1
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
2
|
Jian Y, Kong L, Xu H, Shi Y, Huang X, Zhong W, Huang S, Li Y, Shi D, Xiao Y, Yang M, Li S, Chen X, Ouyang Y, Hu Y, Chen X, Song L, Ye R, Wei W. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta. Clin Transl Med 2022; 12:e725. [PMID: 35090098 PMCID: PMC8797469 DOI: 10.1002/ctm2.725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is fast-growing and highly metastatic with the poorest prognosis among the breast cancer subtypes. Inactivation of glycogen synthase kinase 3 beta (GSK3β) plays a vital role in the aggressiveness of TNBC; however, the underlying mechanism for sustained GSK3β inhibition remains largely unknown. Here, we find that protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) is upregulated in TNBC and relevant to poor prognosis in patients. Overexpression of PPP1R14C facilitates cell proliferation and the aggressive phenotype of TNBC cells, whereas the depletion of PPP1R14C elicits opposite effects. Moreover, PPP1R14C is phosphorylated and activated by protein kinase C iota (PRKCI) at Thr73. p-PPP1R14C then represses Ser/Thr protein phosphatase type 1 (PP1) to retain GSK3β phosphorylation at high levels. Furthermore, p-PPP1R14C recruits E3 ligase, TRIM25, toward the ubiquitylation and degradation of non-phosphorylated GSK3β. Importantly, the blockade of PPP1R14C phosphorylation inhibits xenograft tumorigenesis and lung metastasis of TNBC cells. These findings provide a novel mechanism for sustained GSK3β inactivation in TNBC and suggest that PPP1R14C might be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunting Jian
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinjian Huang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenjing Zhong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yue Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Dongni Shi
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Muwen Yang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Siqi Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of OncologyTumor Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Runyi Ye
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
3
|
Chiang DY, Alsina KM, Corradini E, Fitzpatrick M, Ni L, Lahiri SK, Reynolds JO, Pan X, Scott L, Heck AJR, Wehrens XHT. Rearrangement of the Protein Phosphatase 1 Interactome During Heart Failure Progression. Circulation 2019; 138:1569-1581. [PMID: 29669786 PMCID: PMC6193872 DOI: 10.1161/circulationaha.118.034361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex disease with a rising prevalence despite advances in treatment. Protein phosphatase 1 (PP1) has long been implicated in HF pathogenesis, but its exact role is both unclear and controversial. Most previous studies measured only the PP1 catalytic subunit (PP1c) without investigating its diverse set of interactors, which confer localization and substrate specificity to the holoenzyme. In this study, we define the PP1 interactome in cardiac tissue and test the hypothesis that this interactome becomes rearranged during HF progression at the level of specific PP1c interactors. METHODS Mice were subjected to transverse aortic constriction and grouped on the basis of ejection fraction into sham, hypertrophy, moderate HF (ejection fraction, 30%-40%), and severe HF (ejection fraction <30%). Cardiac lysates were subjected to affinity purification with anti-PP1c antibodies followed by high-resolution mass spectrometry. PP1 regulatory subunit 7 (Ppp1r7) was knocked down in mouse cardiomyocytes and HeLa cells with adeno-associated virus serotype 9 and siRNA, respectively. Calcium imaging was performed on isolated ventricular myocytes. RESULTS Seventy-one and 98 PP1c interactors were quantified from mouse cardiac and HeLa lysates, respectively, including many novel interactors and protein complexes. This represents the largest reproducible PP1 interactome data set ever captured from any tissue, including both primary and secondary/tertiary interactors. Nine PP1c interactors with changes in their binding to PP1c were strongly associated with HF progression, including 2 known (Ppp1r7 and Ppp1r18) and 7 novel interactors. Within the entire cardiac PP1 interactome, Ppp1r7 had the highest binding to PP1c. Cardiac-specific knockdown in mice led to cardiac dysfunction and disruption of calcium release from the sarcoplasmic reticulum. CONCLUSIONS PP1 is best studied at the level of its interactome, which undergoes significant rearrangement during HF progression. The 9 key interactors that are associated with HF progression may represent potential targets in HF therapy. In particular, Ppp1r7 may play a central role in regulating the PP1 interactome by acting as a competitive molecular "sponge" of PP1c.
Collapse
Affiliation(s)
- David Y Chiang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.).,Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.)
| | - Katherina M Alsina
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biomedical Sciences (K.M.A.), Baylor College of Medicine, Houston, TX
| | - Eleonora Corradini
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Li Ni
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Julia O Reynolds
- Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Xiaolu Pan
- Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Larry Scott
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology) (X.H.T.W.), and Department of Pediatrics (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
4
|
Tan J, Digicaylioglu M, Wang SX, Dresselhuis J, Dedhar S, Mills J. Insulin attenuates apoptosis in neuronal cells by an integrin-linked kinase-dependent mechanism. Heliyon 2019; 5:e02294. [PMID: 31463398 PMCID: PMC6706370 DOI: 10.1016/j.heliyon.2019.e02294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin promotes neuronal survival by activating a phosphatidylinositol 3-kinase (PI 3-kinase)/AKT-dependent signaling pathway and reducing caspase activation. We investigated a role for integrin-linked kinase (ILK) in insulin-mediated cell survival in cultured neurons and differentiated R28 cells. We used a serum and depolarization withdrawal model to induce apoptosis in cerebellar granule neurons and a serum withdrawal model to induce apoptosis in differentiated R28 cells. ILK knock-out decreased insulin-mediated protection as did the addition of pharmacological inhibitors of ILK, KP-392 or QLT-0267. Prosurvival effects of insulin were rescued by Boc-Asp (O-methyl)-CH2F (BAF), a pancaspase inhibitor, in the presence of KP-392. Insulin and IGF-1 decreased caspase-3 activation, an effect that was inhibited by KP-392 and QLT-0267. Western blot analysis indicates that insulin-induced stimulation of AKT Ser-473 phosphorylation was decreased after the ILK gene was conditionally knocked-out, following overexpression of AKT-DN or in the presence of QLT-0267. Insulin and IGF-1 stimulated ILK kinase activity in primary neurons and this was inhibited following ILK-DN overexpression. Western blot analysis indicates that insulin exposure upregulated the expression of the cellular inhibitor of apoptosis protein c-IAP2 in an extracellular matrix-dependent manner, an effect blocked by KP-392. These results indicate that ILK is an important effector in insulin-mediated neuroprotection.
Collapse
Affiliation(s)
- Jacqueline Tan
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Murat Digicaylioglu
- Departments of Neurosurgery and Physiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stacy X.J. Wang
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Jonathan Dresselhuis
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
5
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Eto M, Kitazawa T. Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res 2018; 53:1-19. [PMID: 28260704 PMCID: PMC5364378 DOI: 10.1540/jsmr.53.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A hallmark of smooth muscle cells is their ability to adapt their functions to meet temporal and chronic fluctuations in their demands. These functions include force development and growth. Understanding the mechanisms underlying the functional plasticity of smooth muscles, the major constituent of organ walls, is fundamental to elucidating pathophysiological rationales of failures of organ functions. Also, the knowledge is expected to facilitate devising innovative strategies that more precisely monitor and normalize organ functions by targeting individual smooth muscles. Evidence has established a current paradigm that the myosin light chain phosphatase (MLCP) is a master regulator of smooth muscle responsiveness to stimuli. Cellular MLCP activity is negatively and positively regulated in response to G-protein activation and cAMP/cGMP production, respectively, through the MYPT1 regulatory subunit and an endogenous inhibitor protein named CPI-17. In this article we review the outcomes from two decade of research on the CPI-17 signaling and discuss emerging paradoxes in the view of signaling pathways regulating smooth muscle functions through MLCP.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University and Sidney Kimmel Cancer Center, 1020 Locust Street, Philadelphia, PA19107, USA
| | | |
Collapse
|
7
|
Grey J, Jones D, Wilson L, Nakjang S, Clayton J, Temperley R, Clark E, Gaughan L, Robson C. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 2018; 9:3922-3935. [PMID: 29423094 PMCID: PMC5790511 DOI: 10.18632/oncotarget.22883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC.
Collapse
Affiliation(s)
- James Grey
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Jones
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jake Clayton
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Richard Temperley
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Clark
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Horváth D, Tamás I, Sipos A, Darula Z, Bécsi B, Nagy D, Iván J, Erdődi F, Lontay B. Myosin phosphatase and RhoA-activated kinase modulate neurotransmitter release by regulating SNAP-25 of SNARE complex. PLoS One 2017; 12:e0177046. [PMID: 28486561 PMCID: PMC5423623 DOI: 10.1371/journal.pone.0177046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/23/2017] [Indexed: 11/19/2022] Open
Abstract
Reversible phosphorylation of neuronal proteins plays an important role in the regulation of neurotransmitter release. Myosin phosphatase holoenzyme (MP) consists of a protein phosphatase-1 (PP1) catalytic subunit (PP1c) and a regulatory subunit, termed myosin phosphatase targeting subunit (MYPT1). The primary function of MP is to regulate the phosphorylation level of contractile proteins; however, recent studies have shown that MP is localized to neurons, and is also involved in the mediation of neuronal processes. Our goal was to investigate the effect of RhoA-activated kinase (ROK) and MP on the phosphorylation of one potential neuronal substrate, the synaptosomal-associated protein of 25 kDa (SNAP-25). SNAP-25 is a member of the SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, along with synaptobrevin and syntaxin, and the primary role of SNAP25 is to mediate vesicle fusion. We showed that MYPT1 interacts with SNAP-25, as revealed by immunoprecipitation and surface plasmon resonance based binding studies. Mass spectrometry analysis and in vitro phosphorylation/dephosphorylation assays demonstrated that ROK phosphorylates, while MP dephosphorylates, SNAP-25 at Thr138. Silencing MYPT1 in B50 neuroblastoma cells increased phosphorylation of SNAP-25 at Thr138. Inhibition of PP1 with tautomycetin increased, whereas inhibition of ROK by H1152, decreased the phosphorylation of SNAP-25 at Thr138 in B50 cells, in cortical synaptosomes, and in brain slices. In response to the transduction of the MP inhibitor, kinase-enhanced PP1 inhibitor (KEPI), into synaptosomes, an increase in phosphorylation of SNAP-25 and a decrease in the extent of neurotransmitter release were detected. The interaction between SNAP-25 and syntaxin increased with decreasing phosphorylation of SNAP-25 at Thr138, upon inhibition of ROK. Our data suggest that ROK/MP play a crucial role in vesicle trafficking, fusion, and neurotransmitter release by oppositely regulating the phosphorylation of SNAP-25 at Thr138.
Collapse
Affiliation(s)
- Dániel Horváth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Darula
- Hungarian Academy of Sciences, Proteomics Research Group, Biological Research Centre, Szeged, Hungary
| | - Bálint Bécsi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Iván
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
9
|
Filter JJ, Williams BC, Eto M, Shalloway D, Goldberg ML. Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1). eLife 2017; 6. [PMID: 28387646 PMCID: PMC5441869 DOI: 10.7554/elife.24665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022] Open
Abstract
The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP’s active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation. DOI:http://dx.doi.org/10.7554/eLife.24665.001
Collapse
Affiliation(s)
- Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
10
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
11
|
Dedinszki D, Kiss A, Márkász L, Márton A, Tóth E, Székely L, Erdődi F. Inhibition of protein phosphatase-1 and -2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs. Cell Signal 2014; 27:363-72. [PMID: 25435424 DOI: 10.1016/j.cellsig.2014.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023]
Abstract
The phosphorylation of key proteins balanced by protein kinases and phosphatases are implicated in the regulation of cell cycle and apoptosis of malignant cells and influences anticancer drug actions. The efficacy of daunorubicin (DNR) in suppression of leukemic cell survival was investigated in the presence of tautomycin (TM) and calyculin A (CLA), specific membrane permeable inhibitors of protein phosphatase-1 (PP1) and -2A (PP2A), respectively. CLA (50 nM) or TM (1μM) suppressed viability of THP-1 and KG-1 myeloid leukemia cell lines to moderate extents; however, they significantly increased survival upon DNR-induced cell death. CLA increased the phosphorylation level of Erk1/2 and PKB/Akt kinases, the retinoblastoma protein (pRb), decreased caspase-3 activation by DNR and increased the phosphorylation level of the inhibitory sites (Thr696 and Thr853) in the myosin phosphatase (MP) target subunit (MYPT1) as well as in a 25kDa kinase-enhanced phosphatase inhibitor (KEPI)-like protein. TM induced enhanced phosphorylation of pRb only, suggesting that this event may be a common factor upon CLA-induced PP2A and TM-induced PP1 inhibitory influences on cell survival. Silencing PP1 by siRNA in HeLa cells, or overexpression of Flag-KEPI in MCF-7 cells coupled with inducing its phosphorylation by PMA or CLA, resulted in increased phosphorylation of pRb. Our results indicate that PP1 directly dephosphorylates pRb, while PP2A might have an indirect influence via mediating the phosphorylation level of PP1 inhibitory proteins. These data imply the importance of PP1 inhibitory proteins in controlling the phosphorylation state of key proteins and regulating drug sensitivity and apoptosis in leukemic cells.
Collapse
Affiliation(s)
- Dóra Dedinszki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Márkász
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Adrienn Márton
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Székely
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
12
|
Lontay B, Pál B, Serfőző Z, Kőszeghy Á, Szücs G, Rusznák Z, Erdődi F. Protein phosphatase-1M and Rho-kinase affect exocytosis from cortical synaptosomes and influence neurotransmission at a glutamatergic giant synapse of the rat auditory system. J Neurochem 2012; 123:84-99. [PMID: 22817114 DOI: 10.1111/j.1471-4159.2012.07882.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.
Collapse
Affiliation(s)
- Beáta Lontay
- Department of Medical Chemistry and Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Eto M, Brautigan DL. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012; 64:732-9. [PMID: 22815089 DOI: 10.1002/iub.1067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 01/23/2023]
Abstract
Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting in addition to, not instead of, regulatory subunits. The cellular actions of the endogenous inhibitors are controlled by phosphorylation, connecting them to kinase pathways. More recent progress has unveiled additional functions of PP1 inhibitor-2 (I-2), including regulation of protein kinases. Transcriptional mechanisms govern the expression levels of CPI-17 in response to stimuli. If true for other inhibitor proteins, they have the potential of being diagnostic markers for pathological conditions. We discuss specific examples of PP1 inhibitor proteins regulating particular cellular functions and the rationale for incorporating phosphatase inhibitor proteins in development of new therapeutic strategies.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
14
|
Ruiz-Loredo AY, López-Colomé AM. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:85-121. [PMID: 22251559 DOI: 10.1016/b978-0-12-394304-0.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.
Collapse
Affiliation(s)
- Ariadna Yolanda Ruiz-Loredo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico DF, Mexico
| | | |
Collapse
|
15
|
Abstract
Integrin-linked kinase (ILK) is a highly evolutionarily conserved intracellular protein that was originally identified as an integrin-interacting protein, and extensive genetic and biochemical studies have shown that ILK expression is vital during both embryonic development and tissue homeostasis. At the cellular and tissue levels, ILK regulates signaling pathways for cell adhesion-mediated cell survival (anoikis), apoptosis, proliferation and mitosis, migration, invasion, and vascularization and tumor angiogenesis. ILK also has central roles in cardiac and smooth-muscle contractility, and ILK dysregulation causes cardiomyopathies in humans. ILK protein levels are increased in several human cancers and often the expression level predicts poor patient outcome. Abundant evidence has accumulated suggesting that, of the diverse functions of ILK, some may require kinase activity whereas others depend on protein-protein interactions and are, therefore, independent of kinase activity. However, the past several years have seen an ongoing debate about whether ILK indeed functions as a protein serine/threonine kinase. This debate centers on the atypical protein kinase domain of ILK, which lacks some amino-acid residues thought to be essential for phosphotransferase activity. However, similar deficiencies are present in the catalytic domains of other kinases now known to possess protein kinase activity. Numerous studies have shown that ILK phosphorylates peptide substrates in vitro, corresponding to ILK-mediated phosphorylations in intact cells, and a recent report characterizing in vitro phosphotransferase activity of highly purified, full-length ILK, accompanied by detailed enzyme kinetic analyses, shows that, at least in vitro, ILK is a bona fide protein kinase. However, several genetic studies suggest that, not all biological functions of ILK require kinase activity, and that it can function as an adaptor/scaffold protein. Here, we review evidence for and against ILK being an active kinase, and provide a framework for strategies to further analyze the kinase and adaptor functions of ILK in different cellular contexts.
Collapse
|
16
|
Maydan M, McDonald PC, Sanghera J, Yan J, Rallis C, Pinchin S, Hannigan GE, Foster LJ, Ish-Horowicz D, Walsh MP, Dedhar S. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3beta) phosphorylation. PLoS One 2010; 5:e12356. [PMID: 20827300 PMCID: PMC2932980 DOI: 10.1371/journal.pone.0012356] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Integrin-linked kinase (ILK) is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain. Methodology/Principal Findings Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3) peptide and the 20-kDa regulatory light chains of myosin (LC20). Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2) causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the Km for MnATP is ∼150-fold less than that for MgATP). Conclusions/Significance Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases.
Collapse
Affiliation(s)
- Mykola Maydan
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | - Jun Yan
- SignalChem Inc., Richmond, British Columbia, Canada
| | - Charalampos Rallis
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Sheena Pinchin
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Gregory E. Hannigan
- Centre for Cancer Research, Monash Institute of Medical Research, Melbourne, Victoria, Australia
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Ish-Horowicz
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
| | - Michael P. Walsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
17
|
Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 2010; 284:35273-7. [PMID: 19846560 DOI: 10.1074/jbc.r109.059972] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr(38), the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhibits a specific form of PP1, myosin light chain phosphatase, which transduces multiple kinase signals into the phosphorylation of myosin II and other proteins. Here, the mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI, are discussed.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
18
|
McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase--essential roles in physiology and cancer biology. J Cell Sci 2008; 121:3121-32. [PMID: 18799788 DOI: 10.1242/jcs.017996] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrin-linked kinase (ILK) is a multifunctional intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The use of recently developed Cre-lox-driven recombination and RNA-interference technologies has enabled the evaluation of the physiological roles of ILK in several major organ systems. Significant developmental and tissue-homeostasis defects occur when the gene that encodes ILK is deleted, whereas the expression of ILK is often elevated in human malignancies. Although the cause(s) of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration, supporting the concept that ILK is a relevant therapeutic target in human cancer. Furthermore, a global analysis of the ILK 'interactome' has yielded several novel interactions, and has revealed exciting and unexpected cellular functions of ILK that might have important implications for the development of effective therapeutic agents.
Collapse
Affiliation(s)
- Paul C McDonald
- British Columbia Cancer Agency, BC Cancer Research Centre, Department of Cancer Genetics, Vancouver, BC, Canada
| | | | | |
Collapse
|
19
|
Kiss A, Lontay B, Bécsi B, Márkász L, Oláh E, Gergely P, Erdodi F. Myosin phosphatase interacts with and dephosphorylates the retinoblastoma protein in THP-1 leukemic cells: its inhibition is involved in the attenuation of daunorubicin-induced cell death by calyculin-A. Cell Signal 2008; 20:2059-70. [PMID: 18755268 DOI: 10.1016/j.cellsig.2008.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, University of Debrecen Medical and Health Science Center, Debrecen, Nagyerdei krt. 98, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2008; 26:273-87. [PMID: 18498004 DOI: 10.1007/s10585-008-9174-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 04/25/2008] [Indexed: 01/01/2023]
Abstract
Cancer cell metastasis is a multi-stage process involving invasion into surrounding tissue, intravasation, transit in the blood or lymph, extravasation, and growth at a new site. Many of these steps require cell motility, which is driven by cycles of actin polymerization, cell adhesion and acto-myosin contraction. These processes have been studied in cancer cells in vitro for many years, often with seemingly contradictory results. The challenge now is to understand how the multitude of in vitro observations relates to the movement of cancer cells in living tumour tissue. In this review we will concentrate on actin protrusion and acto-myosin contraction. We will begin by presenting some general principles summarizing the widely-accepted mechanisms for the co-ordinated regulation of actin polymerization and contraction. We will then discuss more recent studies that investigate how experimental manipulation of actin dynamics affects cancer cell invasion in complex environments and in vivo.
Collapse
|
21
|
Eto M, Kitazawa T, Matsuzawa F, Aikawa SI, Kirkbride JA, Isozumi N, Nishimura Y, Brautigan DL, Ohki SY. Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor. Structure 2007; 15:1591-602. [PMID: 18073109 PMCID: PMC2217667 DOI: 10.1016/j.str.2007.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 11/17/2022]
Abstract
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Toshio Kitazawa
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts, USA
| | - Fumiko Matsuzawa
- Dept Clinical Genetics, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Sei-ichi Aikawa
- Dept Clinical Genetics, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Jason A. Kirkbride
- Department of Molecular Physiology and Biophysics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan
| | - Yumi Nishimura
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan
| | - David L. Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, 1400 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA
| | - Shin-ya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan
| |
Collapse
|
22
|
Wenzel K, Daskalow K, Herse F, Seitz S, Zacharias U, Schenk JA, Schulz H, Hubner N, Micheel B, Schlag PM, Osterziel KJ, Ozcelik C, Scherneck S, Jandrig B. Expression of the protein phosphatase 1 inhibitor KEPI is downregulated in breast cancer cell lines and tissues and involved in the regulation of the tumor suppressor EGR1 via the MEK-ERK pathway. Biol Chem 2007; 388:489-95. [PMID: 17516844 DOI: 10.1515/bc.2007.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
KEPI is a protein kinase C-potentiated inhibitory protein for type 1 Ser/Thr protein phosphatases. We found no or reduced expression of KEPI in breast cancer cell lines, breast tumors and metastases in comparison to normal breast cell lines and tissues, respectively. KEPI protein expression and ubiquitous localization was detected with a newly generated antibody. Ectopic KEPI expression in MCF7 breast cancer cells induced differential expression of 95 genes, including the up-regulation of the tumor suppressors EGR1 (early growth response 1) and PTEN (phosphatase and tensin homolog), which is regulated by EGR1. We further show that the up-regulation of EGR1 in MCF7/KEPI cells is mediated by MEK-ERK signaling. The inhibition of this pathway by the MEK inhibitor UO126 led to a strong decrease in EGR1 expression in MCF7/KEPI cells. These results reveal a novel role for KEPI in the regulation of the tumor suppressor gene EGR1 via activation of the MEK-ERK MAPK pathway.
Collapse
Affiliation(s)
- Katrin Wenzel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
El-Toukhy A, Given AM, Ogut O, Brozovich FV. PHI-1 interacts with the catalytic subunit of myosin light chain phosphatase to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force in avian smooth muscle. FEBS Lett 2006; 580:5779-84. [PMID: 17022978 PMCID: PMC1698950 DOI: 10.1016/j.febslet.2006.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/28/2006] [Accepted: 09/15/2006] [Indexed: 11/17/2022]
Abstract
In avian smooth muscles, GTPgammaS produces a Rho kinase mediated increase in PHI-1 phosphorylation and force, but whether this correlation is causal is unknown. We examined the effect of phosphorylated PHI-1 (P-PHI-1) on force and myosin light chain (MLC(20)) phosphorylation at a constant [Ca(2+)]. P-PHI-1, but not PHI-1, increased MLC(20) phosphorylation and force, and phosphorylation of PHI-1 increased the interaction of PHI-1 with PP1c. Microcystin induced a dose-dependent reduction in the binding of PHI-1 to PP1c. These results suggest PHI-1 inhibits myosin light chain phosphatase by interacting with the active site of PP1c to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force.
Collapse
Affiliation(s)
- Amr El-Toukhy
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Allison M Given
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
| | - Ozgur Ogut
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
| | - Frank V Brozovich
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905 and
- Address for correspondence: Frank Brozovich, Division of Cardiovascular Diseases, Mayo Clinic, Guggenheim 9C, 200 1 Street SW, Rochester, MN 55905 USA, , 1-507-266-0324, FAX 1-507-284-8566
| |
Collapse
|
24
|
Oloumi A, Syam S, Dedhar S. Modulation of Wnt3a-mediated nuclear beta-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oncogene 2006; 25:7747-57. [PMID: 16799642 DOI: 10.1038/sj.onc.1209752] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wnt gene family encodes secreted signaling molecules that play important roles in tumorgenesis and embryogenesis. The canonical Wnt signaling pathway regulates target gene expression via the stabilization and nuclear translocation of the cytoplasmic pool of beta-catenin. The activation of integrin-linked kinase (ILK) is also known to regulate the stabilization and subsequent nuclear translocation of beta-catenin in several epithelial cell models. We now report that molecular and pharmacological inhibition of ILK activity in mammalian cells directly modulates Wnt signaling by suppressing the stabilization and nuclear translocation of beta-catenin, as well as beta-catenin/Lef-mediated transcription. Inhibition of ILK activity, but not phosphatidylinositol-3 kinase (PI3K) or MEK activities suppresses nuclear beta-catenin stabilization in cells stably expressing Wnt3a as well as in cells exposed to either Wnt3a conditioned media or purified Wnt3a. Furthermore, ILK inhibition reverses the Wnt3a-induced suppression of beta-catenin phosphorylation that accompanies beta-catenin stabilization. In addition, we show that ILK can be identified in a complex with Wnt pathway components such as adenomatous polyposis coli and GSK-3. Upon treatment of L cells with Wnt3a-CM, glycogen synthase kinase-3 (GSK-3beta) becomes highly phosphorylated on Ser 9, which is completely abolished upon inhibition of ILK activity. However, acute exposure of L cells to purified Wnt3a does not result in the stimulation of GSK-3beta Ser 9 phosphorylation, despite beta-catenin stabilization. Together our data demonstrate that ILK activity can modulate acute Wnt3a mediated beta-catenin phosphorylation, stabilization and nuclear activation in a PI3K-independent manner, as well as the more prolonged PI3K-dependent secondary effects of Wnt signaling on GSK-3 phosphorylation. Finally, we suggest that a novel small molecule inhibitor of ILK, QLT-0267, may be a useful tool in the regulation of pathological Wnt signaling.
Collapse
Affiliation(s)
- A Oloumi
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
25
|
Legate KR, Montañez E, Kudlacek O, Fässler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 2006; 7:20-31. [PMID: 16493410 DOI: 10.1038/nrm1789] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ternary complex of integrin-linked kinase (ILK), PINCH and parvin functions as a signalling platform for integrins by interfacing with the actin cytoskeleton and many diverse signalling pathways. All these proteins have synergistic functions at focal adhesions, but recent work has indicated that these proteins might also have separate roles within a cell. They function as regulators of gene transcription or cell-cell adhesion.
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsreid, Germany.
| | | | | | | |
Collapse
|
26
|
El-Touhky A, Given AM, Cochard A, Brozovich FV. PHI-1 induced enhancement of myosin phosphorylation in chicken smooth muscle. FEBS Lett 2005; 579:4271-7. [PMID: 16081075 DOI: 10.1016/j.febslet.2005.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/20/2022]
Abstract
Herein, we provide evidence that in chicken smooth muscle, G-protein stimulation by a Rho-kinase pathway leads to an increase in myosin light chain phosphorylation. Additionally, G-protein stimulation did not increase MYPT1 phosphorylation at Thr695 or Thr850, and CPI-17, was not expressed in chicken smooth muscle. However, PHI-1 was present in chicken smooth muscle tissues. Both agonist and GTP(gamma)S stimulation result in an increase in PHI-1 phosphorylation, which is inhibited by inhibitors to both Rho-kinase (Y-27632) and (PKC) GF109203x. These data suggest that PHI-1 may act as a CPI-17 analog in chicken smooth muscle and inhibit myosin phosphatase activity during G-protein stimulation to produce Ca2+ sensitization.
Collapse
Affiliation(s)
- Amr El-Touhky
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
27
|
Pang H, Guo Z, Su W, Xie Z, Eto M, Gong MC. RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells. Am J Physiol Cell Physiol 2005; 289:C352-60. [PMID: 15814590 DOI: 10.1152/ajpcell.00111.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-delta, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs.
Collapse
Affiliation(s)
- Huan Pang
- Department of Physiology and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 2005; 5:51-63. [PMID: 15630415 DOI: 10.1038/nrc1524] [Citation(s) in RCA: 493] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer development requires the acquisition of several capabilities that include increased replicative potential, anchorage and growth-factor independence, evasion of apoptosis, angiogenesis, invasion of surrounding tissues and metastasis. One protein that has emerged as promoting many of these phenotypes when dysregulated is integrin-linked kinase (ILK), a unique intracellular adaptor and kinase that links the cell-adhesion receptors, integrins and growth factors to the actin cytoskeleton and to a range of signalling pathways. The recent findings of increased levels of ILK in various cancers, and that inhibition of ILK expression and activity is antitumorigenic, makes ILK an attractive target for cancer therapeutics.
Collapse
Affiliation(s)
- Gregory Hannigan
- Cancer Research Program, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Liu QR, Gong JP, Uhl GR. Families of Protein Phosphatase 1 Modulators Activated by Protein Kinases A and C: Focus on Brain. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:371-404. [PMID: 16096033 DOI: 10.1016/s0079-6603(04)79008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, NIDA-IRP, National Institute of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
30
|
Eto M, Kitazawa T, Brautigan DL. Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Natl Acad Sci U S A 2004; 101:8888-93. [PMID: 15184667 PMCID: PMC428442 DOI: 10.1073/pnas.0307812101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Indexed: 11/18/2022] Open
Abstract
Inhibition of myosin phosphatase is critical for agonist-induced contractility of vascular smooth muscle. The protein CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase and, in response to agonists, Thr-38 is phosphorylated by protein kinase C, producing a >1,000-fold increase in inhibitory potency. Here, we addressed how CPI-17 could selectively inhibit myosin phosphatase among other protein phosphatase-1 (PP1) holoenzymes. PP1 in cell lysates was separated by sequential affinity chromatography into at least two fractions, one bound specifically to thiophospho-CPI-17, and another bound specifically to inhibitor-2. The MYPT1 regulatory subunit of myosin phosphatase was concentrated only in the fraction bound to thiophospho-CPI-17. This binding was eliminated by addition of excess microcystin-LR to the lysate, showing that binding at the active site of PP1 is required. Phospho-CPI-17 failed to inhibit glycogen-bound PP1 from skeletal muscle, composed primarily of PP1 with the striated muscle glycogen-targeting subunit (G(M)) regulatory subunit. Phospho-CPI-17 was dephosphorylated during assay of glycogen-bound PP1, not MYPT1-associated PP1, even though these two holoenzymes have the same PP1 catalytic subunit. Phosphorylation of CPI-17 in rabbit arteries was enhanced by calyculin A but not okadaic acid or fostriecin, consistent with PP1-mediated dephosphorylation. We propose that CPI-17 binds at the PP1 active site where it is dephosphorylated, but association of MYPT1 with PP1C allosterically retards this hydrolysis, resulting in formation of a complex of MYPT1.PP1C.P-CPI-17, leading to an increase in smooth muscle contraction.
Collapse
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
31
|
Bonnevier J, Arner A. Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca²⁺ sensitization in smooth muscle. J Biol Chem 2004; 279:28998-9003. [PMID: 15123611 DOI: 10.1074/jbc.m404259200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) sensitivity of smooth muscle contraction is modulated by several systems converging on myosin light chain phosphatase (MLCP). Rho-Rho kinase is considered to inhibit MLCP via phosphorylation, whereas protein kinase C (PKC) induced sensitization has been shown to be dependent on phosphorylation of the inhibitory protein CPI-17. We have explored the interaction of cGMP-dependent protein kinase (PKG) with Ca(2+) sensitization pathways using permeabilized mouse smooth muscle. Three conditions giving approximately 50% of maximal active force were compared in small intestinal preparations: 1). Ca(2+)-activated unsensitized muscle (pCa 5.9 with Rho kinase inhibitor Y27632); 2). Rho-Rho kinase-sensitized muscle (pCa 6.1 with guanosine 5'-3-O-(thio)triphosphate); and 3). PKC-sensitized muscle (pCa 6.0 with Y27632 and PKC activator phorbol 12,13-dibutyrate). 8-Br-cGMP relaxed the sensitized muscles but had marginal effects on unsensitized preparations, showing that PKG reverses both PKC and Rho-mediated Ca(2+) sensitization. CPI-17 was present in permeabilized intestinal tissue. In PKC-sensitized preparations, CPI-17 phosphorylation decreased in response to 8-Br-cGMP. The rate of PKC-mediated phosphorylation in the presence of the MLCP inhibitor microcystin-LR was not influenced by 8-Br-cGMP. PKC-induced Ca(2+) sensitization also was reversed in vascular smooth muscle tissues (portal vein and femoral artery). We conclude that actions downstream of cGMP/PKG can reverse PKC-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle.
Collapse
Affiliation(s)
- Johan Bonnevier
- Department of Physiological Sciences, Lund University, SE-221 84 Lund, Sweden
| | | |
Collapse
|
32
|
Tountas NA, Mandell JW, Everett AD, Brautigan DL. Juxtamembrane localization of the protein phosphatase-1 inhibitor protein PHI-1 in smooth muscle cells. Histochem Cell Biol 2004; 121:343-50. [PMID: 15083373 DOI: 10.1007/s00418-004-0642-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2004] [Indexed: 11/25/2022]
Abstract
Protein phosphorylation regulates many fundamental processes and protein phosphatase-1 (PP1) is a major phosphatase that determines the levels of Ser/Thr phosphorylation. Regulatory subunits and inhibitor phosphoproteins control PP1 activity. PHI-1 is a member of a family of PP1 inhibitor phosphoproteins that was discovered based on sequence similarity to the known inhibitor CPI-17. To learn more about PHI-1 we determined the tissue distribution of PHI-1 in embryonic and adult tissues, and examined its cellular localization by immunohistochemistry. In the embryo PHI-1 appeared first in the heart at E10, and by E15 it was detected in multiple tissues. Expression in adult tissues was strikingly different, with PHI-1 detected primarily in smooth muscles in the intestine, blood vessels, and male and female genitourinary tracts. PHI-1 also was highly expressed in the endothelial layer of blood vessels. Both PHI-1 and CPI-17 are expressed predominantly in adult smooth muscles. Whereas CPI-17 staining was diffuse PHI-1 was concentrated along the cell membrane in distinct foci, detected by confocal and electron microscopy. The common tissue distribution but different cellular localization of PHI-1 and CPI-17 suggest distinctive physiological roles for these two PP1 inhibitors.
Collapse
Affiliation(s)
- Nikolaos A Tountas
- Center for Cell Signaling, University of Virginia School of Medicine, PO Box 800577, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
33
|
Liu QR, Zhang PW, Lin Z, Li QF, Woods AS, Troncoso J, Uhl GR. GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein, is activated by PKC and inactivated by PKA. Biochem J 2004; 377:171-81. [PMID: 12974676 PMCID: PMC1223837 DOI: 10.1042/bj20030128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 09/10/2003] [Accepted: 09/16/2003] [Indexed: 11/17/2022]
Abstract
The activities of PP1 (protein phosphatase 1), a principal cellular phosphatase that reverses serine/threonine protein phosphorylation, can be altered by inhibitors whose activities are themselves regulated by phosphorylation. We now describe a novel PKC (protein kinase C)-dependent PP1 inhibitor, namely GBPI (gut and brain phosphatase inhibitor). The shorter mRNA that encodes this protein, GBPI-1, is expressed in brain, stomach, small intestine, colon and kidney, whereas a longer GBPI-2 splice variant mRNA is found in testis. Human GBPI-1 mRNA encodes a 145-amino-acid, 16.5 kDa protein with pI 7.92. GBPI contains a consensus PP1-binding motif at residues 21-25 and consensus sites for phosphorylation by enzymes, including PKC, PKA (protein kinase A or cAMP-dependent protein kinase) and casein kinase II. Recombinant GBPI-1-fusion protein inhibits PP1 activity with IC50=3 nM after phosphorylation by PKC. Phospho-GBPI can even enhance PP2A activity by >50% at submicromolar concentrations. Non-phosphorylated GBPI-1 is inactive in both assays. Each of the mutations in amino acids located in potential PP1-binding sequences, K21E+K22E and W25A, decrease the ability of GBPI-1 to inhibit PP1. Mutations in the potential PKC phosphoacceptor site T58E also dramatically decrease the ability of GBPI-1 to inhibit PP1. Interestingly, when PKC-phosphorylated GBPI-1 is further phosphorylated by PKA, it no longer inhibits PP1. Thus, GBPI-1 is well positioned to integrate PKC and PKA modulation of PP1 to regulate differentially protein phosphorylation patterns in brain and gut. GBPI, its closest family member CPI (PKC-potentiated PP1 inhibitor) and two other family members, kinase-enhanced phosphatase inhibitor and phosphatase holoenzyme inhibitor, probably modulate integrated control of protein phosphorylation states in these and other tissues.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, NIH, Department of Health and Human Services, Box 5180, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|