1
|
Masoud HMM, Helmy MS, Darwish DA, Ibrahim MA. Purification, characterization, and enzyme kinetics of a glutathione S transferase from larvae of the camel tick Hyalomma dromedarii. J Genet Eng Biotechnol 2023; 21:28. [PMID: 36884105 PMCID: PMC9995618 DOI: 10.1186/s43141-023-00486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Glutathione s-transferases (GSTs) perform an essential role in detoxification of xenobiotics and endogenous compounds via their conjugation to reduce glutathione. RESULTS A GST enzyme, designated tick larvae glutathione S transferase (TLGST), was purified from larvae of the camel tick Hyalomma dromedarii via ammonium sulfate precipitation, glutathione-Sepharose affinity column and Sephacryl S-300 chromatography. TLGST-specific activity was found to be 1.56 Umg-1 which represents 39 folds and 32.2% recovery. The molecular weight of TLGST purified from camel tick larvae was found as 42 kDa by gel filtration. TLGST has a pI value of 6.9 and was found a heterodimeric protein of 28 and 14 kDa subunits as detected on SDS-PAGE. The Lineweaver-Burk plot calculated the km for CDNB to be 0.43 mM with Vmax value of 9.2 Umg-1. TLGST exhibited its optimal activity at pH 7.9. Co2+, Ni2+ and Mn2+ increased the activity of TLGST while Ca2+, Cu2+, Fe2+ and Zn2+ inhibited it. TLGST was inhibited by cumene hydroperoxide, p-hydroxymercuribenzoate, lithocholic acid, hematin, triphenyltin chloride, p-chloromercuribenzoic acid (pCMB), N-p-Tosyl-L-phenylalanine chloromethyl ketone (TPCK), iodoacetamide, EDTA and quercetin. pCMB inhibited TLGST competitively with Ki value of 0.3 mM. CONCLUSIONS These findings will help to understand the various physiologic conditions of ticks and targeting TLGST could be significant tool for development of prospective vaccines against ticks as a bio-control strategy to overcome the rapid grows in pesticide-resistant tick populations.
Collapse
Affiliation(s)
- Hassan M. M. Masoud
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mohamed S. Helmy
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Doaa A. Darwish
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mahmoud A. Ibrahim
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Liu H, Zhang H, Cheng D, Tan K, Ye T, Ma H, Li S, Zheng H. Differential responses of a pi-class glutathione S-transferase (CnGSTp) expression and antioxidant status between golden and brown noble scallops under pathogenic stress. FISH & SHELLFISH IMMUNOLOGY 2020; 105:144-151. [PMID: 32652299 DOI: 10.1016/j.fsi.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Glutathione S-transferases (GSTs) play important roles in immunity by protecting organisms against the damage of reactive oxygen species (ROS). In this study, a pi-class GST cDNA sequence was first cloned from noble scallop Chlamys nobilis (named CnGSTp). The full length cDNA of CnGSTp was 922 bp, encoding a cytosolic protein of 202 amino acids residues, with predicted molecular masses of 23.1 kDa. Then an acute Vibrio Parahaemolyticus challenge experiment was conducted by using the Golden and Brown noble scallops with different total carotenoids content (TCC), and CnGSTp expression level, TCC and ROS level was separately determined. The results showed that ROS and CnGSTp expression levels were significantly up-regulate under Vibrio Parahaemolyticus challenge than the control group (P < 0.05). The Golden scallops showed significantly higher CnGSTp expression level and lower ROS level in hemocytes than the Brown ones (P < 0.05). Moreover, there is a significantly positive correlation between TCC and ROS in the Golden scallops. The present results revealed that CnGSTp plays important roles in immune response and carotenoids play assistant roles in antioxidant defense system under pathogenic stress in the noble scallop.
Collapse
Affiliation(s)
- Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
3
|
Electrophoretic pattern of glutathione S-transferase (GST) in antibiotic resistance Gram-positive bacteria from poultry litter. Microb Pathog 2017; 110:285-290. [PMID: 28687323 DOI: 10.1016/j.micpath.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
The present study is aimed to assess the role of glutathione S-transferase (GST) in antibiotic resistance among the bacteria isolated from the poultry litter and to identify the effect of GST to reduce the antimicrobial activity of antibiotics. Induction of various antibiotics to Staphylococcus, Streptococcus and Micrococcus sp. isolated from the poultry litter showed that the activity of GST was three to four folds higher than those of control. Analysis of the isozyme pattern of GST revealed that variation in the expression may be due to antibiotic resistance. The results concluded that GST might play an important role in the protection against the toxic effect of the antimicrobial agents which leads bacteria to become resistant to antibiotics.
Collapse
|
4
|
Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, Harikrishnan R, Arockiaraj J. In-silico analysis and mRNA modulation of detoxification enzymes GST delta and kappa against various biotic and abiotic oxidative stressors. FISH & SHELLFISH IMMUNOLOGY 2016; 54:353-363. [PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P < 0.05) up-regulation at 48 h post-challenge, except MrGSTD stressed with bacteria, where it showed up-regulation at 24 h post-challenge. Overall, the results suggested that GSTs are diverse in their structure and possibly conferring their potential involvement in immune protection in crustaceans. However, further study is necessary to focus their functional differences at proteomic level.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Glutathione Transferases Responses Induced by Microcystin-LR in the Gills and Hepatopancreas of the Clam Venerupis philippinarum. Toxins (Basel) 2015; 7:2096-120. [PMID: 26067368 PMCID: PMC4488691 DOI: 10.3390/toxins7062096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
A multi-method approach was employed to compare the responses of Glutatione Transferases (GSTs) in the gills and hepatopancreas of Venerupis philippinarum to microcystins (MCs) toxicity. In this way, using the cytosolic fraction, the enzymatic activity of GSTs, superoxide dismutase (SOD), serine/threonine protein phosphatases (PPP2) along with the gene expression levels of four GST isoforms (pi, mu, sigma1, sigma2) were investigated in both organs of the clams exposed for 24 h to 10, 50 and 100 μg L−1 of MC-LR. Cytosolic GSTs (cGSTs) from both organs of the high dose exposed clams were purified by glutathione-agarose affinity chromatography, characterized kinetically and the changes in the expression of cGSTs of the gills identified using a proteomic approach. MC-LR caused an increase in GST enzyme activity, involved in conjugation reactions, in both gills and hepatopancreas (100 μg L−1 exposure). SOD activity, an indicator of oxidative stress, showed significantly elevated levels in the hepatopancreas only (50 and 100 μg L−1 exposure). No significant changes were found in PPP2 activity, the main target of MCs, for both organs. Transcription responses revealed an up-regulation of sigma2 in the hepatopancreas at the high dose, but no significant changes were detected in the gills. Kinetic analysis evidenced differences between gills of exposed and non-exposed extracts. Using proteomics, qualitative and quantitative differences were found between the basal and inducible cGSTs. Overall, results suggest a distinct role of GST system in counteracting MCs toxicity between the gills and the hepatopancreas of V. philippinarum, revealing different roles between GST isoforms within and among both organs.
Collapse
|
6
|
Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases. ScientificWorldJournal 2014; 2014:750317. [PMID: 24892084 PMCID: PMC4032647 DOI: 10.1155/2014/750317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/01/2022] Open
Abstract
Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively.
Collapse
|
7
|
Bathige SDNK, Umasuthan N, Saranya Revathy K, Lee Y, Kim S, Cho MY, Park MA, Whang I, Lee J. A mu class glutathione S-transferase from Manila clam Ruditapes philippinarum (RpGSTμ): cloning, mRNA expression, and conjugation assays. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:85-95. [PMID: 24704543 DOI: 10.1016/j.cbpc.2014.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
Abstract
Glutathione S-transferases (GSTs) are enzymes that catalyze xenobiotic metabolism in the phase II detoxification process. GSTs have a potential for use as indicators or biomarkers to assess the presence of organic and inorganic contaminants in aquatic environments. In this study, a full-length cDNA of a mu (μ) class GST (RpGSTμ) was identified from Manila clam (Ruditapes philippinarum) and biochemically characterized. The 1356 bp of the cDNA included an open reading frame of 651 bp encoding a polypeptide of 217 amino acid residues with a molecular mass of 25.04 kDa and an estimated pI of 6.34. Sequence analysis revealed that the RpGSTμ possessed several characteristic features of μ class GSTs, such as a thioredoxin-like N-terminal domain containing binding sites for glutathione (GSH), a C-terminal domain containing substrate binding sites, and a μ loop. The recombinant RpGSTμ (rRpGSTμ) protein exhibited GSH-conjugating catalytic activity towards several substrates, and significantly strong activity was detected against 4-nitrophenethyl bromide (5.77 ± 0.55) and 1-chloro-2,4-dinitrobenzene (CDNB, 3.19 ± 0.05). Kinetic analysis as a function of GSH and CDNB concentrations revealed relatively low Km values of 1.03 ± 0.46 mM and 0.56 ± 0.20 mM, respectively, thereby indicating a GSH-conjugation attributed with high rates. The optimum pH and temperature for the catalytic activity of the rRpGSTμ protein were 7.7 and 37°C, respectively. The effect of two inhibitors, Cibacron blue and hematin, on the activity of rRpGSTμ was evaluated and the IC50 values of 0.65 μM and 9 μM, respectively, were obtained. While RpGSTμ transcripts were highly expressed in gills and hemocytes, a significant elevation in mRNA levels was detected in these tissues after lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly I:C) and live bacterial (Vibrio tapetis) challenges. These findings collectively suggest that RpGSTμ functions as a potent detoxifier of xenobiotic toxicants present in the aquatic environment, and that its mRNA expression could be modulated by pathogenic stress signal(s).
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Youngdeuk Lee
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Seokryel Kim
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Mi Young Cho
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
8
|
Martins JC, Campos A, Osório H, da Fonseca R, Vasconcelos V. Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea. Int J Mol Sci 2014; 15:1887-900. [PMID: 24473139 PMCID: PMC3958827 DOI: 10.3390/ijms15021887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/31/2013] [Accepted: 01/20/2014] [Indexed: 11/16/2022] Open
Abstract
Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.
Collapse
Affiliation(s)
- José Carlos Martins
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Hugo Osório
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal.
| | - Rute da Fonseca
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
9
|
Umasuthan N, Revathy KS, Lee Y, Whang I, Choi CY, Lee J. A novel molluscan sigma-like glutathione S-transferase from Manila clam, Ruditapes philippinarum: cloning, characterization and transcriptional profiling. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:539-50. [PMID: 22245757 DOI: 10.1016/j.cbpc.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/23/2023]
Abstract
Glutathione S-transferases (GSTs) are versatile enzymes, act as primary intracellular detoxifiers and contribute to a broad range of physiological processes including cellular defense. In this study, a full-length cDNA representing a novel sigma-like GST was identified from Manila clam, Ruditapes philippinarum (RpGSTσ). RpGSTσ (884 bp) was found to possess an open reading frame of 609 bp. The encoded polypeptide (203 amino acids) had a predicted molecular mass of 23.21 kDa and an isoelectric point of 7.64. Sequence analysis revealed two conserved GST domain profiles in N- and C-termini. Alignment studies revealed that the identity between deduced peptides of RpGSTσ and known GSTσ members was relatively low (<35%), except a previously identified Manila clam GSTσ isoform (87.2%). Phylogenetic analysis indicated that RpGSTσ clustered together with molluscan GSTσ homologs, which were closely related to insect GSTσs. The RpGSTσ was subsequently cloned and expressed as recombinant protein, in order to characterize its biological activity. The recombinant RpGSTσ exhibited characteristic glutathione conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene, 3,4-dichloronitrobenzene and ethacrynic acid. It had an optimal pH and temperature of 8.0 and 35 °C, respectively. Expression profiles under normal conditions and in response to lipopolysaccharide-, poly I:C- and Vibrio tapetis-challenges were also investigated. RpGSTσ demonstrated a differential tissue distribution with robust transcription in gills of normal animals. We explored potential association of GSTσ in cellular defense during bacterial infection and found that in challenged clams, RpGSTσ gene was significantly induced in internal and external tissues, in conjunction with manganese- as well as copper-zinc superoxide dismutase (MnSOD and CuZnSOD) genes. Moreover, the induction was remarkably higher in hemocytes than in gill. Collectively, our findings suggested that RpGSTσ could play a significant role in cellular defense against oxidative stress caused by bacteria, in conjunction with other antioxidant enzymes, such as SODs.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Aydemir T, Kavrayan D. Purification and Characterization of Glutathione-S-Transferase from Chicken Erythrocyte. ACTA ACUST UNITED AC 2009; 37:92-100. [DOI: 10.1080/10731190902742489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Huang Q, Liang L, Wei T, Zhang D, Zeng QY. Purification and partial characterization of glutathione transferase from the teleost Monopterus albus. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:96-100. [PMID: 17855172 DOI: 10.1016/j.cbpc.2007.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022]
Abstract
Glutathione transferases (GSTs) catalyze the transfer of glutathione to a variety of xenobiotic and toxic endogenous compounds. GSTs are phase II biotransformation enzymes and are proposed as biomarkers of environmental pollution. In this study, a cytosolic glutathione transferase (maGST) was purified from liver of the freshwater fish Monopterus albus by affinity chromatography. The maGST appeared to be a homodimer composed of two subunits each with a molecular weight of 26 kDa. This maGST showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with CDNB as substrate revealed a K(m) of 0.28 mM and V(max) of 15.68 micromol/min per mg of protein. It had maximum activity in the pH range 7.0-7.5, a broad optimum T(m) range of 30 degrees C-55 degrees C, and a high thermal stability with 77% of its initial activity at 45 degrees C. This high thermal stability of maGST could be related to the physiological adaptation of M. albus to high temperatures in tropical and subtropical environments.
Collapse
Affiliation(s)
- Qing Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
12
|
Lee YM, Lee KW, Park H, Park HG, Raisuddin S, Ahn IY, Lee JS. Sequence, biochemical characteristics and expression of a novel Sigma-class of glutathione S-transferase from the intertidal copepod, Tigriopus japonicus with a possible role in antioxidant defense. CHEMOSPHERE 2007; 69:893-902. [PMID: 17659322 DOI: 10.1016/j.chemosphere.2007.05.087] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/18/2007] [Accepted: 05/26/2007] [Indexed: 05/16/2023]
Abstract
Glutathione S-transferases (GSTs) play a major role in detoxification of xenobiotics and antioxidant defense. Here we report full-length cDNA sequence of a novel Sigma-class of GST (GST-S) from the intertidal copepod Tigriopus japonicus. The full sequence was of 1,136 bp in length containing an open reading frame (ORF) of 651 bp that encoded 217 amino acid residues. The recombinant Tigriopus GST-S was highly expressed in transformed Escherichia coli. Kinetic properties and effects of pH, temperature and chemical inhibitors on Tigriopus GST-S were also studied. The expression of GST-S was studied using real-time RT-PCR in response to exposure to two oxidative stresses-inducing agents, viz., hydrogen peroxide (H(2)O(2)) and heavy metals (copper, manganese). It was observed that H(2)O(2) (2mM) exposure down-regulated its expression at the initial stage but there was recovery and up-regulation shortly afterwards. In case of heavy metal exposure there was concentration-dependent increase in Tigriopus GST-S gene expression up to 24h. These results suggest that Tigriopus GST-S expression is modulated by prooxidant chemicals and it may play a role against oxidative stress. A majority of other GST isoforms is known to play an important role in antioxidant defense. This study provides a preliminary insight into the possible antioxidant role for Sigma-class of GST in T. japonicus.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Blanchette B, Feng X, Singh BR. Marine glutathione S-transferases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:513-42. [PMID: 17682821 DOI: 10.1007/s10126-007-9034-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (gamma-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.
Collapse
Affiliation(s)
- Brian Blanchette
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | | |
Collapse
|
14
|
Rhee JS, Lee YM, Hwang DS, Won EJ, Raisuddin S, Shin KH, Lee JS. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:104-15. [PMID: 17459495 DOI: 10.1016/j.aquatox.2007.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
We cloned and sequenced the full-length cDNA of a theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. The open reading frame of N. succinea GST-T cDNA was 678bp and encoded 226 amino acid residues. We generated recombinant N. succinea GST-T by expression in transformed Escherichia coli and studied the kinetic properties as well as the effects of inhibitors, pH, and temperature on N. succinea GST-T. GST-T expression was studied using real-time RT-PCR in response to exposure to the model oxidative stress-inducing agent, CuCl(2). Copper induced a concentration-dependant increase in the expression of GST-T. Moreover, polychaetes collected from a heavily contaminated lake near an industrial complex showed significantly higher levels of GST-T expression. Interestingly, the site-collected polychaetes with the highest GST-T mRNA expression levels also showed the highest metallothioneins levels. These results suggest that GST-T in polychaetes may have an antioxidant role and that N. succinea GST-T expression may be a useful biomarker for exposure to environmental contaminants such as copper. Our findings provide a better understanding of the biochemical characteristics of N. succinea GST-T, and elucidate the potential role of GST-T in heavy metal-induced oxidative stress and as a biomarker for environmental contamination.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Myrnes B, Nilsen IW. Glutathione S-transferase from the Icelandic scallop (Chlamys islandica): isolation and partial characterization. Comp Biochem Physiol C Toxicol Pharmacol 2007; 144:403-7. [PMID: 17208521 DOI: 10.1016/j.cbpc.2006.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/25/2006] [Accepted: 11/23/2006] [Indexed: 11/18/2022]
Abstract
Glutathione S-transferase from the digestive gland of the cold-adapted marine bivalve Icelandic scallop was purified to apparent homogeneity by single GSTrap chromatography. The enzyme appeared to be a homodimer with subunit M(r) 22,000 having an optimum catalytic activity at pH 6.5-7. Enzymatic analysis of scallop GST using the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione resulted in apparent values for K(m)(GST) and K(m)(CDNB) of 0.3 mM and 0.4 mM, respectively. The scallop GST lost activity faster than porcine GST when exposed to increased temperatures, but both enzymes needed 10 min incubation at 60 degrees C for complete inactivation. A partial coding sequence was identified in cDNA synthesised from digestive gland mRNA. Comparison to known sequences indicates that the gene product is a glutathione S-transferase, and the predicted Icelandic scallop GST protein scores 40% sequence identity and 60% sequence similarity to mu-class proteins.
Collapse
Affiliation(s)
- Bjørnar Myrnes
- Marine Biotechnology and Fish Health, Norwegian Institute of Fisheries and Aquaculture, P. O. Box 6122, N-9291 Tromsø, Norway.
| | | |
Collapse
|
16
|
Doyen P, Vasseur P, Rodius F. cDNA cloning and expression pattern of pi-class glutathione S-transferase in the freshwater bivalves Unio tumidus and Corbicula fluminea. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:300-8. [PMID: 15946635 DOI: 10.1016/j.cca.2005.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 02/15/2005] [Accepted: 02/16/2005] [Indexed: 11/27/2022]
Abstract
Glutathione S-transferases (GSTs) are enzymes involved in major detoxification reactions of xenobiotics in many organisms. The aim of this work was the identification of GST transcripts in the freshwater bivalves Unio tumidus and Corbicula fluminea. We used degenerated primers designed in the highly conserved regions of GST to amplify the corresponding mRNA. Full-length coding sequences were obtained by 5' and 3' rapid amplification of cDNA ends. In the two species, the GST cDNAs identified encoded a protein of 205 amino acids. The comparison of the deduced amino acid sequences with GSTs from other species showed that the enzymes belong to the pi-class and the amino acids defining the binding sites of glutathione (G-site) and for xenobiotic substrates (H-site) are highly conserved. Specific amplifications of the GST mRNA from U. tumidus and C. fluminea were performed on the digestive gland, the excretory system and the gills. For each mussel, the results revealed that the pi-class GSTs are expressed at the same level in the three tissues.
Collapse
Affiliation(s)
- Périne Doyen
- Lab. E.S.E: Ecotoxicité, Santé Environnementale - CNRS UMR 7146, Université de Metz, Rue Delestraint, 57070 Metz, France
| | | | | |
Collapse
|
17
|
Pettersson EU, Ljunggren EL, Morrison DA, Mattsson JG. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei. Int J Parasitol 2005; 35:39-48. [PMID: 15619514 DOI: 10.1016/j.ijpara.2004.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/15/2004] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.
Collapse
Affiliation(s)
- Eva U Pettersson
- Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, SE-751 89 Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
Yang HL, Zeng QY, Li EQ, Zhu SG, Zhou XW. Molecular cloning, expression and characterization of glutathione S-transferase from Mytilus edulis. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:175-82. [PMID: 15465663 DOI: 10.1016/j.cbpc.2004.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The gene coding for glutathione S-transferase (GST) has been isolated from the Mytilus edulis hepatopancreas. Open reading frame analysis indicated that the M. edulis GST (meGST) gene encodes a protein of 206 amino acid residues with a calculated molecular mass of 23.68 kDa. The deduced amino acid sequence showed high sequence similarity with the sequence of the pi class GST. The meGST was expressed in Escherichia coli, and the recombinant meGST was purified by affinity chromatography and characterized. The recombinant meGST exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis with respect to CDNB as substrate gave a K(m) of 0.68 mM and a V(max) of 0.10 mmol/min per mg protein. The recombinant meGST had a maximum activity at approximately pH 8.5, and its optimum temperature was 39 degrees C. The predicted three-dimensional structure of the meGST revealed the N-terminal domain possesses a thioredoxin fold and the six helices of the C-terminal domain make a alpha-helical bundle. These features indicate that the meGST belongs to pi class GST.
Collapse
Affiliation(s)
- Hai-Ling Yang
- College of Life Sciences, Peking University, Beijing, 100871, PR China
| | | | | | | | | |
Collapse
|