1
|
Önen Bayram FE, Sipahi H, Acar ET, Kahveci Ulugöl R, Buran K, Akgün H. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids. Eur J Med Chem 2016; 114:337-44. [PMID: 27017266 DOI: 10.1016/j.ejmech.2016.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself.
Collapse
Affiliation(s)
- F Esra Önen Bayram
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ebru Türköz Acar
- Department of Analytical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Reyhan Kahveci Ulugöl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Kerem Buran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hülya Akgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
2
|
Oz HS, Ebersole JL. Application of prodrugs to inflammatory diseases of the gut. Molecules 2008; 13:452-74. [PMID: 18305431 PMCID: PMC6244946 DOI: 10.3390/molecules13020452] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 12/11/2022] Open
Abstract
Oral delivery is the most common and preferred route of drug administration although the digestive tract exhibits several obstacles to drug delivery including motility and intraluminal pH profiles. The gut milieu represents the largest mucosal surface exposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content. Approximately, one third of fecal dry matter is made of bacteria/ bacterial components. Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers (polysaccharides) and fermentation of short chain fatty acids such as acetate and butyrate that provide carbon sources (fuel) for these bacteria. Inflammatory bowel disease (IBD) results in breakage of the mucosal barrier, an altered microbiota and dysregulated gut immunity. Prodrugs that are chemically constructed to target colonic release or are degraded specifically by colonic bacteria, can be useful in the treatment of IBD. This review describes the progress in digestive tract prodrug design and delivery in light of gut metabolic activities.
Collapse
Affiliation(s)
- Helieh S Oz
- Center for Oral Health Research, College of Dentistry and Department of Internal Medicine, University of Kentucky, Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| | | |
Collapse
|
3
|
Terneus MV, Brown JM, Carpenter AB, Valentovic MA. Comparison of S-adenosyl-L-methionine (SAMe) and N-acetylcysteine (NAC) protective effects on hepatic damage when administered after acetaminophen overdose. Toxicology 2008; 244:25-34. [PMID: 18068290 PMCID: PMC2247417 DOI: 10.1016/j.tox.2007.10.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/04/2007] [Accepted: 10/21/2007] [Indexed: 02/05/2023]
Abstract
In the clinical setting, antidotes are generally administered after the occurrence of a drug overdose. Therefore, the most pertinent evaluation of any new agent should model human exposure. This study tested whether acetaminophen (APAP) hepatotoxicity was reversed when S-adenosyl-L-methionine (SAMe) was administered after APAP exposure, similar to what occurs in clinical situations. Comparisons were made for potency between SAMe and N-acetylcysteine (NAC), the current treatment for APAP toxicity. Male C57BL/6 mice were fasted overnight and divided into groups: control (VEH), SAMe treated (SAMe), APAP treated (APAP), N-acetylcysteine treated (NAC), SAMe or NAC administered 1h after APAP (SAMe+APAP) and (NAC+APAP), respectively. Mice were injected intraperitoneal (i.p.) with water (VEH) or 250 mg/kg APAP (15 ml/kg). One hour later, mice were injected (i.p.) with 1.25 mmol/kg SAMe (SAMe+APAP) or NAC (NAC+APAP). Hepatotoxicity was evaluated 4h after APAP or VEH treatment. APAP induced centrilobular necrosis, increased liver weight and alanine transaminase (ALT) levels, depressed total hepatic glutathione (GSH), increased protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins. Treatment with SAMe 1h after APAP overdose (SAMe+APAP) was hepatoprotective and was comparable to NAC+APAP. Treatment with SAMe or NAC 1h after APAP was sufficient to return total hepatic glutathione (GSH) to levels comparable to the VEH group. Western blot showed reversal of APAP mediated effects in the SAMe+APAP and NAC+APAP groups. In summary, SAMe was protective when given 1h after APAP and was comparable to NAC.
Collapse
Affiliation(s)
- Marcus V. Terneus
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-9388 USA
| | - J. Michael Brown
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-9388 USA
| | - A. Betts Carpenter
- Department of Pathology, Marshall University, Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-9388 USA
| | - Monica A. Valentovic
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-9388 USA
| |
Collapse
|
4
|
Oz HS, Chen TS, Nagasawa H. Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res 2007; 150:122-9. [PMID: 17656332 PMCID: PMC1991291 DOI: 10.1016/j.trsl.2006.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 12/16/2006] [Accepted: 12/22/2006] [Indexed: 12/30/2022]
Abstract
Oxidant-mediated injury plays an important role in the pathophysiology of inflammatory bowel disease (IBD). Recently, antioxidants were shown to modulate colitis in mice. In this study, the protective effects of L-cysteine and glutathione (GSH) prodrugs are further evaluated against progression of colitis in a murine model. ICR mice were fed compounds incorporated into chow as follows: Group (A) received chow supplemented with vehicle. Group (B) was provided 2-(RS)-n-propylthiazolidine-4(R)-carboxylic-acid (PTCA), a cysteine prodrug. Group (C) received D-ribose-L-cysteine (RibCys), another cysteine prodrug that releases L-cysteine. Group (D) was fed L-cysteine-glutathione mixed sulfide (CySSG), a ubiquitous GSH derivative present in mammalian cells. After 3 days, the animals were further provided with normal drinking water or water supplemented with dextran sodium sulfate (DSS). Mice administered DSS developed severe colitis and suffered weight loss. Colonic lesions significantly improved in animals treated with PTCA and RibCys and, to a lesser extent, with CySSG therapy. Hepatic GSH levels were depleted in colitis animals (control vs DSS, P < 0.001), and normalized with prodrug therapies (control vs treatments, P > 0.05). Protein expressions of serum amyloid A and inflammatory cytokines [interleukin (IL)-6, IL-12, tumor necrosis factor-alpha (TNF-alpha), osteopontin (OPN)] were significantly increased in colitis animals and improved with therapies. Immunohistochemistry and Western blot analyses showed significant upregulation of the macrophage-specific markers, COX-2 and CD68, which suggests macrophage activation and infiltration in the colonic lamina propria in colitis animals. These abnormalities were attenuated in prodrug-treated mice. In conclusion, these data strongly support the novel action of the PTCA against colitis, which further supports a possible therapeutic application for IBD patients.
Collapse
Affiliation(s)
- Helieh S Oz
- Center for the Oral Health Research and Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
5
|
Chang W, McClain CJ, Liu MC, Barve SS, Chen TS. Effects of 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid on 4-hydroxy-2-nonenal-induced apoptotic T cell death. J Nutr Biochem 2007; 19:184-92. [PMID: 17618106 DOI: 10.1016/j.jnutbio.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/31/2007] [Accepted: 02/06/2007] [Indexed: 12/31/2022]
Abstract
4-Hydroxy-2-nonenal (HNE), the aldehydic product of lipid peroxidation, is associated with multiple immune dysfunctions, such as HIV and hepatitis C virus infection. HNE-induced immunosuppression could be due to a decrease in CD4+ T lymphocyte activation or proliferation. Glutathione (GSH) is the most abundant endogenous antioxidant in cells, and an adduct between HNE and GSH has been suggested to be a marker of oxidative stress. Our earlier studies showed that HNE induced cytotoxicity and Akt inactivation, which led to the enhancement of FasL expression and concomitantly decreased cellular FLICE-like inhibitory protein (c-FLIP(S)) levels. In this study, we found that HNE caused intracellular GSH depletion in Jurkat T cells, and we further investigated the role of 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a GSH prodrug, in attenuating HNE-induced cytotoxicity in CD4+ T lymphocytes. The results show that PTCA protected against HNE-induced apoptosis and depletion of intracellular GSH. PTCA also suppressed FasL expression through increasing levels of Akt kinase as well as antiapoptotic c-FLIP(S) and decreasing the activation of type 2 protein serine/threonine phosphatase. Taken together, these data demonstrate a novel correlation between GSH levels and Akt activation in T lymphocyte survival, which involves FasL down-regulation and c-FLIP(S) expression through increasing intracellular GSH levels. This suggests that PTCA could potentially be used in the treatment of oxidative stress-induced immunosuppressive diseases.
Collapse
Affiliation(s)
- Weiyuan Chang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
6
|
Terneus MV, Kiningham KK, Carpenter AB, Sullivan SB, Valentovic MA. Comparison of S-Adenosyl-L-methionine and N-acetylcysteine protective effects on acetaminophen hepatic toxicity. J Pharmacol Exp Ther 2007; 320:99-107. [PMID: 17065366 DOI: 10.1124/jpet.106.111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nutraceuticals are widely used by the general public, but very little information is available regarding the effects of nutritional agents on drug toxicity. Excessive doses of acetaminophen (APAP, 4-hydroxyacetanilide) induce hepatic centrilobular necrosis. The naturally occurring substance S-adenosyl-l-methionine (SAMe) has been reported to reduce the hepatic toxicity of APAP. The present study was designed to investigate the hepatoprotective effects of SAMe in comparison to the clinically used antidote N-acetylcysteine (NAC). Male C57BL/6 mice were injected intraperitoneally (i.p.) with an equimolar dose (1.25 mmol/kg) of either SAMe or NAC just before APAP, and the groups were denoted SAMe+APAP and NAC+APAP, respectively. Mice were immediately injected i.p. with 300 mg/kg APAP, and hepatotoxicity was evaluated after 4 h. SAMe was more hepatoprotective than NAC at a dose of 1.25 mmol/kg as liver weight was unchanged by APAP injection in the SAMe+APAP group, whereas liver weight was increased in the NAC+APAP group. SAMe was more hepatoprotective for APAP toxicity than NAC, because alanine aminotransferase levels were lower in the SAMe+APAP. Pretreatment with SAMe maintained total hepatic glutathione (GSH) levels higher than NAC pretreatment before APAP, although total hepatic GSH levels were lower in the SAMe+APAP and NAC+APAP groups than the vehicle control values. Oxidative stress was less extensive in the SAMe+APAP group compared with the APAP-treated mice as indicated by Western blots for protein carbonyls and 4-hydroxynonenal-adducted proteins. In summary, SAMe reduced APAP toxicity and was more potent than NAC in reducing APAP hepatotoxicity.
Collapse
Affiliation(s)
- Marcus V Terneus
- Department of Pharmacology, Physiology and Toxicology, Marshall University Joan C. Edwards School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA
| | | | | | | | | |
Collapse
|
7
|
Oz HS, Chen TS, McClain CJ, de Villiers WJS. Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem 2005; 16:297-304. [PMID: 15866230 DOI: 10.1016/j.jnutbio.2004.09.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 09/01/2004] [Accepted: 09/03/2004] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are increased in inflammatory bowel disease (IBD) and have been implicated as mediators of intestinal inflammation. We investigated the hypothesis that antioxidants with diverse properties attenuate disease progression in a murine dextran sodium sulfate (DSS)-induced colitis model. These antioxidants were (A) S-adenosylmethionine, a glutathione (GSH) precursor; (B) green tea polyphenols, a well-known antioxidant; and (C) 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a cysteine prodrug, involved in GSH biosynthesis. BALB/c mice were divided into four groups and provided with the above mentioned antioxidants or the vehicle incorporated into chow. The animals were further divided into two subgroups and given normal drinking water (control) or water supplemented with DSS (to induce colitis), and the progression of the disease was studied. DSS-treated mice developed severe colitis as shown by bloody diarrhea, weight loss and pathological involvement (P<.001). However, all the antioxidants significantly improved diarrhea and colon lesions (P<.01), and increased body weights (P<.05). Hematocrits were significantly less affected in DSS-treated animals receiving antioxidants (P<.01). Colon lengths were significantly decreased due to mucosal inflammation in DSS-treated animals, but antioxidant therapy normalized this pathological finding (P<.001). The blood level of reduced GSH was decreased in DSS-treated mice (P<.05) and returned to normal when treated with antioxidants. Serum amyloid A (acute phase protein; P=.0015) and tumor necrosis factor-alpha (TNF-alpha; pro-inflammatory cytokine; P<.01) were significantly increased in DSS-treated animals (161+/-40 pg/ml) and improved with antioxidant treatment (P<.01). Finally, actin cytoskeleton was distorted and fragmented in the mucosa of DSS-treated mice and improved with antioxidant therapy. In conclusion, three structurally dissimilar antioxidants provided protection against DSS-induced colitis in this murine model, supporting a possible role for antioxidant therapy in IBD patients.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
8
|
Oz HS, McClain CJ, Nagasawa HT, Ray MB, de Villiers WJS, Chen TS. Diverse antioxidants protect against acetaminophen hepatotoxicity. J Biochem Mol Toxicol 2005; 18:361-8. [PMID: 15674847 DOI: 10.1002/jbt.20042] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reactive oxygen species-sensitive transcription nuclear factor-kappaB (NF-kappaB) plays a pivotal role in the development of acetaminophen (APAP) hepatotoxicity. We investigated the efficacy of a diverse series of antioxidants in preventing APAP-induced hepatotoxicity. BALB/c mice were divided into four groups and provided with antioxidants incorporated into chow as follows: (1) control diet; or diet supplemented with (2) S-adenosylmethionine (SAMe); (3) green tea polyphenols (GrTP); or (4) (RS)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA). After 5 days on these diets, the animals were further subdivided into (A) given an IP injection with APAP (750 mg/kg), or (B) kept as untreated controls. The animals were sacrificed at 0, 4 h, and 24 h following APAP administration. PAP/vehicle induced marked decreases in hepatic reduced glutathione (GSH) levels and endogenous SAMe concentrations (46%) when compared to controls. APAP also caused severe centrilobular necrosis and marked increase in serum enzyme ALT activity (38-fold). Oral administration of antioxidants significantly attenuated the APAP-induced liver damage and depletion of hepatic GSH. There were profound increases in serum TNF-alpha levels at 4 h following APAP administration in nonsupplemented compared to antioxidant-treated animals, but no significant differences noted after 24 h. Serum amyloid A increased in APAP-challenged mice irrespective of antioxidant treatment. Finally, hepatic SAMe concentrations were drastically decreased 24 h following APAP administration, and these decreases were attenuated by pretreatment with antioxidants. In conclusion, these orally administered antioxidants with dissimilar properties provided protection against liver damage, supporting the potential use of antioxidant therapy in patients with APAP toxicity. This is the first report that GrTP and oral administration of PTCA and SAMe can provide protection against APAP injury in this model.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|