1
|
Redway A, Spry C, Brown A, Wiedemann U, Fathoni I, Garnie LF, Qiu D, Egan TJ, Lehane AM, Jackson Y, Saliba KJ, Downer-Riley N. Discovery of antiplasmodial pyridine carboxamides and thiocarboxamides. Int J Parasitol Drugs Drug Resist 2024; 25:100536. [PMID: 38663046 PMCID: PMC11068522 DOI: 10.1016/j.ijpddr.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit β-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.
Collapse
Affiliation(s)
- Alexa Redway
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica; Chemistry Divison, University of Technology, 237 Old Hope Road, Kingston 6, Jamaica
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ainka Brown
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Ursula Wiedemann
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Deyun Qiu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yvette Jackson
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nadale Downer-Riley
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
2
|
Ferreira GM, Baptista V, Silva V, Veiga MI, Minas G, Catarino SO. CMOS Spectrophotometric Microsystem for Malaria Detection. IEEE Trans Biomed Eng 2023; 70:2318-2328. [PMID: 37022426 DOI: 10.1109/tbme.2023.3242691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Optical spectrophotometry has been explored to quantify Plasmodium falciparum malaria parasites at low parasitemia, with potential to overcome the limitations of detection in the current diagnostic methods. This work presents the design, simulation and fabrication of a CMOS microelectronic detection system to automatically quantify the presence of malaria parasites in a blood sample. METHODS The designed system is composed by an array of 16 n+/p-substrate silicon junction photodiodes as photodetectors and 16 current to frequency (IF) converters. An optical setup was used to individually and jointly characterize the entire system. RESULTS The IF converter was simulated and characterized in Cadence Tools using UMC 1180 MM/RF technology rules, featuring a resolution of 0.01 nA, a linearity up to 1800 nA and a sensitivity of 4430 Hz/nA. After fabrication in a silicon foundry, the photodiodes' characterization presented a responsivity peak of 120 mA/W (λ = 570 nm) and a dark current of 7.15 pA at 0 V. Regarding the IF converter, it exhibited high linearity (R2 ≈ 0.999) up to 30 nA, with a sensitivity of 4840 Hz/nA. Furthermore, the microsystem performance was validated using RBCs (Red Blood Cells) infected with P. falciparum and diluted at different parasitemia (12, 25 and 50 parasites/μL). CONCLUSION The microsystem was able to distinguish between healthy and infected RBCs, with a sensitivity of 4.5 Hz/parasites.μL-1. SIGNIFICANCE The developed microsystem presents a competitive result, when compared to the gold standard diagnosis methods, with increased potential for malaria in field diagnosis.
Collapse
|
3
|
Liu L, Zhang Z, Liu H, Zhu S, Zhou T, Wang C, Hu M. Identification and characterisation of the haemozoin of Haemonchus contortus. Parasit Vectors 2023; 16:88. [PMID: 36879311 PMCID: PMC9990328 DOI: 10.1186/s13071-023-05714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Most haematophagous organisms constantly suck the host's haemoglobin, which produces toxic free haem. This toxic haem aggregation into the nontoxic crystallisation complex known as haemozoin represents one of the most important detoxification pathways in living organisms, but very little is known about the features of haemozoin in parasitic nematodes. Here, we identified and characterised the haemozoin of an economically significant blood-sucking nematode, Haemonchus contortus. METHODS Using electron microscopy, spectrophotometry analyses and biochemical approaches, haemozoin crystallisation was identified and characterised in parasitic fourth-stage larvae (L4s) and/or adult worms as well as L4s of in vitro culture. RESULTS The haemozoin was formed in intestinal lipid droplets of the parasitic L4s and adult worms. The characterisation of the haemozoin showed regularly spherical structures and had a 400-nm absorption peak. Furthermore, the haemozoin in in vitro cultured L4s was associated with the culture time and concentration of red blood cells added into the medium, and its formation could be inhibited by chloroquine-derived drugs. CONCLUSIONS This work provides detailed insight into the haemozoin formation of H. contortus and should have important implications for developing novel therapeutic targets against this parasite or related haematophagous organisms.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongshan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengnan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Kehrer J, Pietsch E, Heinze J, Spielmann T, Frischknecht F. Clearing of hemozoin crystals in malaria parasites enables whole-cell STED microscopy. J Cell Sci 2023; 136:286288. [PMID: 36511329 DOI: 10.1242/jcs.260399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating mosquito-borne parasitic disease that manifests when Plasmodium parasites replicate within red blood cells. During the development within the red blood cell, the parasite digests hemoglobin and crystalizes the otherwise toxic heme. The resulting hemozoin crystals limit imaging by STED nanoscopy owing to their high light-absorbing capacity, which leads to immediate cell destruction upon contact with the laser. Here, we establish CUBIC-P-based clearing of hemozoin crystals, enabling whole-cell STED nanoscopy of parasites within red blood cells. Hemozoin-cleared infected red blood cells could reliably be stained with antibodies, and hence proteins in the hemozoin-containing digestive vacuole membrane, as well as in secretory vesicles of gametocytes, could be imaged at high resolution. Thus, this process is a valuable tool to study and understand parasite biology and the potential molecular mechanisms mediating drug resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany.,Infectious Diseases Imaging Platform, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Emma Pietsch
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Julia Heinze
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Garcia GA, Kariyawasam TN, Lord AR, da Costa CF, Chaves LB, Lima-Junior JDC, Maciel-de-Freitas R, Sikulu-Lord MT. Malaria absorption peaks acquired through the skin of patients with infrared light can detect patients with varying parasitemia. PNAS NEXUS 2022; 1:pgac272. [PMID: 36712329 PMCID: PMC9802436 DOI: 10.1093/pnasnexus/pgac272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymptomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared Plasmodium absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer. Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-infected human subjects with varying parasitemia levels in less than 10 s.
Collapse
Affiliation(s)
- Gabriela A Garcia
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Tharanga N Kariyawasam
- School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, QLD 4072,, Australia
| | - Anton R Lord
- School of Computer Science, Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | | | | |
Collapse
|
6
|
Olivier T, Loots L, Kok M, de Villiers M, Reader J, Birkholtz LM, Arnott GE, de Villiers KA. Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors. ChemMedChem 2022; 17:e202200139. [PMID: 35385211 PMCID: PMC9119941 DOI: 10.1002/cmdc.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.
Collapse
Affiliation(s)
- Tania Olivier
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| |
Collapse
|
7
|
Dalapati T, Moore JM. Hemozoin: a Complex Molecule with Complex Activities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 8:87-102. [PMID: 35096512 DOI: 10.1007/s40588-021-00166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion. Recent Findings Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu. Summary This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
Collapse
Affiliation(s)
- Trisha Dalapati
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Julie M Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
da Silva Neto GJ, Silva LR, de Omena RJM, Aguiar ACC, Annunciato Y, Rossetto BS, Gazarini ML, Heimfarth L, Quintans-Júnior LJ, da Silva-Júnior EF, Meneghetti MR. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. NEW J CHEM 2022; 46:6502-6518. [DOI: 10.1039/d1nj05598d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although we have at our disposal relatively low-cost drugs that can be prescribed for the treatment of malaria, the prevalence of resistant strains of the causative parasite has required the development of new drugs.
Collapse
Affiliation(s)
- Geraldo José da Silva Neto
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Rafael Jorge Melo de Omena
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Anna Caroline Campos Aguiar
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Bárbara Santos Rossetto
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mario Roberto Meneghetti
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| |
Collapse
|
9
|
Asad M, Yamaryo-Botté Y, Hossain ME, Thakur V, Jain S, Datta G, Botté CY, Mohmmed A. An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum. BMC Biol 2021; 19:159. [PMID: 34380472 PMCID: PMC8359613 DOI: 10.1186/s12915-021-01042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite’s survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. Results Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. Conclusions We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01042-z.
Collapse
Affiliation(s)
- Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Gaurav Datta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India.
| |
Collapse
|
10
|
Tavares VDS, de Castro MV, Souza RDSO, Gonçalves IKA, Lima JB, Borges VDM, Araújo-Santos T. Lipid droplets of protozoan parasites: survival and pathogenicity. Mem Inst Oswaldo Cruz 2021; 116:e210270. [PMID: 35195194 PMCID: PMC8851939 DOI: 10.1590/0074-02760210270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.
Collapse
Affiliation(s)
| | | | | | | | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| | | | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| |
Collapse
|
11
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Liang J, Bunck DN, Mishra A, Hong S, Idso MN, Heath JR. Inhibition of heme sequestration of histidine-rich protein 2 using multiple epitope-targeted peptides. J Pept Sci 2019; 25:e3203. [PMID: 31347248 DOI: 10.1002/psc.3203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Plasmodium falciparum is the most lethal species of malaria. In infected human red blood cells, P. falciparum digests hemoglobin as a nutrient source, liberating cytotoxic free heme in the process. Sequestration and subsequent conversion of this byproduct into hemozoin, an inert biocrystalline heme aggregate, plays a key role in parasite survival. Hemozoin has been a longstanding target of antimalarials such as chloroquine (CQ), which inhibit the biocrystallization of free heme. In this study, we explore heme-binding interactions with histidine-rich-protein 2 (HRP2), a known malarial biomarker and purported player in free heme sequestration. HRP2 is notoriously challenging to target due to its highly repetitious sequence and irregular secondary structure. We started with three protein-catalyzed capture agents (PCCs) developed against epitopes of HRP2, inclusive of heme-binding motifs, and explored their ability to inhibit heme:HRP2 complex formation. Cocktails of the individual PCCs exhibit an inhibitory potency similar to CQ, while a covalently linked structure built from two separate PCCs provided considerably increased inhibition relative to CQ. Epitope-targeted disruption of heme:HRP2 binding is a novel approach towards disrupting P. falciparum-related hemozoin formation.
Collapse
Affiliation(s)
- JingXin Liang
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - David N Bunck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Anvita Mishra
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Sunga Hong
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - Matthew N Idso
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - James R Heath
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| |
Collapse
|
13
|
Lee JH, Kim HR, Lee JH, Lee SK, Chun Y, Han SO, Yoo HY, Park C, Kim SW. Enhanced In-Vitro Hemozoin Polymerization by Optimized Process using Histidine-Rich Protein II (HRPII). Polymers (Basel) 2019; 11:E1162. [PMID: 31288462 PMCID: PMC6680884 DOI: 10.3390/polym11071162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/27/2023] Open
Abstract
Conductive biopolymers, an important class of functional materials, have received attention in various fields because of their unique electrical, optical, and physical properties. In this study, the polymerization of heme into hemozoin was carried out in an in vitro system by the newly developed heme polymerase (histidine-rich protein 2 (HRP-II)). The HRP-II was produced by recombinant E. coli BL21 from the Plasmodium falciparum gene. To improve the hemozoin production, the reaction conditions on the polymerization were investigated and the maximum production was achieved after about 790 μM at 34 °C with 200 rpm for 24 h. As a result, the production was improved about two-fold according to the stepwise optimization in an in vitro system. The produced hemozoin was qualitatively analyzed using the Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Finally, it was confirmed that the enzymatically polymerized hemozoin had similar physical properties to chemically synthesized hemozoin. These results could represent a significant potential for nano-biotechnology applications, and also provide guidance in research related to hemozoin utilization.
Collapse
Affiliation(s)
- Ju Hun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Hyeong Ryeol Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Ja Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
- Department of Food Science and Engineering, Dongyang Mirae University, 445, Gyeongin-ro, Guro-gu, Seoul 08221, Korea
| | - Soo Kweon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Youngsang Chun
- Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145 Anam-ro 5, Seongbuk-gu, Seoul 02841, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea.
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea.
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
14
|
Schloetel JG, Heine J, Cowman AF, Pasternak M. Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Sci Rep 2019; 9:4674. [PMID: 30886187 PMCID: PMC6423018 DOI: 10.1038/s41598-019-40718-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Malaria remains a major burden world-wide, but the disease-causing parasites from the genus Plasmodium are difficult to study in vitro. Owing to the small size of the parasites, subcellular imaging poses a major challenge and the use of super-resolution techniques has been hindered by the parasites' sensitivity to light. This is particularly apparent during the blood-stage of the Plasmodium life cycle, which presents an important target for drug research. The iron-rich food vacuole of the parasite undergoes disintegration when illuminated with high-power lasers such as those required for high resolution in Stimulated Emission Depletion (STED) microscopy. This causes major damage to the sample precluding the use of this super-resolution technique. Here we present guided STED, a novel adaptive illumination (AI) STED approach, which takes advantage of the highly-reflective nature of the iron deposit in the cell to identify the most light-sensitive parts of the sample. Specifically in these parts, the high-power STED laser is deactivated automatically to prevent local damage. Guided STED nanoscopy finally allows super-resolution imaging of the whole Plasmodium life cycle, enabling multicolour imaging of blood-stage malaria parasites with resolutions down to 35 nm without sample destruction.
Collapse
Affiliation(s)
| | - Jörn Heine
- Abberior Instruments GmbH, 37077, Göttingen, Germany
| | - Alan F Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michał Pasternak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Gupta P, Singh L, Singh K. The hybrid antimalarial approach. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Perez-Guaita D, Kochan K, Batty M, Doerig C, Garcia-Bustos J, Espinoza S, McNaughton D, Heraud P, Wood BR. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of Malaria Infected Red Blood Cells. Anal Chem 2018; 90:3140-3148. [PMID: 29327915 DOI: 10.1021/acs.analchem.7b04318] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atomic force microscopy-infrared (AFM-IR) spectroscopy is a powerful new technique that can be applied to study molecular composition of cells and tissues at the nanoscale. AFM-IR maps are acquired using a single wavenumber value: they show either the absorbance plotted against a single wavenumber value or a ratio of two absorbance values. Here, we implement multivariate image analysis to generate multivariate AFM-IR maps and use this approach to resolve subcellular structural information in red blood cells infected with Plasmodium falciparum at different stages of development. This was achieved by converting the discrete spectral points into a multispectral line spectrum prior to multivariate image reconstruction. The approach was used to generate compositional maps of subcellular structures in the parasites, including the food vacuole, lipid inclusions, and the nucleus, on the basis of the intensity of hemozoin, hemoglobin, lipid, and DNA IR marker bands, respectively. Confocal Raman spectroscopy was used to validate the presence of hemozoin in the regions identified by the AFM-IR technique. The high spatial resolution of AFM-IR combined with hyperspectral modeling enables the direct detection of subcellular components, without the need for cell sectioning or immunological/biochemical staining. Multispectral-AFM-IR thus has the capacity to probe the phenotype of the malaria parasite during its intraerythrocytic development. This enables novel approaches to studying the mode of action of antimalarial drugs and the phenotypes of drug-resistant parasites, thus contributing to the development of diagnostic and control measures.
Collapse
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy , Monash University , Clayton , Victoria 3800 , Australia
| | - Kamila Kochan
- Centre for Biospectroscopy , Monash University , Clayton , Victoria 3800 , Australia
| | - Mitchell Batty
- Department of Microbiology and Infection & Immunity, Program Monash, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Christian Doerig
- Department of Microbiology and Infection & Immunity, Program Monash, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Jose Garcia-Bustos
- Department of Microbiology and Infection & Immunity, Program Monash, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Shirly Espinoza
- ELI Beamlines, Institute of Physics , Czech Academy of Science , Na Slovance 2 , 18221 Prague , Czech Republic
| | - Don McNaughton
- Centre for Biospectroscopy , Monash University , Clayton , Victoria 3800 , Australia
| | - Phil Heraud
- Centre for Biospectroscopy , Monash University , Clayton , Victoria 3800 , Australia.,Department of Microbiology and Infection & Immunity, Program Monash, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Bayden R Wood
- Centre for Biospectroscopy , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
17
|
Dana S, Keshri SK, Shukla J, Vikramdeo KS, Mondal N, Mukhopadhyay P, Dhar SK. Design, Synthesis and Evaluation of Bifunctional Acridinine-Naphthalenediimide Redox-Active Conjugates as Antimalarials. ACS OMEGA 2016; 1:318-333. [PMID: 30023479 PMCID: PMC6044610 DOI: 10.1021/acsomega.6b00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/30/2016] [Indexed: 06/08/2023]
Abstract
A novel class of bifunctional molecules was synthesized integrating acridine (Ac) and redox-active naphthalenediimide (NDI) scaffolds directly and through a flexible linker (en). We evaluated in vitro antiplasmodial activity, physicochemical properties, and a possible mode of action. Theoretical studies suggested electronic segmentation between the electron-rich Ac and electron-deficient NDI scaffolds. Orthogonal Ac-NDI molecules showed activities in the micromolar to submicromolar range against a chloroquine (CQ)-sensitive strain of human malaria pathogen Plasmodium falciparum (maximum activity, IC50: 0.419 μM). The flexible Ac-en-NDI molecules were most potent and showed activity in the nanomolar range against both CQ-sensitive (with most effective compounds, IC50: 3.65 and 4.33 nM) as well as CQ-resistant (with most effective compounds, IC50: 52.20 and 28.53 nM) strains of P. falciparum. Significantly, with CQ-resistant strains, the activity of the most effective compounds was 1 order of magnitude better than that of standard drug CQ. Ac-en-NDI-conjugated molecules were significantly more potent than the individual NDI and Ac-based molecules. The structure-activity relationship (SAR) suggests that the flexible spacer (en) linking the Ac and NDI scaffolds plays a vital role in exhibiting improved potency. None of the molecules triggered hemolysis in culture, and the most potent compounds did not show cytotoxicity in vitro against mammalian fibroblast NIH3T3 cells at their respective IC50 values. The other significant outcome of this work is that some of the investigated molecules have the potential to affect multiple processes in the parasite including the hemozoin formation in digestive vacuoles (DVs), mitochondrial membrane potential, and the redox homeostasis of the parasite.
Collapse
Affiliation(s)
- Srikanta Dana
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| | - Sudhir Kumar Keshri
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Jyoti Shukla
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Kunwar Somesh Vikramdeo
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Neelima Mondal
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Pritam Mukhopadhyay
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Suman Kumar Dhar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| |
Collapse
|
18
|
Singh K, Kaur T. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00084c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The versatility in the design strategies of pyrimidine scaffold offer considerable opportunity for developing antimalarials capable of hitting different biological targets.
Collapse
Affiliation(s)
- Kamaljit Singh
- Department of Chemistry
- Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Tavleen Kaur
- Department of Nephrology
- Guru Nanak Dev Hospital
- Amritsar
- India
| |
Collapse
|
19
|
Verma S, Pandey S, Agarwal P, Verma P, Deshpande S, Saxena JK, Srivastava K, Chauhan PMS, Prabhakar YS. N-(7-Chloroquinolinyl-4-aminoalkyl)arylsulfonamides as antimalarial agents: rationale for the activity with reference to inhibition of hemozoin formation. RSC Adv 2016. [DOI: 10.1039/c6ra00846a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
New chloroquinolinyl arylsulfonamides with potential antimalarial activity inhibited hemozoin formation exceedingly well.
Collapse
Affiliation(s)
- Saroj Verma
- Medicinal and Process Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Shashi Pandey
- Medicinal and Process Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Pooja Agarwal
- Parasitology Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Pravesh Verma
- Biochemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Shreekant Deshpande
- Medicinal and Process Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Jitendra Kumar Saxena
- Biochemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Kumkum Srivastava
- Parasitology Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division
- Academy of Scientific and Innovative Research
- CSIR-Central Drug Research Institute
- Lucknow-226 031
- India
| |
Collapse
|
20
|
Cloning, expression and functional characterization of heme detoxification protein (HDP) from the rodent malaria parasite Plasmodium vinckei. Gene 2015; 566:109-19. [DOI: 10.1016/j.gene.2015.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/10/2015] [Accepted: 04/14/2015] [Indexed: 11/30/2022]
|
21
|
Basumallick S, Row TNG. Binding Study of Cis-Atovaquone with Cytochrome bc1 of Yeast. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/cmb.2015.54007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum. Sci Rep 2014; 4:6137. [PMID: 25138161 PMCID: PMC4138515 DOI: 10.1038/srep06137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum.
Collapse
|
23
|
Darawsheh M, Abu Ali H, Abuhijleh AL, Rappocciolo E, Akkawi M, Jaber S, Maloul S, Hussein Y. New mixed ligand zinc(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties. Eur J Med Chem 2014; 82:152-63. [DOI: 10.1016/j.ejmech.2014.01.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 11/26/2022]
|
24
|
Abstract
Recent initiatives to develop more effective and affordable drugs, controlling mosquitoes and development of a preventative vaccine have been launched with the goal of completely eradicating malaria. To this end, Novartis (Surrey, UK) and GlaxoSmithKline (Middlesex, UK) screened their chemical libraries of approximately two million small molecules for antimalarial properties, which resulted in a set of over 20,000 'highly druggable' initial hits. Efforts in academia are centered on specific pathway targets. One such high-throughput screening effort has been focused on hemozoin formation, a unique heme detoxification pathway found in the malaria parasite. This review discusses the current approaches and limitations of high-throughput screening discovery of hemozoin inhibitors. In the future, new methods must be developed to validate the mechanism of action of these hit compounds within the parasite.
Collapse
|
25
|
Nayak SK, Mallik SB, Kanaujia SP, Sekar K, Ranganathan KR, Ananthalakshmi V, Jeyaraman G, Saralaya SS, Rao KS, Shridhara K, Nagarajan K, Row TNG. Crystal structures and binding studies of atovaquone and its derivatives with cytochrome bc1: a molecular basis for drug design. CrystEngComm 2013. [DOI: 10.1039/c3ce40336j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Orjih AU, Mathew TC, Cherian PT. Erythrocyte membranes convert monomeric ferriprotoporphyrin IX to β-hematin in acidic environment at malarial fever temperature. Exp Biol Med (Maywood) 2012; 237:884-93. [PMID: 22890028 DOI: 10.1258/ebm.2012.012013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemozoin production makes it possible for intraerythrocytic malaria parasites to digest massive quantities of hemoglobin but still avoid potential ferriprotoporphyrin IX (FP) toxicity, which they cannot decompose further. Some antimalarial drugs, such as chloroquine, work by inhibiting this production, forcing the parasite to starve to death. As part of the efforts to identify possible biological mechanisms of FP polymerization, we have used normal human erythrocyte membranes as a model, to promote β-hematin (β-h) synthesis. Hemin in 35% aqueous dimethyl sulfoxide (DMSO) was reacted with isolated erythrocyte membranes and incubated overnight in sodium acetate buffer, pH 4.8, at 41°C. Infrared spectroscopy and electron microscopy showed that β-h was produced. Hemin in 10% was less effective as the substrate than when it was in 35% DMSO. A high malarial temperature seemed to be necessary, because FP polymerization was less at 37°C than at 41°C. Production was partially inhibited by chloroquine. These observations are of interest because other investigators have reported that membrane lipids mediated FP polymerization, but whole membranes were ineffective. On the other hand, our hypothesis is that the transport vesicles (TV) in malaria parasites could provide the receptor for FP and the lipids that promote hemozoin formation. Erythrocyte membranes may not be directly involved, but Plasmodium species transport hemoglobin in membrane-bound TV into food vacuoles, where hemoglobin catabolism is completed and hemozoin crystals are stored.
Collapse
Affiliation(s)
- Augustine U Orjih
- Department of Medical Laboratory Sciences, Kuwait University, Kuwait, Arabian Gulf.
| | | | | |
Collapse
|
27
|
Anyona SB, Kempaiah P, Raballah E, Davenport GC, Were T, Konah SN, Vulule JM, Hittner JB, Gichuki CW, Ong'echa JM, Perkins DJ. Reduced systemic bicyclo-prostaglandin-E2 and cyclooxygenase-2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. Am J Hematol 2012; 87:782-9. [PMID: 22730036 DOI: 10.1002/ajh.23253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
Abstract
In holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens. We have previously shown that COX-2-derived PGE(2) levels are reduced in children residing in hyperendemic transmission regions with cerebral malaria and in those with mixed sequelae of anemia and hyperparasitemia. Our in vitro studies further demonstrated that reduced PGE(2) was due to downregulation of COX-2 gene products following phagocytosis of malarial pigment (hemozoin, PfHz). However, as COX-2-PGE(2) pathways and the impact of naturally acquired PfHz on erythropoietic responses have not been determined in children with SMA, plasma and urinary bicyclo-PGE(2)/creatinine and leukocytic COX-2 transcripts were determined in parasitized children (<36 months) stratified into SMA (n = 36) and non-SMA (Hb ≥ 6.0 g/dL; n = 38). Children with SMA had significantly reduced plasma (P = 0.001) and urinary (P < 0.001) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.007). There was a significant positive association between Hb and both plasma (r = 0.363, P = 0.002) and urinary (r = 0.500, P = 0.001)] bicyclo-PGE(2)/creatinine. Furthermore, decreased systemic bicyclo-PGE(2)/creatinine was associated with inefficient erythropoiesis (i.e., reticulocyte production index; RPI < 2.0, P = 0.026). Additional analyses demonstrated that plasma (P = 0.031) and urinary (P = 0.070) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.026) progressively declined with increasing concentrations of naturally acquired PfHz by monocytes. Results presented here support a model in which reduced COX-2-derived PGE(2), driven in part by naturally acquired PfHz by monocytes, promotes decreased erythropoietic responses in children with SMA.
Collapse
Affiliation(s)
- Samuel B Anyona
- Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, University of New Mexico, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Navarro M, Castro W, Biot C. Bioorganometallic Compounds with Antimalarial Targets: Inhibiting Hemozoin Formation. Organometallics 2012. [DOI: 10.1021/om300296n] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maribel Navarro
- School
of Chemical and Mathematical Sciences, Murdoch University, Western Australia 6150, Australia
| | - William Castro
- Lab. Quı́mica Bioinorgánica,
Centro de Quı́mica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas
1020-A, Venezuela
| | - Christophe Biot
- Unité
de Glycobiologie
Structurale et Fonctionnelle, UMR CNRS 8576, Université Lille 1, 59650 Villeneuve d’Ascq, France
| |
Collapse
|
29
|
Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong'echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 2011; 7:1427-42. [PMID: 22110393 PMCID: PMC3221949 DOI: 10.7150/ijbs.7.1427] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 11/05/2022] Open
Abstract
Greater than 80% of malaria-related mortality occurs in sub-Saharan Africa due to infections with Plasmodium falciparum. The majority of P. falciparum-related mortality occurs in immune-naïve infants and young children, accounting for 18% of all deaths before five years of age. Clinical manifestations of severe falciparum malaria vary according to transmission intensity and typically present as one or more life-threatening complications, including: hyperparasitemia; hypoglycemia; cerebral malaria; severe malarial anemia (SMA); and respiratory distress. In holoendemic transmission areas, SMA is the primary clinical manifestation of severe childhood malaria, with cerebral malaria occurring only in rare cases. Mortality rates from SMA can exceed 30% in pediatric populations residing in holoendemic transmission areas. Since the vast majority of the morbidity and mortality occurs in immune-naïve African children less than five years of age, with SMA as the primary manifestation of severe disease, this review will focus primarily on the innate immune mechanisms that govern malaria pathogenesis in this group of individuals. The pathophysiological processes that contribute to SMA involve direct and indirect destruction of parasitized and non-parasitized red blood cells (RBCs), inefficient and/or suppression of erythropoiesis, and dyserythropoiesis. While all of these causal etiologies may contribute to reduced hemoglobin (Hb) concentrations in malaria-infected individuals, data from our laboratory and others suggest that SMA in immune-naïve children is characterized by a reduced erythropoietic response. One important cause of impaired erythroid responses in children with SMA is dysregulation in the innate immune response. Phagocytosis of malarial pigment hemozoin (Hz) by monocytes, macrophages, and neutrophils is a central factor for promoting dysregulation in innate inflammatory mediators. As such, the role of P. falciparum-derived Hz (PfHz) in mediating suppression of erythropoiesis through its ability to cause dysregulation in pro- and anti-inflammatory cytokines, growth factors, chemokines, and effector molecules is discussed in detail. An improved understanding of the etiological basis of suppression of erythropoietic responses in children with SMA may offer the much needed therapeutic alternatives for control of this global disease burden.
Collapse
Affiliation(s)
- Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque NM, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Min GS, Sarkar IN, Siddall ME. Salivary Transcriptome of the North American Medicinal Leech, Macrobdella decora. J Parasitol 2010; 96:1211-21. [DOI: 10.1645/ge-2496.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Hoang AN, Sandlin RD, Omar A, Egan TJ, Wright DW. The neutral lipid composition present in the digestive vacuole of Plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy. Biochemistry 2010; 49:10107-16. [PMID: 20979358 PMCID: PMC2996888 DOI: 10.1021/bi101397u] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of β-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.
Collapse
Affiliation(s)
| | | | | | - Timothy J. Egan
- To whom correspondence should be addressed. D.W.W.: ; telephone, (615) 322-2636; fax, (615) 343-1234. T.J.E.: ; telephone, (+27)-21-6502528; fax, (+27)-21-6505195
| | - David W. Wright
- To whom correspondence should be addressed. D.W.W.: ; telephone, (615) 322-2636; fax, (615) 343-1234. T.J.E.: ; telephone, (+27)-21-6502528; fax, (+27)-21-6505195
| |
Collapse
|
32
|
Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: friends or foes? Parasit Vectors 2010; 3:108. [PMID: 21087517 PMCID: PMC2999593 DOI: 10.1186/1756-3305-3-108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/18/2010] [Indexed: 12/01/2022] Open
Abstract
Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.
Collapse
Affiliation(s)
- Shu Qin Toh
- Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia.
| | | | | | | |
Collapse
|
33
|
Hoang AN, Ncokazi KK, de Villiers KA, Wright DW, Egan TJ. Crystallization of synthetic haemozoin (beta-haematin) nucleated at the surface of lipid particles. Dalton Trans 2009; 39:1235-44. [PMID: 20104349 DOI: 10.1039/b914359a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of formation of haemozoin, a detoxification by-product of several blood-feeding organisms including malaria parasites, has been a subject of debate; however, recent studies suggest that neutral lipids may serve as a catalyst. In this study, a model system consisting of an emulsion of neutral lipid particles was employed to investigate the formation of beta-haematin, the synthetic counterpart of haemozoin, at the lipid-water interface. A solution of monoglyceride, either monostearoylglycerol (MSG) or monopalmitoylglycerol (MPG), dissolved in acetone and methanol was introduced to an aqueous surface. Fluorescence, confocal and transmission electron microscopic (TEM) imaging and dynamic light scattering analysis of samples obtained from beneath the surface confirmed the presence of homogeneous lipid particles existing in two major populations: one in the low micrometre size range and the other in the hundred nanometre range. The introduction of haem (Fe(iii)PPIX) to this lipid particle system under biomimetic conditions (37 degrees C, pH 4.8) produced beta-haematin with apparent first-order kinetics and an average half life of 0.5 min. TEM of monoglycerides (MSG or MPG) extruded through a 200 nm filter with haem produced beta-haematin crystals aligned and parallel to the lipid-water interface. These TEM data, together with a model system replacing the lipid with an aqueous organic solvent interface using either methyl laurate or docosane demonstrated that the OH and C[double bond, length as m-dash]O groups are apparently necessary for efficient nucleation. This suggests that beta-haematin crystallizes via epitaxial nucleation at the lipid-water interface through interaction of Fe(iii)PPIX with the polar head group. Once nucleated, the crystal grows parallel to the interface until growth is terminated by the curvature of the lipid particle. The hydrophobic nature of the mature crystal favours an interior transport resulting in crystals aligned parallel to the lipid-water interface and each other, strikingly similar to that seen in malaria parasites.
Collapse
Affiliation(s)
- Anh N Hoang
- Department of Chemistry, Vanderbilt University, Station B351822, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
34
|
Griffith JW, Sun T, McIntosh MT, Bucala R. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. THE JOURNAL OF IMMUNOLOGY 2009; 183:5208-20. [PMID: 19783673 DOI: 10.4049/jimmunol.0713552] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The role of proinflammatory cytokine production in the pathogenesis of malaria is well established, but the identification of the parasite products that initiate inflammation is not complete. Hemozoin is a crystalline metabolite of hemoglobin digestion that is released during malaria infection. In the present study, we characterized the immunostimulatory activity of pure synthetic hemozoin (sHz) in vitro and in vivo. Stimulation of naive murine macrophages with sHz results in the MyD88-independent activation of NF-kappaB and ERK, as well as the release of the chemokine MCP-1; these responses are augmented by IFN-gamma. In macrophages prestimulated with IFN-gamma, sHz also results in a MyD88-dependent release of TNF-alpha. Endothelial cells, which encounter hemozoin after schizont rupture, respond to sHz by releasing IL-6 and the chemokines MCP-1 and IL-8. In vivo, the introduction of sHz into the peritoneal cavity produces an inflammatory response characterized by neutrophil recruitment and the production of MCP-1, KC, IL-6, IL-1alpha, and IL-1beta. MCP-1 and KC are produced independently of MyD88, TLR2/4 and TLR9, and components of the inflammasome; however, neutrophil recruitment, the localized production of IL-1beta, and the increase in circulating IL-6 require MyD88 signaling, the IL-1R pathway, and the inflammasome components ICE (IL-1beta-converting enzyme), ASC (apoptosis-associated, speck-like protein containing CARD), and NALP3. Of note, inflammasome activation by sHz is reduced by allopurinol, which is an inhibitor of uric acid synthesis. These data suggest that uric acid is released during malaria infection and may serve to augment the initial host response to hemozoin via activation of the NALP3 inflammasome.
Collapse
Affiliation(s)
- Jason W Griffith
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
35
|
Alpha-glucosidase promotes hemozoin formation in a blood-sucking bug: an evolutionary history. PLoS One 2009; 4:e6966. [PMID: 19742319 PMCID: PMC2734994 DOI: 10.1371/journal.pone.0006966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated. METHODOLOGY/PRINCIPAL FINDINGS Hz formation activity of an alpha-glucosidase was investigated. Hz formation was inhibited by specific alpha-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect alpha-glucosidase was able to inhibit Hz formation. The alpha-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that alpha-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of alpha-glucosidase gene, was injected into R. prolixus females' hemocoel. Gene silencing was accomplished by reduction of both alpha-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of alpha-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of alpha-glucosidase shows a high similarity to the insect alpha-glucosidases, with critical histidine and aspartic residues conserved among the enzymes. CONCLUSIONS/SIGNIFICANCE Herein the Hz formation is shown to be associated to an alpha-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that alpha-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play an important role in conferring fitness to hemipteran hematophagy, for instance.
Collapse
|
36
|
Rush MA, Baniecki ML, Mazitschek R, Cortese JF, Wiegand R, Clardy J, Wirth DF. Colorimetric high-throughput screen for detection of heme crystallization inhibitors. Antimicrob Agents Chemother 2009; 53:2564-8. [PMID: 19307367 PMCID: PMC2687197 DOI: 10.1128/aac.01466-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/24/2009] [Accepted: 03/14/2009] [Indexed: 11/20/2022] Open
Abstract
Malaria infects 500 million people annually, a number that is likely to rise as drug resistance to currently used antimalarials increases. During its intraerythrocytic stage, the causative parasite, Plasmodium falciparum, metabolizes hemoglobin and releases toxic heme, which is neutralized by a parasite-specific crystallization mechanism to form hemozoin. Evidence suggests that chloroquine, the most successful antimalarial agent in history, acts by disrupting the formation of hemozoin. Here we describe the development of a 384-well microtiter plate screen to detect small molecules that can also disrupt heme crystallization. This assay, which is based on a colorimetric assay developed by Ncokazi and Egan (K. K. Ncokazi and T. J. Egan, Anal. Biochem. 338:306-319, 2005), requires no parasites or parasite-derived reagents and no radioactive materials and is suitable for a high-throughput screening platform. The assay's reproducibility and large dynamic range are reflected by a Z factor of 0.74. A pilot screen of 16,000 small molecules belonging to diverse structural classes was conducted. The results of the target-based assay were compared with a whole-parasite viability assay of the same small molecules to identify small molecules active in both assays.
Collapse
Affiliation(s)
- Margaret A Rush
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Casabianca LB, Kallgren JB, Natarajan JK, Alumasa JN, Roepe PD, Wolf C, de Dios AC. Antimalarial drugs and heme in detergent micelles: An NMR study. J Inorg Biochem 2009; 103:745-8. [PMID: 19223262 PMCID: PMC2670948 DOI: 10.1016/j.jinorgbio.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/23/2022]
Abstract
Proton nuclear magnetic resonance relaxation times were measured for the protons of micelles formed by the detergents sodium dodecyl sulfate, dodecyltrimethyl ammonium bromide, and polyethylene glycol sorbitan monolaureate in the presence of ferriprotoporphyrin IX and the antimalarial drugs chloroquine, 7-chloro-4-quinolyl 4-N,N-diethylaminobutyl sulfide, and primaquine. Diffusion coefficients were extracted from pulsed gradient NMR experiments to evaluate the degree of association of these drugs with the detergent micelles. Results indicate that at low or neutral pH when the quinolyl N is protonated, chloroquine does not associate with neutral or cationic detergent micelles. For this reason, chloroquine's interaction with heme perturbs the partitioning of heme between the aqueous medium and detergent micelles.
Collapse
Affiliation(s)
- Leah B. Casabianca
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - Joye B. Kallgren
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - Jayakumar K. Natarajan
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
- Department of Biochemistry and Cellular & Molecular Biology, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - John N. Alumasa
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
- Department of Biochemistry and Cellular & Molecular Biology, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
- Center for Infectious Disease, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
- Center for Infectious Disease, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| | - Angel C. de Dios
- Department of Chemistry, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
- Center for Infectious Disease, Georgetown University, 37 and O Streets, NW Washington, DC, 20057
| |
Collapse
|
38
|
Pisciotta JM, Sullivan D. Hemozoin: oil versus water. Parasitol Int 2008; 57:89-96. [PMID: 18373972 PMCID: PMC2442017 DOI: 10.1016/j.parint.2007.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Because the quinolines inhibit heme crystallization within the malaria parasite much work has focused on mechanism of formation and inhibition of hemozoin. Here we review the recent evidence for heme crystallization within lipids in diverse parasites and the new implications of a lipid site of crystallization for drug targeting. Within leukocytes hemozoin can generate toxic radical lipid metabolites, which may alter immune function or reduce deformability of uninfected erythrocytes.
Collapse
Affiliation(s)
- John M. Pisciotta
- The Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - David Sullivan
- The Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Egan TJ. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem 2008; 102:1288-99. [DOI: 10.1016/j.jinorgbio.2007.12.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/19/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
|
40
|
Haemozoin formation. Mol Biochem Parasitol 2008; 157:127-36. [DOI: 10.1016/j.molbiopara.2007.11.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
|
41
|
Krücken J, Hosse RJ, Mouafo AN, Entzeroth R, Bierbaum S, Marinovski P, Hain K, Greif G, Wunderlich F. Excystation of Eimeria tenella sporozoites impaired by antibody recognizing gametocyte/oocyst antigens GAM22 and GAM56. EUKARYOTIC CELL 2008; 7:202-11. [PMID: 18083827 PMCID: PMC2238154 DOI: 10.1128/ec.00292-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/14/2007] [Indexed: 11/20/2022]
Abstract
Eimeria tenella is the causative agent of coccidiosis in poultry. Infection of the chicken intestine begins with ingestion of sporulated oocysts releasing sporocysts, which in turn release invasive sporozoites. The monoclonal antibody E2E5 recognizes wall-forming body type II (WFBII) in gametocytes and the WFBII-derived inner wall of oocysts. Here we describe that this antibody also binds to the stieda body of sporocysts and significantly impairs in vitro excystation of sporozoites. Using affinity chromatography and protein sequence analysis, E2E5 is shown to recognize EtGAM56, the E. tenella ortholog of the Eimeria maxima gametocyte-specific GAM56 protein. In addition, this antibody was used to screen a genomic phage display library presenting E. tenella antigens as fusion proteins with the gene VIII product on the surfaces of phagemid particles and identified the novel 22-kDa histidine- and proline-rich protein EtGAM22. The Etgam22 mRNA is expressed predominantly at the gametocyte stage, as detected by Northern blotting. Southern blot analysis in combination with data from the E. tenella genome project revealed that Etgam22 is an intronless multicopy gene, with approximately 12 to 22 copies in head-to-tail arrangement. Conspicuously, Etgam56 is also intronless and is localized adjacent to another gam56-like gene, Etgam59. Our data suggest that amplification is common for genes encoding oocyst wall proteins.
Collapse
Affiliation(s)
- Jürgen Krücken
- Division of Molecular Parasitology, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Silva JR, Mury FB, Oliveira MF, Oliveira PL, Silva CP, Dansa-Petretski M. Perimicrovillar membranes promote hemozoin formation into Rhodnius prolixus midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:523-31. [PMID: 17517329 DOI: 10.1016/j.ibmb.2007.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 01/09/2007] [Accepted: 01/12/2007] [Indexed: 05/15/2023]
Abstract
Rhodnius prolixus is a hematophagous insect that ingests large quantities of blood in each blood-feeding session. This ingested blood provides important nutrients to sustain the insect's oogenesis and metabolic pathways. During the digestive process, however, huge amounts of heme are generated as a consequence of the hemoglobin breakdown. Heme is an extremely dangerous molecule, since it can generate reactive oxygen species in the presence of oxygen that impair the normal metabolism of the insect. Part of the hemoglobin-derived heme can associate with the perimicrovillar membranes (PMM) in the gut lumen of R. prolixus; in this study we demonstrate the participation of the PMM in a heme detoxification process. These membranes were able to successfully induce heme aggregation into hemozoin (Hz). Heme aggregation was not dependent on the erythrocyte membranes, since the contribution of these membranes to the process was negligible, demonstrating that the ability to induce heme aggregation is a feature of the PMM, possibly representing a pre-adaptation of the hemipterans to feeding on blood.
Collapse
Affiliation(s)
- José R Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av Alberto Lamego, 2000, Campos dos Goytacazes, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sci 2007; 80:813-28. [PMID: 17157328 DOI: 10.1016/j.lfs.2006.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
Digestion of hemoglobin in the food vacuole of the malaria parasite produces very high quantities of redox active toxic free heme. Hemozoin (beta-hematin) formation is a unique process adopted by Plasmodium sp. to detoxify free heme. Hemozoin formation is a validated target for most of the well-known existing antimalarial drugs and considered to be a suitable target to develop new antimalarials. Here we discuss the possible mechanisms of free heme detoxification in the malaria parasite and the mechanistic details of compounds, which offer antimalarial activity by inhibiting hemozoin formation. The chemical nature of new antimalarial compounds showing antimalarial activity through the inhibition of hemozoin formation has also been incorporated, which may help to design future antimalarials with therapeutic potential against multi-drug resistant malaria.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Egan TJ, Tshivhase MG. Kinetics of beta-haematin formation from suspensions of haematin in aqueous benzoic acid. Dalton Trans 2006:5024-32. [PMID: 17060988 DOI: 10.1039/b610866k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetics of beta-haematin (synthetic malaria pigment) formation from haematin have been studied in the presence of aqueous benzoic acid and derivatives of benzoic acid. Formation of the beta-haematin product is demonstrated by X-ray diffraction and IR spectroscopy. Reactions were followed by determining the fraction of unreacted haematin at various time points during the process via reaction of extracted aliquots with pyridine. The kinetics can be fitted to the Avrami equation, indicating that the process involves nucleation and growth. Reaction kinetics in stirred benzoic acid are similar to those previously observed in acetic acid, except that benzoic acid is far more active in promoting the reaction than acetic acid. The reaction reaches completion within 2 h in the presence of 0.050 M benzoic acid (pH 4.5, 60 degrees C). This compares with 1 h in the presence of 4.5 M acetic acid and 4 h in the presence of 2 M acetic acid. The reaction rate in benzoic acid is not affected if the stirring rate is decreased to zero, but very vigorous stirring appears to disrupt nucleation. The rate constant for beta-haematin formation in benzoic acid has a linear dependence on benzoic acid concentration and follows Arrhenius behaviour with temperature. There is a bell-shaped dependence on pH. This suggests that the haematin species in which one propionate group is protonated and the other is deprotonated is optimal for beta-haematin formation. When the reaction is conducted in para-substituted benzoic acid derivatives, the log of the rate constant increases linearly with the Hammett constant. These findings suggest that the role of the carboxylic acid may be to disrupt hydrogen bonding and pi-stacking in haematin, facilitating conversion to beta-haematin. The large activation energy for conversion of precipitated haematin to beta-haematin suggests that the reaction in vivo most likely involves direct nucleation from solution and probably does not occur in aqueous medium.
Collapse
Affiliation(s)
- Timothy J Egan
- Department of Chemistry, University of Cape Town, South Africa.
| | | |
Collapse
|
46
|
Das P, Grewal JS, Chauhan VS. Interaction of Plasmodium falciparum histidine-rich protein II with human lymphocytes leads to suppression of proliferation, IFN-γ release, and CD69 expression. Parasitol Res 2006; 100:39-50. [PMID: 16788832 DOI: 10.1007/s00436-006-0228-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The presence of histidine-rich protein II (HRP II) synthesized by Plasmodium falciparum in the plasma of malaria patients for longer periods even after parasite clearance raises questions about its extracellular functions. The present study was carried out to examine its influence on host immune system. Recombinant HRP-II protein was radiolabeled with (125)I to study the specific binding with T and B cells. We found that the binding of (125)I-HRP II with human T and B cells was specific, concentration dependent, saturable, and reversible. Scatchard plot analysis revealed two classes of binding sites for both T and B cells. For the T cells, the high affinity class had dissociation constant (K(d)) of 5.61x10(-11)M, and the low affinity class had a K(d) of 8.58x10(-11) M. For the B cells, the high and low affinity classes had a K(d) of 1.32x10(-11) and 2.84x10(-11) M, respectively. Dot-blot, autoradiography, and Western blot analysis also confirmed the specific binding of HRP II with lymphocytes. HRP II significantly inhibited (approximately 75%) T-cell rosette formation with sheep erythrocytes. HRP II also suppressed proliferation of T and B cells triggered by CD3 and LPS, respectively. We found a reduction in IFN-gamma release in T cells preincubated with HRP II. HRP II also reduced the CD69 expression on the T cells. In conclusion, HRP-II binding to human lymphocytes leads to suppression of some of their functions.
Collapse
Affiliation(s)
- Padmalaya Das
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, P.O. Box No. 10504, New Delhi, 110067, India.
| | | | | |
Collapse
|
47
|
Rathore D, Jani D, Nagarkatti R, Kumar S. Heme detoxification and antimalarial drugs – Known mechanisms and future prospects. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
O'Neill PM. The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents. Expert Opin Investig Drugs 2006; 14:1117-28. [PMID: 16144496 DOI: 10.1517/13543784.14.9.1117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Artemisinin derivatives such as artesunate, dihydroartemisinin and artemether are playing an increasing role in the treatment of drug-resistant malaria. They are the most potent antimalarials available, rapidly killing all asexual stages of the parasite Plasmodium falciparum. This review highlights the recent developments in the area of improved second-generation semi-synthetic artemisinin derivatives and fully synthetic antimalarial endoperoxide drugs. In pursuit of synthetic analogues of the artemisinins, one of the major challenges for chemists in this area has been the non-trivial development of techniques for the introduction of the peroxide bridge into candidate drugs. Although chemical research has enabled chemists to incorporate the endoperoxide 'warhead' into synthetic analogues of artemisinin, significant drawbacks with many candidates have included comparatively poor antimalarial activity, non-stereoselective syntheses and chemical approaches that are not readily amenable to scale up. However, very recent progress with synthetic 1,2,4-trioxolanes provides a new benchmark for future medicinal chemistry efforts in this area.
Collapse
Affiliation(s)
- Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
49
|
Scholl PF, Tripathi AK, Sullivan DJ. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr Top Microbiol Immunol 2006; 295:293-324. [PMID: 16265896 DOI: 10.1007/3-540-29088-5_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Iron metabolism is essential for cell function and potentially toxic because iron can catalyze oxygen radical production. Malaria-attributable anemia and iron deficiency anemia coincide as being treatable diseases in the developing world. In absolute amounts, more than 95% of Plasmodium metal biochemistry occurs in the acidic digestive vacuole where heme released from hemoglobin catabolism forms heme crystals. The antimalarial quinolines interfere with crystallization. Despite the completion of the Plasmodium genome, many 'gene gaps' exist in components of the metal pathways described in mammalian or yeast cells. Present evidence suggests that parasite bioavailable iron originates from a labile erythrocyte cytosolic pool rather than from abundant heme iron. Indeed the parasite has to make its own heme within two separate organelles, the mitochondrion and the apicomplast. Paradoxically, despite the abundance of iron within the erythrocyte, iron chelators are cytocidal to the Plasmodium parasite. Hemozoin has become a sensitive biomarker for laser desorption mass spectrometry detection of Plasmodium infection in both mice and humans.
Collapse
Affiliation(s)
- P F Scholl
- Department of Environmental Health Sciences, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
50
|
Hoffmann KF. An historical and genomic view of schistosome conjugal biology with emphasis on sex-specific gene expression. Parasitology 2005; 128 Suppl 1:S11-22. [PMID: 16454894 DOI: 10.1017/s0031182004006213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The genetic programmes associated with the sexual biology of dioecious schistosomes remain a critically important but significantly understudied area of parasitology. Throughout the last four decades, progress has been slow in describing the gross antigenic and proteomic differences linked to sexually mature schistosomes and in characterizing some of the sex-associated transcripts and regulatory mechanisms induced during developmental maturation. These investigations have been severely hindered by the lack of complete EST/genomic information, as well as corresponding post- and functional-genomic tools for studying these pathogenic parasites. As near complete transcriptomes forSchistosoma japonicumandS. mansonihave recently been reported, and both DNA microarrays and post-transcriptional gene silencing have been applied to schistosomes, the tools and techniques for the high-throughput identification and characterization of transcripts involved in conjugal biology are now readily available. Here, an historical review is presented that summarizes some of the most significant findings associated with schistosome sex and sexual maturation during the last several decades. Following this discussion is a current overview of some modern day genomic approaches used to study schistosomes, which illustrates how major advances in the field of conjugal biology will be achieved.
Collapse
Affiliation(s)
- K F Hoffmann
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|