1
|
Li L, Xia G, Lei L, Hu Q, Wei X, Cui M, Tang Q, Yang D, Zhao A. Role of TGF-β1/Smad3 signalling pathway in renal tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension induced by increased pulse pressure. Acta Cardiol 2025; 80:135-147. [PMID: 39782012 DOI: 10.1080/00015385.2024.2445339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/30/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated. METHODS Ten-month-old male rats were randomly divided into control and ISH groups, with seven rats in each group administered warfarin and vitamin K1 for 6 weeks. Blood pressure, renal function, mean blood flow in the common iliac artery, and diastolic vessel diameter were assessed, and the rat kidney medulla was collected for histological, genetic, and protein level analysis. RESULTS Increased pulse pressure, abnormal renal function, and increased shear stress were detected in rats with ISH. Histology assessments revealed fibrosis in the interstitium of ISH rats. Epithelial marker E-cadherin protein expression was decreased, while the protein expression of interstitial markers α-SMA and Vimentin was increased, and transforming growth factor (TGF)-β1/Smad3 signalling was upregulated in the kidney tissue of ISH rats. CONCLUSIONS Increased pulse pressure in elderly rats with ISH caused an increase in shear stress. These effects led to the development of EMT and the activation of its upstream TGF-β1/Smad3 signalling pathway, ultimately leading to renal tubular interstitial fibrosis causing renal injury.
Collapse
Affiliation(s)
- Lu Li
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guiling Xia
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lei Lei
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiong Hu
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xueying Wei
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mengbi Cui
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiaoling Tang
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Donghua Yang
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Anju Zhao
- The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
2
|
Zheng J, Manabe Y, Sugawara T. Preventive effect of siphonaxanthin, a carotenoid from green algae, against diabetic nephropathy and lipid metabolism insufficiency in skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159604. [PMID: 39986648 DOI: 10.1016/j.bbalip.2025.159604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Diabetic nephropathy is a complication of diabetes mellitus characterized by the gradual progression of renal insufficiency, resulting in renal failure. Approximately 15 % or more of patients with type 2 diabetes mellitus have diabetic nephropathy. Siphonaxanthin is a green algal carotenoid noted for its strong biological activities, including anti-obesity effects. In this study, we aimed to evaluate the preventive effects of siphonaxanthin on diabetic nephropathy using db/db mice as a type 2 diabetes mellitus and diabetic nephropathy model. Ingestion of AIN-93G containing 0.004 % w/w siphonaxanthin did not improve plasma creatinine and urine albumin levels but significantly mitigated renal morphological changes in diabetic mice. Moreover, siphonaxanthin restored the decreased mRNA expression of fatty acid β-oxidation-related proteins in the skeletal muscle. These results indicate that siphonaxanthin can potentially ameliorate type 2 diabetes mellitus-induced kidney damage and lipid metabolism insufficiency in skeletal muscle. This study provides a possible daily nutraceutical solution for treating diabetic nephropathy and lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Jiawen Zheng
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University. Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University. Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University. Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Zhang J, Wang Y, Chen C, Liu X, Liu X, Wu Y. Downregulation of CD36 alleviates IgA nephropathy by promoting autophagy and inhibiting extracellular matrix accumulation in mesangial cells. Int Immunopharmacol 2025; 144:113672. [PMID: 39616852 DOI: 10.1016/j.intimp.2024.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Immunoglobulin A Nephropathy (IgAN) is a leading cause of end-stage renal disease (ESRD), but its pathogenesis remains unclear, and specific therapies are currently lacking. Consequently, identifying novel differentially expressed genes (DEGs) and therapeutic targets is of paramount importance to IgAN. METHODS The Gene Expression Omnibus (GEO) databases GSE37460 and GSE104948, containing data from renal tissue of patients with IgAN and normal controls, were screened for DEGs, followed by enrichment pathway analysis. The potential key gene for IgAN, CD36, was identified through the single-cell sequencing dataset GSE166793 and histopathological analysis of patients with IgAN. Clinical and pathological data from patients with IgAN were collected to analyze the correlation between CD36 expression and various indicators in renal tissue, thereby evaluating the influence of CD36 on IgAN progression. The accuracy of the risk score model was assessed using receiver operating characteristic (ROC) curve analysis. Finally, CD36 expression was knocked down to explore its regulatory role in polymeric IgA1 (pIgA1)-stimulated mouse mesangial cells (MCs). RESULTS CD36 was identified as a key DEG from two GEO databases and a single-cell sequencing dataset. Compared to peritumoral normal tissues, CD36 expression levels were significantly increased in the IgAN group. Statistically significant differences were observed between M0 and M1, E0 and E1, S0 and S1, C0 and C1-2 in the updated Oxford Classification. CD36 expression showed positive correlations with 24-hour proteinuria, serum creatinine, and levels of fibrosis-related and autophagy-related factors in renal tissue. Additionally, CD36 and fibrosis-related factors were significantly elevated in MCs following pIgA1 stimulation. CD36 knockdown resulted in decreased extracellular matrix (ECM) accumulation in pIgA1-stimulated MCs. RNA-seq analysis of MCs with CD36 knockdown revealed significant alterations in autophagy and CD36 silencing restored autophagy levels in MCs treated with the autophagy inhibitor 3MA. CONCLUSION Our study confirmed that CD36 expression increases with the clinical progression of IgAN and CD36 knockdown alleviates MCs injury by inhibiting ECM accumulation and restoring autophagy.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
4
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Li Y, Deng X, Wu X, Zhou L, Yuan G. Association of Serum Tsukushi Levels with Urinary Albumin-Creatinine Ratio in Type 2 Diabetes Patients. Diabetes Metab Syndr Obes 2024; 17:3295-3303. [PMID: 39252872 PMCID: PMC11381217 DOI: 10.2147/dmso.s468228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Tsukushi is a newly identified hepatokine. Recent studies have shown that it relates to diabetes, lipid metabolism and fibrosis, but there is currently no investigation about whether Tsukushi is associated with diabetic kidney disease. Therefore, this study aimed to investigate the relationship between Tsukushi and diabetic kidney disease by characterizing Tsukushi levels in healthy subjects and type 2 diabetes with urinary albumin-creatinine ratio. Methods Serum Tsukushi level was quantified by enzyme-linked immunosorbent assay in 167 normoalbuminuria, 80 microalbuminuria, and 31 macroalbuminuria patients with type 2 diabetes as compared with 53 healthy subjects. The correlation analysis was used to investigate the relationship between urinary albumin-creatinine ratio or Tsukushi level and other metabolic parameters. Multiple linear regression and logistic regression analysis were used to analyze the independent factors for urinary albumin-creatinine ratio and estimated glomerular filtration rate. Results The Tsukushi level in the macroalbuminuria group was significantly higher than that in the normoalbuminuria or the microalbuminuria group. Multiple linear regression showed that the significantly independent factors for UACR included high Tsukushi quartile, systolic blood pressure, creatinine, homeostasis model assessment of insulin resistance, low 2-h post-oral glucose tolerance test c-peptide and female. Logistic regression demonstrated that the odds ratio of Tsukushi for glomerular filtration rate ≤90(mL/min/1.73m2) was 1.636 (95% CI 1.091-2.452, P=0.017). Conclusion The circulating Tsukushi increased in type 2 diabetes patients with albuminuria and was associated with urinary albumin-creatinine ratio, implying that Tsukushi may be involved in the pathogenesis of diabetic kidney disease, which deserves future studies.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, 201399 People's Republic of China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 210031, People's Republic of China
| | - Xunan Wu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 210031, People's Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, 201399 People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 210031, People's Republic of China
| |
Collapse
|
6
|
Hsu YC, Shih YH, Ho C, Liu CC, Liaw CC, Lin HY, Lin CL. Ethyl Acetate Fractions of Salvia miltiorrhiza Bunge (Danshen) Crude Extract Modulate Fibrotic Signals to Ameliorate Diabetic Kidney Injury. Int J Mol Sci 2024; 25:8986. [PMID: 39201671 PMCID: PMC11354680 DOI: 10.3390/ijms25168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1β, transforming growth factor-β1 (TGF-β1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-β1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333423, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng-Chi Liu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan;
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
7
|
Lidberg KA, Jones-Isaac K, Yang J, Bain J, Wang L, MacDonald JW, Bammler TK, Calamia J, Thummel KE, Yeung CK, Countryman S, Koenig P, Himmelfarb J, Kelly EJ. Modeling cellular responses to serum and vitamin D in microgravity using a human kidney microphysiological system. NPJ Microgravity 2024; 10:75. [PMID: 38982119 PMCID: PMC11233620 DOI: 10.1038/s41526-024-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.
Collapse
Affiliation(s)
- Kevin A Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- RayzeBio, San Diego, CA, USA
| | | | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jacelyn Bain
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Justina Calamia
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Catherine K Yeung
- Department of Pharmacy, University of Washington, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
| | | | - Paul Koenig
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| |
Collapse
|
8
|
Li X, Bhattacharya D, Yuan Y, Wei C, Zhong F, Ding F, D'Agati VD, Lee K, Friedman SL, He JC. Chronic kidney disease in a murine model of non-alcoholic steatohepatitis (NASH). Kidney Int 2024; 105:540-561. [PMID: 38159678 PMCID: PMC10922588 DOI: 10.1016/j.kint.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.
Collapse
Affiliation(s)
- Xuezhu Li
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yue Yuan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chengguo Wei
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Kyung Lee
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J Peters VA Medical Center at Bronx, New York, New York, USA.
| |
Collapse
|
9
|
Kelly E, Lindberg K, Jones-Isaac K, Yang J, Bain J, Wang L, MacDonald J, Bammler T, Calamia J, Thummel K, Yeung C, Countryman S, Koenig P, Himmelfarb J. Impact of microgravity on a three-dimensional microphysiologic culture of the human kidney proximal tubule epithelium: cell response to serum and vitamin D. RESEARCH SQUARE 2023:rs.3.rs-3778779. [PMID: 38196580 PMCID: PMC10775397 DOI: 10.21203/rs.3.rs-3778779/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long-term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). We also treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (> 6 month) exposure to microgravity.
Collapse
|
10
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
11
|
Zhang X, Zhao L, Xiang S, Sun Y, Wang P, Chen JJ, Teo BSX, Xie Z, Zhang Z, Xu J. Yishen Tongluo formula alleviates diabetic kidney disease through regulating Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116243. [PMID: 36791927 DOI: 10.1016/j.jep.2023.116243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yishen Tongluo formula (YSTLF) is formulated based on traditional Chinese medicine theory for the treatment of Diabetic kidney disease (DKD) and has been shown to be effective in improving the symptoms of DKD according to the clinical observation. AIM OF THE STUDY To explore the effect of YSTLF on DKD and figure out whether its effects were due to the regulation Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1. MATERIALS AND METHODS The extract of YSTLF at 1, 2.5 and 5 g/kg was orally administered to C57BLKS/J (db/db) mice for 8 weeks and db/db mice were given valsartan as a positive control. The littermate db/m and db/db mice were given vehicle as the control and model group, respectively. Blood urea nitrogen and serum creatinine were detected and the urinary albumin excretion, urea albumin creatinine ratio was calculated. The histopathological change of renal tissues in each group was determined. Simultaneously, the levels of fibrosis-related proteins and messenger RNA (mRNA) in kidney and high glucose (HG)-induced SV40-MES-13 cells were detected. The roles of YSTLF in regulating of Sirt6/TGF-β1/Smad2/3 signaling pathway were investigated in HG-stimulated SV40-MES-13 cells and validated in db/db mice. Furthermore, the effect of YSTLF on TGF-β1 degradation was investigated in HG-stimulated SV40-MES-13 cells. RESULTS YSTLF significantly improved the renal function in DKD mice. YSTLF dose-dependently attenuated pathological changes and suppressed the expression of type I collagen, alpha smooth muscle actin, type IV collagen, and fibronectin in vitro and in vivo, resulting in ameliorating of renal fibrosis. YSTLF positively regulated Sirt6 expression, while inhibited the activating of TGF-β1/Smad2/3 signaling pathway. TGF-β1 was steady expressed in HG-stimulated SV40-MES-13 cells, whereas was continuously degraded under YSTLF treatment. CONCLUSIONS YSTLF significantly ameliorates renal damages and fibrosis may via regulating Sirt6/TGF-β1/Smad2/3 signaling pathway as well as promoting the degradation of TGF-β1.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China
| | - Liang Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China
| | - Shixie Xiang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China
| | - Yiran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China
| | - Jenny Jie Chen
- International Academic Affairs Department, Management and Science University. University Drive, Off Persiaran Olahraga, Section 13, 40100, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Brian Sheng-Xian Teo
- International Academic Affairs Department, Management and Science University. University Drive, Off Persiaran Olahraga, Section 13, 40100, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China.
| | - Jiangyan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China; Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, PR China.
| |
Collapse
|
12
|
Mohamad HE, Abdelhady MA, Abdel Aal SM, Elrashidy RA. Dulaglutide mitigates high dietary fructose-induced renal fibrosis in rats through suppressing epithelial-mesenchymal transition mediated by GSK-3β/TGF-β1/Smad3 signaling pathways. Life Sci 2022; 309:120999. [PMID: 36182846 DOI: 10.1016/j.lfs.2022.120999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS High dietary fructose consumption has been linked to the development of renal fibrosis. Dulaglutide is a long acting glucagon like peptide-1 (GLP-1) analog, showing some renoprotective properties; however its action on renal fibrosis remains uncertain. We investigated the effect of dulaglutide on fructose-induced renal fibrosis in comparison to pirfenidone, as well-established anti-fibrotic drug, and the contribution of epithelial-mesenchymal transition (EMT) process and its upstream signaling. MAIN METHODS Six week-old male Wistar albino rats received 10%w/v fructose solution in drinking water for 24 weeks and co-treated with either pirfenidone (100 mg/kg/day, orally) or dulaglutide (0.2 mg/kg/week, s.c) for the last four weeks. Lipid profile, glucose homeostasis, kidney functions were assessed. Kidneys were harvested for biochemical and histological analyses. KEY FINDINGS High dietary fructose consumption for 24 weeks induced insulin resistance, dyslipidemia and renal dysfunction that were ameliorated by dulaglutide and pirfenidone to lesser extent. Histological examination revealed histological lesions and interstitial fibrosis in renal sections of high fructose-fed rats, which were reversed by dulaglutide or pirfenidone treatment. Both drugs modulated the EMT-related proteins by increasing the epithelial marker, E-cadherin, while suppressing the mesenchymal markers, vimentin and alpha-smooth muscle actin (α-SMA) in renal tissue. Moreover, both drugs attenuated fructose-induced upregulation of GSK-3β/TGF-β1/Smad3 signaling. SIGNIFICANCE These findings suggest that dulaglutide can emerge as a promising therapeutic agent for fructose-induced renal fibrosis. These results add mechanistic insights into the anti-fibrotic action of dulaglutide through suppressing EMT and the upstream GSK-3β/TGF-β1/Smad3 signaling.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Merna A Abdelhady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sara M Abdel Aal
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rania A Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
13
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Tang PCT, Zhang YY, Li JSF, Chan MKK, Chen J, Tang Y, Zhou Y, Zhang D, Leung KT, To KF, Tang SCW, Lan HY, Tang PMK. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. Noncoding RNA 2022; 8:ncrna8030036. [PMID: 35736633 PMCID: PMC9227532 DOI: 10.3390/ncrna8030036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a crucial pathogenic mediator of inflammatory diseases. In tissue fibrosis, TGF-β regulates the pathogenic activity of infiltrated immunocytes and promotes extracellular matrix production via de novo myofibroblast generation and kidney cell activation. In cancer, TGF-β promotes cancer invasion and metastasis by enhancing the stemness and epithelial mesenchymal transition of cancer cells. However, TGF-β is highly pleiotropic in both tissue fibrosis and cancers, and thus, direct targeting of TGF-β may also block its protective anti-inflammatory and tumor-suppressive effects, resulting in undesirable outcomes. Increasing evidence suggests the involvement of long non-coding RNAs (lncRNAs) in TGF-β-driven tissue fibrosis and cancer progression with a high cell-type and disease specificity, serving as an ideal target for therapeutic development. In this review, the mechanism and translational potential of TGF-β-associated lncRNAs in tissue fibrosis and cancer will be discussed.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji University School of Medicine, Shanghai 200065, China;
| | - Jane Siu-Fan Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Jiaoyi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510080, China;
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
15
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
16
|
Li J, Yang J, Zhu B, Fan J, Hu Q, Wang L. Tectorigenin protects against unilateral ureteral obstruction by inhibiting Smad3-mediated ferroptosis and fibrosis. Phytother Res 2022; 36:475-487. [PMID: 34964161 DOI: 10.1002/ptr.7353] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
Renal tubular epithelial cell (TEC) injury and fibrosis are the key factors of the pathogenesis of chronic kidney disease. Here, we reported that tectorigenin is effectively protected against obstructive nephropathy established by unilateral ureteral obstruction (UUO). In vivo, tectorigenin administration significantly alleviated the deteriorations of renal functions including blood urea nitrogen and creatinine. Meanwhile, results from the histology suggested that renal injury characterized by tubular cell damage and fibrosis lesions of kidneys in UUO group were markedly attenuated following tectorigenin treatment. Mechanistically, we found that tectorigenin treatment greatly inhibited Smad3 phosphorylation, and the transcription and protein level of Nox4, a newly identified direct downstream molecule of Smad3 and a modulator of ferroptosis, while it indirectly restored the expression of glutathione peroxidase 4, a negative regulator of ferroptosis. Consistent with in vivo studies, treatment with tectorigenin also suppressed the ferroptosis induced by erastin/RSL3 and fibrosis stimulated by transforming growth factor β1 (TGF-β1) in primary renal TECs. What is more, treatment with ferroptosis inhibitor, ferrostatin-1, also impeded TGF-β1 stimulated the profibrotic effects in TECs, indicating that tectorigenin may relieve fibrosis by inhibiting ferroptosis in TECs. In addition, tectorigenin treatment exhibited a similar tendency, which inhibited Smad3 activation, and the docking analysis revealed that tectorigenin docked well into the Smad3 binding cavity with strong binding affinity (-7.9 kcal/mol). Thus, this study deciphers the protective effect of tectorigenin against obstructive nephropathy through inhibiting Smad3-mediated ferroptosis and fibrosis.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jieke Yang
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bingwen Zhu
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junming Fan
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Chengdu Medical College, Chengdu, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|
18
|
Wu W, Wang Y, Li H, Chen H, Shen J. Buyang Huanwu Decoction protects against STZ-induced diabetic nephropathy by inhibiting TGF-β/Smad3 signaling-mediated renal fibrosis and inflammation. Chin Med 2021; 16:118. [PMID: 34775979 PMCID: PMC8591830 DOI: 10.1186/s13020-021-00531-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Buyang Huanwu Decoction (BHD) is a classical Chinese Medicine formula empirically used for diabetic nephropathy (DN). However, its therapeutic efficacies and the underlying mechanisms remain obscure. In our study, we aim to evaluate the renoprotective effect of BHD on a streptozotocin (STZ)-induced diabetic nephropathy mouse model and explore the potential underlying mechanism in mouse mesangial cells (MCs) treated with high glucose in vitro, followed by screening the active compounds in BHD. Methods Mice were received 50 mg/kg streptozotocin (STZ) or citrate buffer intraperitoneally for 5 consecutive days. BHD was intragastrically administrated for 12 weeks starting from week 4 after the diabetes induction. The quality control and quantitative analysis of BHD were studied by high-performance liquid chromatography (HPLC). Renal function was evaluated by urinary albumin excretion (UAE) using ELISA. The mesangial matrix expansion and renal fibrosis were measured using periodic acid-schiff (PAS) staining and Masson Trichrome staining. Mouse mesangial cells (MCs) were employed to study molecular mechanisms. Results We found that the impaired renal function in diabetic nephropathy was significantly restored by BHD, as indicated by the decreased UAE without affecting the blood glucose level. Consistently, BHD markedly alleviated STZ-induced diabetic glomerulosclerosis and tubulointerstitial injury as shown by PAS staining, accompanied by a reduction of renal inflammation and fibrosis. Mechanistically, BHD inhibited the activation of TGF-β1/Smad3 and NF-κB signaling in diabetic nephropathy while suppressing Arkadia expression and restoring renal Smad7. We further found that calycosin-7-glucoside (CG) was one of the active compounds from BHD, which significantly suppressed high glucose-induced inflammation and fibrosis by inhibiting TGF-β1/Smad3 and NF-κB signaling pathways in mesangial cells. Conclusion BHD could attenuate renal fibrosis and inflammation in STZ-induced diabetic kidneys via inhibiting TGF-β1/Smad3 and NF-κB signaling while suppressing the Arkadia and restoring renal Smad7. CG could be one of the active compounds in BHD to suppress renal inflammation and fibrosis in diabetic nephropathy. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00531-1.
Collapse
Affiliation(s)
- Weifeng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yifan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haidi Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
20
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
21
|
FOXO3a Protects against Kidney Injury in Type II Diabetic Nephropathy by Promoting Sirt6 Expression and Inhibiting Smad3 Acetylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5565761. [PMID: 34122724 PMCID: PMC8172321 DOI: 10.1155/2021/5565761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Although numerous reports have demonstrated a correlation between epithelial-mesenchymal transition (EMT) and renal fibrosis, how these processes lead to tubular dysfunction remains unclear. Here, we show that FOXO3a protects kidneys from injury in type II DN by increasing Sirt6 expression, which deacetylates Smad3 and inhibits its transcriptional activity. The results showed that progressive EMT in the kidneys from db/db mice is associated with Sirt6 downregulation and involved in tubular injury and dysfunction. The reduction of Sirt6 levels in db/db mice resulted in progressive kidney injury, indicating the protective role of Sirt6. Furthermore, Sirt6 was shown to directly bind to Smad3, a key downstream mediator of TGF-β, and could deacetylate it to inhibit its nuclear accumulation and transcriptional activity in HK2 cells. Besides, we demonstrate that FOXO3a activates Sirt6 expression by binding to its promoter. shRNA-induced FOXO3a knockdown in the kidneys of db/db mice exacerbated tubular injury and renal function loss. Mechanistically, FOXO3a protects against kidney injury in type II DN through the Sirt6/Smad3 axis. Thus, the pharmacological targeting of FOXO3a-mediated Sirt6/Smad3 signaling pathways may provide a novel strategy for treating type II DN.
Collapse
|
22
|
Astragaloside IV attenuates high glucose-induced EMT by inhibiting the TGF-β/Smad pathway in renal proximal tubular epithelial cells. Biosci Rep 2021; 40:225214. [PMID: 32515466 PMCID: PMC7313447 DOI: 10.1042/bsr20190987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, we examined the molecular mechanism of astragaloside IV (AS-IV) in high glucose (HG)-induced epithelial-to-mesenchymal transition (EMT) in renal proximal tubular epithelial cells (PTCs). NRK-52E cell viability and apoptosis were determined by the cell counting kit-8 (CCK-8) assay and flow cytometric analysis, respectively. Expressions of E-cadherin, N-cadherin, vimentin, and occludin were measured by Western blot, and those of E-cadherin and N-cadherin were additionally measured by immunofluorescence analysis. Transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The expressions of Smad2, Smad3, phosphorylated-Smad2 (p-Smad2), and p-Smad3 were measured using Western blot. We found that AS-IV could recover NRK-52E cell viability and inhibit HG-induced cell apoptosis. TGF-β1, α-SMA, Smad2, Smad3, p-Smad2, and p-Smad3 expressions were decreased in the AS-IV-treated groups compared with the HG group. Moreover, the expressions of E-cadherin and occludin were remarkably up-regulated and those of N-cadherin and vimentin were down-regulated in the AS-IV-treated groups compared with the HG group. Interestingly, the TGF-β1 activator SRI-011381 hydrochloride had an antagonistic effect to AS-IV on HG-induced EMT behavior. In conclusion, AS-IV attenuates HG-induced EMT by inhibiting the TGF-β/Smad pathway in renal PTCs.
Collapse
|
23
|
Dong L, Li JC, Hu ZJ, Huang XR, Wang L, Wang HL, Ma RCW, Lan HY, Yang SJ. Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. J Cell Mol Med 2021; 25:4860-4869. [PMID: 33733577 PMCID: PMC8107104 DOI: 10.1111/jcmm.16464] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF‐β/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT‐db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO‐db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2‐mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF‐kB‐driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3‐dependent miRNAs by up‐regulating cardiac miR‐29b while suppressing miR‐21 to exhibit the cardioprotective effect on Smad3KO‐db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.
Collapse
Affiliation(s)
- Li Dong
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Chun Li
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Jing Hu
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-Jin Yang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
24
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
25
|
A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane. J Mol Med (Berl) 2021; 99:859-876. [PMID: 33620517 DOI: 10.1007/s00109-021-02050-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Not only in kidney glomerular physiological function but also glomerular pathology especially in diabetic condition, glomerular podocytes play pivotal roles. Therefore, it is important to increase our knowledge about the genes and proteins expressed in podocytes. Recently, we have identified a novel podocyte-expressed gene, R3h domain containing-like (R3hdml) and analyzed its function in vivo as well as in vitro. Transforming growth factor-β (TGF-β) signaling regulated the expression of R3hdml. And R3hdml inhibited p38 mitogen-activated protein kinase phosphorylation, which was induced by TGF-β, leading to the amelioration of podocyte apoptosis. Furthermore, a lack of R3hdml in mice significantly worsened glomerular function in streptozotocin (STZ)-induced diabetes, while overexpression of R3hdml ameliorated albuminuria in STZ-induced diabetes. Our results surmise that the functional analyses of R3hdml may lead to the development of novel therapeutic strategies for diabetic nephropathy in the future. KEY MESSAGES: • A novel podocyte expressed protein R3h domain containing-like was identified. • R3HDML inhibits podocyte apoptosis by inhibiting TGF-β-mediated p38 MAPK signaling. • Overexpression of R3HDML ameliorates albuminuria in STZ-induced diabetes mice. • R3HDML may prove to be a novel therapeutic strategy for diabetic nephropathy.
Collapse
|
26
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
27
|
Nakamichi R, Hayashi K, Itoh H. Effects of High Glucose and Lipotoxicity on Diabetic Podocytes. Nutrients 2021; 13:nu13010241. [PMID: 33467659 PMCID: PMC7830342 DOI: 10.3390/nu13010241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Glomerular podocytes are highly differentiated cells that cover glomerular capillaries from the outside and have a characteristic morphology with numerous foot processes. The formation of slit membranes between the foot processes serves as a final filtration barrier for urine filtration from the blood. Podocyte damage causes disruption of the slit membrane, subsequent proteinuria and finally glomerulosclerosis, which is a common pathway in various types of chronic kidney disease (CKD). In recent years, there has been an increase in diabetes, due to rapid lifestyle changes, which is the main cause of CKD. Therefore, understanding the effect of diabetic status on podocytes is of great importance to establish a strategy for preventing CKD progression. In this review, we summarize altered glucose and lipid metabolism in diabetic podocytes and also discuss the reversibility of the changes in podocyte phenotype.
Collapse
Affiliation(s)
| | - Kaori Hayashi
- Correspondence: ; Tel.: +81-3-5363-3796; Fax: +81-3-3359-2745
| | | |
Collapse
|
28
|
Zhang C, Lu W, Luo X, Liu S, Li Y, Zheng Q, Liu W, Wu X, Chen Y, Jiang Q, Zhang Z, Gu G, Chen J, Chen H, Liao J, Liu C, Hong C, Tang H, Sun D, Yang K, Wang J. Mitomycin C induces pulmonary vascular endothelial-to-mesenchymal transition and pulmonary veno-occlusive disease via Smad3-dependent pathway in rats. Br J Pharmacol 2020; 178:217-235. [PMID: 33140842 DOI: 10.1111/bph.15314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear. EXPERIMENTAL APPROACH A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model. KEY RESULTS Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFβ/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats. CONCLUSIONS AND IMPLICATIONS Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wenyan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoping Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Yang C, Chen XC, Li ZH, Wu HL, Jing KP, Huang XR, Ye L, Wei B, Lan HY, Liu HF. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy. Autophagy 2020; 17:2325-2344. [PMID: 33043774 DOI: 10.1080/15548627.2020.1824694] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy dysregulation has been noted in diabetic nephropathy; however, the regulatory mechanisms controlling this process remain unclear. In this study, we showed that SMAD3 (SMAD family member 3), the key effector of TGFB (transforming growth factor beta)-SMAD signaling, induces lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis. The pharmacological inhibition or genetic deletion of SMAD3 restored lysosome biogenesis activity by alleviating the suppression of TFEB, thereby protecting lysosomes from depletion and improving autophagic flux in renal tubular epithelial cells in diabetic nephropathy. Mechanistically, we found that SMAD3 directly binds to the 3'-UTR of TFEB and inhibits its transcription. Silencing TFEB suppressed lysosome biogenesis and resulted in a loss of the protective effects of SMAD3 inactivation on lysosome depletion under diabetic conditions. In conclusion, SMAD3 promotes lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis; this may be an important mechanism underlying autophagy dysregulation in the progression of diabetic nephropathy.Abbreviations: AGEs: advanced glycation end products; ATP6V1H: ATPase H+ transporting V1 subunit H; CTSB: cathepsin B; ChIP: chromatin immunoprecipitation; Co-BSA: control bovine serum albumin; DN: diabetic nephropathy; ELISA: enzyme-linked immunosorbent assay; FN1: fibronectin 1; HAVCR1/TIM1/KIM-1: hepatitis A virus cellular receptor 1; LAMP1: lysosomal associated membrane protein 1; LMP: lysosome membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NC: negative control; SIS3: specific inhibitor of SMAD3; SMAD3: SMAD family member 3; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TECs: tubular epithelial cells; TFEB: transcription factor EB; TGFB1: transforming growth factor beta 1; TGFBR1: transforming growth factor beta receptor 1; UTR: untranslated region; VPS11: VPS11 core subunit of CORVET and HOPS complexes.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-Hang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Luan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai-Peng Jing
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biao Wei
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
30
|
Nasias D, Dalakoura-Karagkouni K, Vassou D, Papagiannakis G, Papadaki A, Kardassis D. Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis. Genomics 2020; 112:4053-4062. [PMID: 32652102 DOI: 10.1016/j.ygeno.2020.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
The white adipose tissue (WAT) contributes to the metabolic imbalance observed in obesity and the metabolic syndrome (MetS) by mechanisms that are poorly understood. The aim of this study was to monitor changes in the transcriptome of epididymal WAT during the development of MetS. ApoE3L.CETP mice were fed a high fat (HFD) or a low-fat (LFD) diet for different time periods. Adipose RNA was analyzed by microarrays. We found an increasing number of differentially expressed transcripts during MetS development. In mice with MetS, 1396 transcripts were differentially expressed including transcripts related to immune/inflammatory responses and extracellular matrix enzymes, suggesting significant inflammation and tissue remodeling. The top list of pathways included focal adhesion, chemokine, B and T cell receptor and MAPK signaling. The data identify for the first time adipose gene signatures in apoE3L.CETP mice with diet-induced MetS and might open new avenues for investigation of potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Dimitris Nasias
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Katerina Dalakoura-Karagkouni
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Giorgos Papagiannakis
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Ariadni Papadaki
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece.
| |
Collapse
|
31
|
Shi Y, Chen X, Huang C, Pollock C. RIPK3: A New Player in Renal Fibrosis. Front Cell Dev Biol 2020; 8:502. [PMID: 32613000 PMCID: PMC7308494 DOI: 10.3389/fcell.2020.00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is the end result of a plethora of renal insults, including repeated episodes of acute or toxic kidney injury, glomerular, or diabetic kidney disease. It affects a large number of the population worldwide, resulting in significant personal morbidity and mortality and economic cost to the community. Hence it is appropriate to focus on treatment strategies that interrupt the development of kidney fibrosis, the end result of all forms of CKD, in addition to upstream factors that may be specific to certain diseases. However, the current clinical approach to prevent or manage renal fibrosis remains unsatisfactory. The rising importance of receptor-interacting serine/threonine-protein kinase (RIPK) 3 in the inflammatory response and TGF-β1 signaling is increasingly recognized. We discuss here the biological functions of RIPK3 and its role in the development of renal fibrosis.
Collapse
Affiliation(s)
- Ying Shi
- Nephrology, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Xinming Chen
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Tang PCT, Zhang YY, Chan MKK, Lam WWY, Chung JYF, Kang W, To KF, Lan HY, Tang PMK. The Emerging Role of Innate Immunity in Chronic Kidney Diseases. Int J Mol Sci 2020; 21:ijms21114018. [PMID: 32512831 PMCID: PMC7312694 DOI: 10.3390/ijms21114018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common fate of chronic kidney diseases. Emerging studies suggest that unsolved inflammation will progressively transit into tissue fibrosis that finally results in an irreversible end-stage renal disease (ESRD). Renal inflammation recruits and activates immunocytes, which largely promotes tissue scarring of the diseased kidney. Importantly, studies have suggested a crucial role of innate immunity in the pathologic basis of kidney diseases. This review provides an update of both clinical and experimental information, focused on how innate immune signaling contributes to renal fibrogenesis. A better understanding of the underlying mechanisms may uncover a novel therapeutic strategy for ESRD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Winson Wing-Yin Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
33
|
Walter DL, Benner SE, Oaks RJ, Thuma JR, Malgor R, Schwartz FL, Coschigano KT, McCall KD. Coxsackievirus B4 Exposure Results in Variable Pattern Recognition Response in the Kidneys of Female Non-Obese Diabetic Mice Before Establishment of Diabetes. Viral Immunol 2020; 33:494-506. [PMID: 32352894 DOI: 10.1089/vim.2019.0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
End-stage renal disease (ESRD) is described by four primary diagnoses, diabetes, hypertension, glomerulonephritis, and cystic kidney disease, all of which have viruses implicated as causative agents. Enteroviruses, such as coxsackievirus (CV), are a common genus of viruses that have been implicated in both diabetes and cystic kidney disease; however, little is known about how CVs cause kidney injury and ESRD or predispose individuals with a genetic susceptibility to type 1 diabetes (T1D) to kidney injury. This study evaluated kidney injury resulting from coxsackievirus B4 (CVB4) inoculation of non-obese diabetic (NOD) mice to glean a better understanding of how viral exposure may predispose individuals with a genetic susceptibility to T1D to kidney injury. The objectives were to assess acute and chronic kidney damage in CVB4-inoculated NOD mice without diabetes. Results indicated the presence of CVB4 RNA in the kidney for at least 14 days post-CVB4 inoculation and a coordinated pattern recognition receptor response, but the absence of an immune response or cytotoxicity. CVB4-inoculated NOD mice also had a higher propensity to develop an increase in mesangial area 17 weeks post-CVB4 inoculation. These studies identified initial gene expression changes in the kidney resulting from CVB4 exposure that may predispose to ESRD. Thus, this study provides an initial characterization of kidney injury resulting from CVB4 inoculation of mice that are genetically susceptible to developing T1D that may one day provide better therapeutic options and predictive measures for patients who are at risk for developing kidney disease from T1D.
Collapse
Affiliation(s)
- Debra L Walter
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Sarah E Benner
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Rosemary J Oaks
- Program in Biological Sciences, Honors Tutorial College, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Ramiro Malgor
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Karen T Coschigano
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Kelly D McCall
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
34
|
The Vascular Involvement in Soft Tissue Fibrosis-Lessons Learned from Pathological Scarring. Int J Mol Sci 2020; 21:ijms21072542. [PMID: 32268503 PMCID: PMC7177855 DOI: 10.3390/ijms21072542] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue fibrosis in important organs such as the heart, liver, lung, and kidney is a serious pathological process that is characterized by excessive connective tissue deposition. It is the result of chronic but progressive accumulation of fibroblasts and their production of extracellular matrix components such as collagens. Research on pathological scars, namely, hypertrophic scars and keloids, may provide important clues about the mechanisms that drive soft tissue fibrosis, in particular the vascular involvement. This is because these dermal fibrotic lesions bear all of the fibrotic characteristics seen in soft tissue fibrosis. Moreover, their location on the skin surface means they are readily observable and directly treatable and therefore more accessible to research. We will focus here on the roles that blood vessel-associated cells play in cutaneous scar pathology and assess from the literature whether these cells also contribute to other soft tissue fibroses. These cells include endothelial cells, which not only exhibit aberrant functions but also differentiate into mesenchymal cells in pathological scars. They also include pericytes, hepatic stellate cells, fibrocytes, and myofibroblasts. This article will review with broad strokes the roles that these cells play in the pathophysiology of different soft tissue fibroses. We hope that this brief but wide-ranging overview of the vascular involvement in fibrosis pathophysiology will aid research into the mechanisms underlying fibrosis and that this will eventually lead to the development of interventions that can prevent, reduce, or even reverse fibrosis formation and/or progression.
Collapse
|
35
|
Kravets I, Mallipattu SK. The Role of Podocytes and Podocyte-Associated Biomarkers in Diagnosis and Treatment of Diabetic Kidney Disease. J Endocr Soc 2020; 4:bvaa029. [PMID: 32232184 PMCID: PMC7093089 DOI: 10.1210/jendso/bvaa029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is an important public health problem. Podocyte injury is a central event in the mechanism of DKD development. Podocytes are terminally differentiated, highly specialized glomerular visceral epithelial cells critical for the maintenance of the glomerular filtration barrier. Although potential mechanisms by which diabetic milieu contributes to irreversible loss of podocytes have been described, identification of markers that prognosticate either the development of DKD or the progression to end-stage kidney disease (ESKD) have only recently made it to the forefront. Currently, the most common marker of early DKD is microalbuminuria; however, this marker has significant limitations: not all diabetic patients with microalbuminuria will progress to ESKD and as many as 30% of patients with DKD have normal urine albumin levels. Several novel biomarkers indicating glomerular or tubular damage precede microalbuminuria, suggesting that the latter develops when significant kidney injury has already occurred. Because podocyte injury plays a key role in DKD pathogenesis, identification of markers of early podocyte injury or loss may play an important role in the early diagnosis of DKD. Such biomarkers in the urine include podocyte-released microparticles as well as expression of podocyte-specific markers. Here, we review the mechanisms by which podocyte injury contributes to DKD as well as key markers that have been recently implicated in the development and/or progression of DKD and might serve to identify individuals that require earlier preventative care and treatment in order to slow the progression to ESKD.
Collapse
Affiliation(s)
- Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
- Renal Section, Northport VA Medical Center, Northport, NY
| |
Collapse
|
36
|
Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol 2020; 8:187. [PMID: 32266267 PMCID: PMC7105573 DOI: 10.3389/fcell.2020.00187] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the risk of ESRD. However, patients vary in their response to RAAS blockades, and the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis, immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1 signaling pathway has been implicated as a critical profibrotic factor in the progression of chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD. Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1 signaling abolished its multiple physiological functions, which are highly associated with undesirable adverse events. Ideal strategies for DKD therapy would be either specific and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion of latent TGF-β1 to active TGF-β1.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Pichiah PBT, Sankarganesh D, Arunachalam S, Achiraman S. Adipose-Derived Molecules-Untouched Horizons in Alzheimer's Disease Biology. Front Aging Neurosci 2020; 12:17. [PMID: 32116650 PMCID: PMC7032035 DOI: 10.3389/fnagi.2020.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The global incidence of Alzheimer's disease (AD) is on the rise with the increase in obesity and metabolic disease epidemic. Obesity is co-morbid with the increase in mass of adipose tissue, which secretes numerous molecules that are biologically important. Obesity and its associated conditions are perhaps involved in the causative pathway of AD. Immunologically important cytokines such as IL-1β, IL-10, and IL-18, which are released by adipose tissue, are also found to be associated with AD. Besides, the expression of IL-6, IFNγ, and TNF alpha are also associated with AD. Ang-I and Ang-II are found to mediate the progression of AD. Complement factors B, C4b, and H are differentially expressed in AD. Overall, several adipocyte-derived cytokines are found to be dysregulated in AD, and their role in AD remains to be studied. The induction of autophagy is a very promising strategy in the treatment of AD. A variety of adipose-derived molecules have been shown to modulate autophagy. However, very little literature is available on the role of adipose-derived molecules in inducing autophagy in microglial cells of AD. Understanding the role of adipose-derived molecules in the development of AD, especially in the induction of autophagy, would open up new avenues in devising strategies for the treatment of AD.
Collapse
Affiliation(s)
| | - Devaraj Sankarganesh
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
38
|
IL-20 in Acute Kidney Injury: Role in Pathogenesis and Potential as a Therapeutic Target. Int J Mol Sci 2020; 21:ijms21031009. [PMID: 32028746 PMCID: PMC7037658 DOI: 10.3390/ijms21031009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.
Collapse
|
39
|
Xu BH, Sheng J, You YK, Huang XR, Ma RCW, Wang Q, Lan HY. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism 2020; 103:154013. [PMID: 31734275 DOI: 10.1016/j.metabol.2019.154013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β/Smad3 signaling is highly activated in kidneys of patients with type 2 diabetic nephropathy (T2DN), however, the precise role of Smad3 in the pathogenesis of diabetic nephropathy remains unclear. METHODS Smad3 knockout (KO)-db/db mice were generated by intercrossing of male and female double-heterozygous Smad3+/- db/m mice. Renal functions including urinary albumin excretion and serum creatinine were determined. Renal histological injury including renal fibrosis and inflammation were examined by periodic acid Schiff (PAS), periodic acid-silver methenamine (PASM), and immunohistochemistry (IHC) staining. RESULTS Smad3 knockout (KO)-db/db mice were protected from the development of diabetic kidney injury, characterized by the normal levels of urinary albumin excretion and serum creatinine without any evidence for renal fibrosis and inflammation. In contrast, Smad3 wild-type (WT) db/db and Smad3+/- db/db mice developed progressively decline in renal function over the 12 to 32-week time course, including increased microalbuminuria and elevated levels of serum creatinine. Pathologically, Smad3 WT db/db and Smad3+/- db/db mice exhibited a marked deposition of collagen-I (colI), collagen-IV(col-IV), and an increased infiltration of F4/80+ macrophages in kidney. Mechanistically, Smad3 deficiency decreased the lncRNA Erbb4-IR transcription, while increased miR-29b transcription and therefore protected the kidney from progressive renal injury in db/db mice. CONCLUSION Results from this study imply that Smad3 may represent as a novel and effective therapeutic target for T2DN.
Collapse
Affiliation(s)
- Bi-Hua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyi Sheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Ke You
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ronald C W Ma
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingwen Wang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China..
| | - Hui-Yao Lan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
40
|
Li J, Sun YBY, Chen W, Fan J, Li S, Qu X, Chen Q, Chen R, Zhu D, Zhang J, Wu Z, Chi H, Crawford S, Oorschot V, Puelles VG, Kerr PG, Ren Y, Nilsson SK, Christian M, Tang H, Chen W, Bertram JF, Nikolic-Paterson DJ, Yu X. Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS. EMBO Rep 2020; 21:e48781. [PMID: 31916354 DOI: 10.15252/embr.201948781] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-β1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.
Collapse
Affiliation(s)
- Jinhua Li
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China.,The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China.,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yu Bo Yang Sun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Weiyi Chen
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Songhui Li
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Vic., Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Qikang Chen
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Riling Chen
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Dajian Zhu
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Jinfeng Zhang
- Shunde Women and Children Hospital, Guangdong Medical University, Shunde, Guangdong, China
| | - Zhuguo Wu
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Honggang Chi
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Simon Crawford
- Monash Ramaciotti Cryo EM Platform, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia
| | - Viola Oorschot
- Monash Ramaciotti Cryo EM Platform, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Peter G Kerr
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Susan K Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Vic., Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - David J Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic., Australia
| | - Xueqing Yu
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
41
|
Abstract
Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Tao-Tao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
42
|
Ghayur A, Padwal MK, Liu L, Zhang J, Margetts PJ. SMAD3-dependent and -independent pathways in glomerular injury associated with experimental glomerulonephritis. Am J Physiol Renal Physiol 2019; 317:F152-F162. [PMID: 31141397 DOI: 10.1152/ajprenal.00406.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glomerulonephritis (GN) is a common cause of end-stage kidney disease and is characterized by glomerular inflammation, hematuria, proteinuria, and progressive renal dysfunction. Transforming growth factor (TGF)-β is involved in glomerulosclerosis and interstitial fibrosis. TGF-β activates multiple signaling pathways, including the canonical SMAD pathway. We evaluated the role of SMAD signaling in renal injury and proteinuria in a murine model of GN. SMAD3+/+ or SMAD3-/- mice received anti-glomerular basement membrane antibodies to induce GN. We confirmed previous reports that demonstrated that SMAD3 is an important mediator of glomerulosclerosis and renal interstitial fibrosis. Proteinuria was highly SMAD3 dependent. We found differential effects of SMAD3 deletion on podocytes and glomerular endothelial cells. GN led to podocyte injury, including foot process effacement and loss of podocyte-specific markers. Interestingly, these changes were not SMAD3 dependent. Furthermore, there were significant changes to glomerular endothelial cells, including loss of fenestrations, swelling, and basement membrane reduplication, which were SMAD3 dependent. Despite ongoing markers of podocyte injury in SMAD3-/- mice, proteinuria was transient. Renal injury in the setting of GN involves TGF-β and SMAD3 signaling. Cell populations within the glomerulus respond differently to SMAD3 deletion. Proteinuria correlated more with endothelial cell changes as opposed to podocyte injury in this model.
Collapse
Affiliation(s)
- Ayesha Ghayur
- Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | | | - Limin Liu
- Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Jing Zhang
- Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
43
|
Indoxyl Sulfate Induces Renal Fibroblast Activation through a Targetable Heat Shock Protein 90-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2050183. [PMID: 31178953 PMCID: PMC6501427 DOI: 10.1155/2019/2050183] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Indoxyl sulfate (IS) accumulation occurs early during chronic kidney disease (CKD) progression and contributes to renal dysfunction by inducing fibrosis, inflammation, oxidative stress, and tissue remodeling. Renal toxicity of high IS concentrations (250 μM) has been widely explored, particularly in resident tubular and glomerular cells, while the effect of a moderate IS increase on kidneys is still mostly unknown. To define the effects of IS accumulation on renal fibroblasts, we first analyzed kidneys of C57BL/6 mice receiving IS (0.1%) in drinking water for 12 weeks. As a next step, we treated renal fibroblasts (NRK-49F) with IS (20 μM) with or without the HSP90 inhibitor 17-AAG (1 μM). In mouse kidneys, IS increased the collagen deposition and HSP90 and α-SMA expression (immunohistochemistry) in interstitial fibroblasts and caused tubular necrosis (histological H&E and picrosirius red staining). In NRK-49F cells, IS induced MCP1, TGF-β, collagen I, α-SMA, and HSP90 gene/protein expression and Smad2/3 pathway activation. IS had no effects on fibroblast proliferation and ROS production. 17-AAG counteracted IS-induced MCP1, TGF-β, collagen I, and α-SMA expression and Smad2/3 phosphorylation. Our study demonstrates that the IS increase promotes renal fibroblast activation by a HSP90-dependent pathway and indicates HSP90 inhibition as a potential strategy to restrain IS-induced kidney inflammation and fibrosis in CKD.
Collapse
|
44
|
Zhao J, Meng M, Zhang J, Li L, Zhu X, Zhang L, Wang C, Gao M. Astaxanthin ameliorates renal interstitial fibrosis and peritubular capillary rarefaction in unilateral ureteral obstruction. Mol Med Rep 2019; 19:3168-3178. [PMID: 30816496 PMCID: PMC6423568 DOI: 10.3892/mmr.2019.9970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Loss of peritubular capillaries is a notable feature of progressive renal interstitial fibrosis. Astaxanthin (ASX) is a natural carotenoid with various biological activities. The present study aimed to evaluate the effect of ASX on unilateral ureteral obstruction (UUO)‑induced renal fibrosis in mice. For that purpose, mice were randomly divided into five treatment groups: Sham, ASX 100 mg/kg, UUO, UUO + ASX 50 mg/kg and UUO + ASX 100 mg/kg. ASX was administered to the mice for 7 or 14 days following UUO. The results demonstrated that UUO‑induced histopathological changes in the kidney tissue were prevented by ASX. Renal function was improved by ASX treatment, as evidenced by decreased blood urea nitrogen and serum creatinine levels. Furthermore, the extent of renal fibrosis and collagen deposition induced by UUO was suppressed by ASX. The levels of collagen I, fibronectin and α‑smooth muscle actin were increased by UUO in mice or by transforming growth factor (TGF)‑β1 treatment in NRK‑52E cells, and were reduced by ASX administration. In addition, ASX inhibited the UUO‑induced decrease in peritubular capillary density by upregulating vascular endothelial growth factor and downregulating thrombospondin 1 levels. Inactivation of the TGF‑β1/Smad signaling pathway was involved in the anti‑fibrotic mechanism of ASX in UUO mice and TGF‑β1‑treated NRK‑52E cells. In conclusion, ASX attenuated renal interstitial fibrosis and peritubular capillary rarefaction via inactivation of the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Meixia Meng
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Jinhua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Li
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaojing Zhu
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Chang Wang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
45
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 644] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
46
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
47
|
Yang Z, He LJ, Sun SR. Role of Endothelial Cells in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:145-163. [PMID: 31399965 DOI: 10.1007/978-981-13-8871-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis has been regarded as the common pathway of end-stage renal failure. Understanding the fundamental mechanism that leads to renal fibrosis is essential for developing better therapeutic options for chronic kidney diseases. So far, the main abstractions are on the injury of tubular epithelial cells, activation of interstitial cells, expression of chemotactic factor and adhesion molecule, infiltration of inflammatory cells and homeostasis of ECM. However, emerging studies revealed that endothelial cells (ECs) might happen to endothelial-to-mesenchymal transition (EndMT) dependent and/or independent endothelial dysfunction, which were supposed to accelerate renal fibrosis and are identified as new mechanisms for the proliferation of myofibroblasts as well. In this chapter, we are about to interpret the role of ECs in renal fibrosis and analyze the related molecules and pathways of both EndMT and EndMT independent endothelial dysfunction.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Li-Jie He
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shi-Ren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
48
|
Liu M, Liu T, Shang P, Zhang Y, Liu L, Liu T, Sun S. Acetyl-11-keto-β-boswellic acid ameliorates renal interstitial fibrosis via Klotho/TGF-β/Smad signalling pathway. J Cell Mol Med 2018; 22:4997-5007. [PMID: 30054990 PMCID: PMC6156234 DOI: 10.1111/jcmm.13766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.
Collapse
Affiliation(s)
- Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yikai Zhang
- Medical Equipment Quality Supervision and Inspection Institute, Shaanxi Food and Drug Administration, Xianyang, China
| | - Limin Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Liu
- Department of Nephrology, the Fourth Hospital of Xi'an, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Novel Interplay Between Smad1 and Smad3 Phosphorylation via AGE Regulates the Progression of Diabetic Nephropathy. Sci Rep 2018; 8:10548. [PMID: 30002389 PMCID: PMC6043613 DOI: 10.1038/s41598-018-28439-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022] Open
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with increased morbidity and mortality compared with other causes of renal diseases. We previously found that Smad1 plays a critical role in the development of DN both in vitro and in vivo. However, functional interaction between Smad1 and Smad3 signaling in DN is unclear. Here, we addressed the molecular interplay between Smad1 and Smad3 signaling under a diabetic condition by using Smad3-knockout diabetic mice. Extracellular matrix (ECM) protein overexpression and Smad1 activation were observed in the glomeruli of db/db mice but were suppressed in the glomeruli of Smad3+/-; db/db mice. Smad3 activation enhanced the phosphorylation of Smad1 C-terminal domain but decreased the phosphorylation of linker domain, thus regulating Smad1 activation in advanced glycation end product-treated mesangial cells (MCs). However, forced phosphorylation of the Smad1 linker domain did not affect Smad3 activation in MCs. Phosphorylation of the Smad1 linker domain increased in Smad3+/-; db/db mice and probucol-treated db/db mice, which was consistent with the attenuation of ECM overproduction. These results indicate that Smad3 expression and activation or probucol treatment alters Smad1 phosphorylation, thus suggesting new molecular mechanisms underlying DN development and progression.
Collapse
|
50
|
The preventive and therapeutic implication for renal fibrosis by targetting TGF-β/Smad3 signaling. Clin Sci (Lond) 2018; 132:1403-1415. [PMID: 29875262 DOI: 10.1042/cs20180243] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023]
Abstract
It is well established that Smad3 is a key downstream effector of transforming growth factor-β (TGF-β) signaling in tissue fibrogenesis. We reported here that targetting Smad3 specifically with a Smad3 inhibitor SIS3 is able to prevent or halt the progression of renal fibrosis in a mouse model of unilateral ureteral obstructive nephropathy (UUO). We found that preventive treatment with SIS3 at the time of disease induction largely suppressed progressive renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) + myofibroblast accumulation and extracellular matrix (collagen I (Col.I) and fibronectin (FN)) production. Importantly, we also found that treatment with SIS3 on established mouse model of UUO from day 4 after UUO nephropathy halted the progression of renal fibrosis. Mechanistically, the preventive and therapeutic effects of SIS3 on renal fibrosis were associated with the inactivation of Smad3 signaling and inhibition of TGF-β1 expression in the UUO kidney. In conclusion, results from the present study suggest that targetting Smad3 may be a specific and effective therapy for renal fibrosis.
Collapse
|