatment increased the expression of peroxisome proliferator-activated receptor (PPAR) alpha in liver and PPAR gamma in WAT. This is the first study to show that CRA treatment can contribute to reduced body weight and amelioration of hepatic steatosis in mice fed a high fat diet, due in part to increased expression of PPAR alpha in liver and PPAR gamma in WAT.
Collapse
Affiliation(s)
- Kotaro Yamada
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsunoda M, Kobayashi N, Ide T, Utsumi M, Nagasawa M, Murakami K. A novel PPARalpha agonist ameliorates insulin resistance in dogs fed a high-fat diet. Am J Physiol Endocrinol Metab 2008; 294:E833-40. [PMID: 18212024 DOI: 10.1152/ajpendo.00627.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Agonism of peroxisome proliferator-activated receptor (PPAR) alpha, a key regulator of lipid metabolism, leads to amelioration of lipid abnormalities in dyslipidemic patients. However, whether PPARalpha agonism is an effective form of therapy for obesity-related insulin resistance associated with lipid abnormalities is unclear. The present study investigated the effects of a potent and subtype-selective PPARalpha agonist, KRP-101, in a nonrodent insulin-resistant animal model under pair-fed conditions. Beagle dogs were fed a high-fat diet for 24 wk to induce insulin resistance. During the final 12 wk, 0.03 mg x kg(-1) x day(-1) KRP-101 (n = 5) or vehicle (n = 5) was administered orally once a day. KRP-101 administration resulted in a significantly lower weight of overall visceral fat, which is associated with increased adiponectin and decreased leptin in serum. KRP-101 administration improved hyperglycemia and hyperinsulinemia as well as dyslipidemia in dogs fed a high-fat diet. Oral glucose tolerance test showed that KRP-101 administration improved glucose intolerance. The KRP-101 group showed a markedly lower hepatic triglyceride concentration. Lipid oxidation was increased in the liver and skeletal muscles of the KRP-101 group. These findings in the dog model suggest that the use of potent and subtype-selective PPARalpha agonists as a potentially relevant therapeutic approach to treat human insulin resistance associated with visceral obesity.
Collapse
Affiliation(s)
- Masaki Tsunoda
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Koh KK, Quon MJ, Rosenson RS, Chung WJ, Han SH. Vascular and metabolic effects of treatment of combined hyperlipidemia: focus on statins and fibrates. Int J Cardiol 2008; 124:149-59. [PMID: 17658632 PMCID: PMC2758222 DOI: 10.1016/j.ijcard.2007.04.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/16/2022]
Abstract
Combined hyperlipidemia results from overproduction of hepatically synthesized apolipoprotein B in very low-density lipoproteins in association with reduced lipoprotein lipase activity. Thus, this condition is typically characterized by concurrent elevations in total cholesterol and triglycerides with decreased high-density lipoprotein cholesterol. High levels of apolipoprotein B-containing lipoproteins, most prominently carried by low-density lipoprotein (LDL) particles, are an important risk factor for coronary heart disease. Statin therapy is highly effective at lowering LDL cholesterol. Despite the benefits of statin treatment for lowering total and LDL cholesterol, many statin-treated patients still have initial or recurrent coronary heart disease events. In this regard, combined therapy with statins and fibrates is more effective in controlling atherogenic dyslipidemia in patients with combined hyperlipidemia than either drug alone. Furthermore, statins and fibrates activate PPARalpha in a synergistic manner providing a molecular rationale for combination treatment in coronary heart disease. Endothelial dysfunction associated with cardiovascular diseases may contribute to insulin resistance so that there may also be additional beneficial metabolic effects of combined statin/fibrates therapy. However, there has been little published evidence that combined therapy is synergistic or even better than monotherapy alone in clinical studies. Therefore, there is a great need to study the effects of combination therapy in patients. When statins are combined with gemfibrozil therapy, this is more likely to be accompanied by myopathy. However, this limitation is not observed when fenofibrate, bezafibrate, or ciprofibrate are used in combination therapy.
Collapse
Affiliation(s)
- Kwang Kon Koh
- Division of Cardiology, Gil Heart Center, Gachon Medical School, Incheon, Republic of Korea.
| | | | | | | | | |
Collapse
|
48
|
Ferreira AVM, Parreira GG, Porto LCJ, Mario EG, Delpuerto HL, Martins AS, Botion LM. Fenofibrate prevents orotic acid--induced hepatic steatosis in rats. Life Sci 2008; 82:876-83. [PMID: 18374364 DOI: 10.1016/j.lfs.2008.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/29/2007] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
The experiments performed in this report were designed to investigate the mechanisms involved in the metabolic alterations associated with orotic acid-induced hepatic steatosis and the effect of fenofibrate, a stimulant of peroxisome proliferators-activated receptor alpha (PPARalpha), on these alterations. Male Wistar rats were divided into three experimental groups: 1) fed a balanced diet (C); 2) fed a balanced diet supplemented with 1% orotic acid (OA); 3) fed OA diet containing 100 mg.kg(-1) bw.day(-1) fenofibrate (OA+F), for 9 days. Administration of OA to rats induced significant increase in the hepatic total lipids content, marked microvesicular steatosis and decrease in plasma lipids concentrations compared to control group. Fenofibrate treatment prevented fatty liver induction, caused an additional reduction on plasma lipids concentrations and caused a 40% decrease in the lipogenic rate in adipose tissue. The results also showed a 40% increase in lipoprotein lipase (LPL) activity in adipose tissue from OA treated group and fenofibrate administration induced a 50% decrease in LPL activity. The liver mRNA expression of PPARalpha and ACO (acyl CoA oxidase) were 85% and 68% decreased in OA group when compared to control, respectively. Fenofibrate treatment increased the PPARalpha and ACO expressions whereas the CPT-1 (carnitine palmitoyl transferase-1) expression was not altered. Our results have shown that fenofibrate treatment decreases the hepatic lipid content induced by OA which is mediated by an important increase in fatty acid oxidation consequent to an increase in hepatic mRNA expression of PPARalpha and ACO.
Collapse
Affiliation(s)
- Adaliene Versiani Matos Ferreira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Barbosa CR, Albuquerque EMV, Faria EC, Oliveira HCF, Castilho LN. Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation. Braz J Med Biol Res 2008; 40:323-31. [PMID: 17334529 DOI: 10.1590/s0100-879x2007000300007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 12/18/2006] [Indexed: 11/22/2022] Open
Abstract
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.
Collapse
Affiliation(s)
- C R Barbosa
- Departamento de Patologia Clínica e Núcleo de Medicina e Cirurgia Experimental, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Cree MG, Aarsland A, Herndon DN, Wolfe RR. Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med 2007; 35:S476-83. [PMID: 17713396 DOI: 10.1097/01.ccm.0000278066.05354.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Review current evidence on the role of fat in post-trauma insulin resistance, in reference to new studies with peroxisome proliferating activating receptor-alpha agonists. DESIGN Review. SETTING University laboratory. PATIENTS Thirty pediatric burn trauma patients. INTERVENTIONS Fourteen days of peroxisome proliferating activating receptor-alpha agonist immediately following burn trauma. MEASUREMENTS AND MAIN RESULTS We measured glucose metabolism and fat metabolism via tracer methodology and intracellular measurements. Insulin-stimulated glucose uptake is impaired following burn trauma, as is intracellular insulin signaling, palmitate oxidation, and mitochondrial oxidative capacity. Furthermore, levels of intracellular lipids are increased. Two weeks of peroxisome proliferating activating receptor-alpha treatment significantly reverses these pathologic changes incurred from burn injury. CONCLUSIONS Severe burn injury seriously affects multiple aspects of glucose and fat metabolism within the muscle, which can adversely affect clinical outcomes. Treatment with a peroxisome proliferating activating receptor-alpha drug may be a potential new therapeutic option.
Collapse
Affiliation(s)
- Melanie G Cree
- University of Arkansas Medical Sciences, Donald W. Reynolds Center on Aging, Nutrition, Metabolism and Exercise Lab, Little Rock, AR, USA
| | | | | | | |
Collapse
|