1
|
Kaltbeitzel J, Kersten C, Wich PR. Amine-containing donepezil analogues as potent acetylcholinesterase inhibitors with increased polarity. RSC Med Chem 2024; 15:2037-2044. [PMID: 38911155 PMCID: PMC11187544 DOI: 10.1039/d3md00635b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 06/25/2024] Open
Abstract
Functional dyspepsia (FD) is a gastrointestinal disorder characterized by postprandial fullness, upper abdominal bloating, and early satiation. Peripheral acetylcholinesterase (AChE) inhibitors such as acotiamide have shown efficacy in FD treatment, but their limited affinity towards the enzyme has hindered their effectiveness. Conversely, AChE inhibitors developed for Alzheimer's disease have high potency but exhibit strong central activity, making them unsuitable for FD treatment. In this study, we developed potent AChE inhibitors based on a donepezil and a phthalimide scaffold that contain additional amine groups. Our compounds demonstrate IC50 values in the low to mid-nanomolar range. Computational modelling was employed to determine important molecular interactions with AChE. The compounds show low membrane permeability, which indicates a significantly reduced central activity. These findings suggest that the developed inhibitors could potentially serve as promising treatments for functional dyspepsia.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Nanomedicine, University of New South Wales Sydney NSW 2052 Australia
- Centre for Advanced Macromolecular Design, University of New South Wales Sydney NSW 2052 Australia
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Nanomedicine, University of New South Wales Sydney NSW 2052 Australia
- Centre for Advanced Macromolecular Design, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
2
|
Hua S, Wang W, Yao Z, Gu J, Zhang H, Zhu J, Xie Z, Jiang H. The fatty acid-related gene signature stratifies poor prognosis patients and characterizes TIME in cutaneous melanoma. J Cancer Res Clin Oncol 2024; 150:40. [PMID: 38279987 PMCID: PMC10822006 DOI: 10.1007/s00432-023-05580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND The aim of this study is to build a prognostic model for cutaneous melanoma (CM) using fatty acid-related genes and evaluate its capacity for predicting prognosis, identifying the tumor immune microenvironment (TIME) composition, and assessing drug sensitivity. METHODS Through the analysis of transcriptional data from TCGA-SKCM and GTEx datasets, we screened for differentially expressed fatty acids-related genes (DEFAGs). Additionally, we employed clinical data from TCGA-SKCM and GSE65904 to identify genes associated with prognosis. Subsequently, utilizing all the identified prognosis-related fatty acid genes, we performed unsupervised clustering analysis using the ConsensusClusterPlus R package. We further validated the significant differences between subtypes through survival analysis and pathway analysis. To predict prognosis, we developed a LASSO-Cox prognostic signature. This signature's predictive ability was rigorously examined through multivariant Cox regression, survival analysis, and ROC curve analysis. Following this, we constructed a nomogram based on the aforementioned signature and evaluated its accuracy and clinical utility using calibration curves, cumulative hazard rates, and decision curve analysis. Using this signature, we stratified all cases into high- and low-risk groups and compared the differences in immune characteristics and drug treatment responsiveness between these two subgroups. Additionally, in this study, we provided preliminary confirmation of the pivotal role of CD1D in the TIME of CM. We analyzed its expression across various immune cell types and its correlation with intercellular communication using single-cell data from the GSE139249 dataset. RESULTS In this study, a total of 84 DEFAGs were identified, among which 18 were associated with prognosis. Utilizing these 18 prognosis-related genes, all cases were categorized into three subtypes. Significant differences were observed between subtypes in terms of survival outcomes, the expression of the 18 DEFAGs, immune cell proportions, and enriched pathways. A LASSO-Cox regression analysis was performed on these 18 genes, leading to the development of a signature comprising 6 DEFAGs. Risk scores were calculated for all cases, dividing them into high-risk and low-risk groups. High-risk patients exhibited significantly poorer prognosis than low-risk patients, both in the training group (p < 0.001) and the test group (p = 0.002). Multivariate Cox regression analysis indicated that this signature could independently predict outcomes [HR = 2.03 (1.69-2.45), p < 0.001]. The area under the ROC curve for the training and test groups was 0.715 and 0.661, respectively. Combining risk scores with clinical factors including metastatic status and patient age, a nomogram was constructed, which demonstrated significant predictive power for 3 and 5 years patient outcomes. Furthermore, the high and low-risk subgroups displayed differences in the composition of various immune cells, including M1 macrophages, M0 macrophages, and CD8+ T cells. The low-risk subgroup exhibited higher StromalScore, ImmuneScore, and ESTIMATEScore (p < 0.001) and demonstrated better responsiveness to immune therapy for patients with PD1-positive and CTLA4-negative or positive expressions (p < 0.001). The signature gene CD1D was found to be mainly expressed in monocytes/macrophages and dendritic cells within the TIME. Through intercellular communication analysis, it was observed that cases with high CD1D expression exhibited significantly enhanced signal transductions from other immune cells to monocytes/macrophages, particularly the (HLA-A/B/C/E/F)-CD8A signaling from natural killer (NK) cells to monocytes/macrophages (p < 0.01). CONCLUSIONS The prognostic signature constructed in this study, based on six fatty acid-related genes, exhibits strong capabilities in predicting patient outcomes, identifying the TIME, and assessing drug sensitivity. This signature can aid in patient risk stratification and provide guidance for clinical treatment strategies. Additionally, our research highlights the crucial role of CD1D in the CM's TIME, laying a theoretical foundation for future related studies.
Collapse
Affiliation(s)
- Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuochao Yao
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jiawei Gu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Zhu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Omar MA, El-Shiekh RA, Dawood DH, Temirak A, Srour AM. Hydrazone-sulfonate hybrids as potential cholinesterase inhibitors: design, synthesis and molecular modeling simulation. Future Med Chem 2023; 15:2269-2287. [PMID: 37994559 DOI: 10.4155/fmc-2023-0238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Aim: Design and synthesis of a series of hydrazone-sulfonate hybrids, 5a-r. Methodology: The inhibitory properties of the synthesized compounds against acetylcholinesterase and butyrylcholinesterase were evaluated using donepezil as the reference standard. Results & conclusion: Compound 5e was identified as the most potent inhibitor of acetylcholinesterase (IC50 = 9.30 μM), and compound 5i was the most potent inhibitor of butyrylcholinesterase (IC50 = 11.82 μM). To confirm the safety of the most potent hits at the used doses, toxicological bioassays were conducted. Molecular docking was performed and the tested derivatives were found to fit well in the active sites of both enzymes. This study provides valuable insights into the potential of hydrazone-sulfonate hybrids as drug candidates.
Collapse
Affiliation(s)
- Mohamed A Omar
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Dina H Dawood
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Temirak
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
4
|
Almeida MP, Kock FVC, de Jesus HCR, Carlos RM, Venâncio T. Probing the acetylcholinesterase inhibitory activity of a novel Ru(II) polypyridyl complex and the supramolecular interaction by (STD)-NMR. J Inorg Biochem 2021; 224:111560. [PMID: 34399231 DOI: 10.1016/j.jinorgbio.2021.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 μM), together with a IC50 = 39 μM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 μM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.
Collapse
Affiliation(s)
- Marlon P Almeida
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Flávio V C Kock
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Hugo C R de Jesus
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil; Centre for Blood Research, Life Sciences Centre, 4.420 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia (UBC), Vancouver, Canada
| | - Rose M Carlos
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Tiago Venâncio
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Thakur A, Patil P, Sharma A, Flora S. Advances in the Development of Reactivators for the Treatment of Organophosphorus Inhibited Cholinesterase. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201020203544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organophosphorus Compounds (OPCs) are used as pesticides to control pest, as
chemical weapons in military conflict and unfortunately in the terrorist attack. These compounds
are irreversible inhibitors of acetylcholinesterase, resulting in the accumulation of
acetylcholine that leads to severe health complications which may be ended with the death of
the victim. Current antidotes used for reactivation of organophosphorus inhibited acetylcholinesterase
(OP-AChE) are not able to cross the blood-brain barrier efficiently, therefore being
incapable to reactivate OP-AChE of the central nervous system. Due to limitations with
current antidotes, there is an urgent need for new effective antidotes that could be included in
the treatment regimen of OP poisoning. In this direction, comprehensive work has been done
to improve the permeability of existing antidotes using a variety of strategies that include
synthesis of oxime bonded to peripheral site binding moiety via an alkyl, aryl, or heteroatom-containing linker, synthesis
of sugar oximes, and prodrug of 2-PAM, incorporating fluorine and chlorine in the structure of charged oximes.
Other classes of compounds such as the mannich base, N-substituted hydroxyimino acetamide, alkylating
agents, have been investigated for reactivation of OP-AChE. This review comprises the development of various
classes of reactivators with the aim of either enhancing blood-brain permeability of existing antidotes or discovering
a new class of reactivators.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Pooja Patil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S.J.S. Flora
- Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
6
|
Mendili M, Smach MA, Husein N, Khadhri A. Comparison of Antioxidant and Antiacetylcholinesterase Activities of Different Extracts of Tunisia Maclura pomifera (Rafin.) Schneid Fruit In Vitro and In Vivo. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Maclura pomifera a member of Moraceae family, is a tropical plant with ethnobotanical uses. Objectives: The present study aimed to evaluate bioactive compounds, antioxidants, and acetylcholinesterase (AChE) inhibitory activities of different extracts of Tunisia M. pomifera (Rafin.) Schneid fruit in vitro and in vivo. Methods: Organic extracts in different polarities (chloroform, ethyl acetate, and acetone) were extracted from different parts of the fruit of M. pomifera (exocarp, mesocarp, and pips). Phenolic content, antioxidant activity, and anti-AChE activity were determined. The anti-amnesic effects of ethyl acetate extract of the exocarp of M. pomifera were measured in galactose-induced memory deficit mice by the Y maze. The levels of biomarkers and AChE activity were determined in brain tissues. Results: The obtained results showed that the ethyl acetate extract of exocarp contains the highest content of flavonoids and polyphenols 22.3mg quercetin equivalents per g of dry weight and 718.6 mg gallic acid equivalents per g of dry weight. The evaluation of antioxidant activities highlighted that the ethyl acetate extract of exocarp was the most active element. The study of the AChE inhibitory power demonstrated that the ethyl acetate extract of the exocarp had the greatest inhibitory activity. The ethyl acetate extract from the exocarp ameliorated cognitive performance and reversed the oxidative damage as compared to galactose group. Conclusion: M. pomifera fruit is a good source of natural antioxidants, which might help prevent oxidative stress-related damage and memory impairment in such mental disorders as Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Moahamed Mendili
- Unity of Research of Vegetal Ecology Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| | - Mohamed Ali Smach
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, 4002, Sousse, Tunisia
| | - Nedaa Husein
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa’ Applied University, Jordan
| | - Ayda Khadhri
- Unity of Research of Vegetal Ecology Faculty of Sciences, University of El-Manar, Campus Academia, 2092 Tunis, Tunisia
| |
Collapse
|
7
|
Yoo S, Han MS. A fluorescent probe for butyrylcholinesterase activity in human serum based on a fluorophore with specific binding affinity for human serum albumin. Chem Commun (Camb) 2019; 55:14574-14577. [PMID: 31663530 DOI: 10.1039/c9cc07737e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-specific binding of a fluorescent probe to human serum albumin is problematic because it induces signal interference when the probe detects the target biomarker in human serum. To eliminate this problem, we used intrinsically problematic non-specific fluorescence in designing a fluorescent probe for butyrylcholinesterase activity in serum. The probe containing a fluorophore with specific binding affinity for albumin could sensitively detect butyrylcholinesterase activity in serum with high selectivity to acetylcholinesterase and screen the efficiency of butyrylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Soyeon Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
AlFadly ED, Elzahhar PA, Tramarin A, Elkazaz S, Shaltout H, Abu-Serie MM, Janockova J, Soukup O, Ghareeb DA, El-Yazbi AF, Rafeh RW, Bakkar NMZ, Kobeissy F, Iriepa I, Moraleda I, Saudi MN, Bartolini M, Belal AS. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167:161-186. [DOI: 10.1016/j.ejmech.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
|
9
|
Islam MM, Rohman MA, Gurung AB, Bhattacharjee A, Aguan K, Mitra S. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:250-257. [PMID: 28822269 DOI: 10.1016/j.saa.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.
Collapse
Affiliation(s)
- Mullah Muhaiminul Islam
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Mostofa Ataur Rohman
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Arun Bahadur Gurung
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Atanu Bhattacharjee
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
10
|
Chinnadurai RK, Saravanaraman P, Boopathy R. The significance of aryl acylamidase activity of acetylcholinesterase in osteoblast differentiation and mineralization. Mol Cell Biochem 2017; 440:199-208. [PMID: 28852920 DOI: 10.1007/s11010-017-3167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Abstract
Osteoblast differentiation is an essential event in the developmental process, which is favoured by the production of extra cellular matrix proteins and various enzymes including discrete ones like acetylcholinesterase (AChE). Despite the fact that AChE facilitates osteoblast differentiation, the significance of its catalytic functions [esterase and aryl acylamidase (AAA) activities] in the process is yet to be ascertained. In this context, SaOS-2 cell line was used in the present study to implicate the catalytic activities of AChE in process of osteoblast differentiation and mineralization. During differentiation, it was found that the activity of both esterase and AAA increased 1.13 and 1.46 folds respectively, signifying the involvement of catalytic activities of AChE in the process. Inhibition of both the catalytic activities of AChE with edrophonium significantly reduced the amount of mineralization by decreasing the alkaline phosphatase (ALP) activity and expression of differentiation-related genes such as RUNX-2, COL1A, ALP, OC, and OP significantly (p < 0.05). Inhibition of esterase activity without altering the AAA activity using gallamine significantly increased the level ALP activity and expression of differentiation-associated genes (p < 0.05), thus favouring mineralization. Therefore, this study concludes and confirms that the AAA activity of AChE is actively involved in the process of osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India. .,Centre for Animal Research, Training and Services (CAReTS), Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute (MGMCRI) Campus, Puducherry, 607403, India.
| | - Ponne Saravanaraman
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Department of Biotechnology, Pondicherry Central University, Puducherry, 605014, India
| | - Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
11
|
Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol 2016; 90:2831-2859. [PMID: 27582056 DOI: 10.1007/s00204-016-1827-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) by organophosphates leads to many failures in living organism and ultimately in death. Organophosphorus compounds developed as nerve agents such as tabun, sarin, soman, VX and others belong to the most toxic chemical warfare agents and are one of the biggest threats to the modern civilization. Moreover, misuse of nerve agents together with organophosphorus pesticides (e.g. malathion, paraoxon, chlorpyrifos, etc.) which are annually implicated in millions of intoxications and hundreds of thousand deaths reminds us of insufficient protection against these compounds. Basic treatments for these intoxications are based on immediate administration of atropine and acetylcholinesterase reactivators which are currently represented by mono- or bis-pyridinium aldoximes. However, these antidotes are not sufficient to ensure 100 % treatment efficacy even they are administered immediately after intoxication, and in general, they possess several drawbacks. Herein, we have reviewed new efforts leading to the development of novel reactivators and proposition of new promising strategies to design novel and effective antidotes. Structure-activity relationships and biological activities of recently proposed acetylcholinesterase reactivators are discussed and summarized. Among further modifications of known oximes, the main attention has been paid to dual binding site ligands of AChE as the current mainstream strategy. We have also discussed new chemical entities as potential replacement of oxime functional group.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Eugenie Nepovimova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
12
|
Teimuri-Mofrad R, Nikbakht R, Gholamhosseini-Nazari M. A convenient and efficient method for the synthesis of new 2-(4-amino substituted benzilidine) indanone derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2549-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chinnadurai RK, Saravanaraman P, Boopathy R. Understanding the molecular mechanism of aryl acylamidase activity of acetylcholinesterase - An in silico study. Arch Biochem Biophys 2015; 580:1-13. [PMID: 26072115 DOI: 10.1016/j.abb.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Acetylcholinesterase (AChE) exhibits two different activities, namely esterase and aryl acylamidase (AAA). Unlike esterase, AAA activity of AChE is inhibited by the active site inhibitors while remaining unaffected by the peripheral anionic site inhibitors. This differential inhibitory pattern of active and peripheral anionic site inhibitors on the AAA activity remains unanswered. To answer this, we investigated the mechanism of binding and trafficking of AAA substrates using in silico tools. Molecular docking of serotonin and AAA substrates (o-nitroacetanilide, and o-nitrotrifluoroacetanilide,) onto AChE shows that these compounds bind at the side door of AChE. Thus, we conceived that the AAA substrates prefer the side door to reach the active site for their catalysis. Further, steered molecular dynamics simulations show that the force required for binding and trafficking of the AAA substrate through the side door is comparatively lesser than their dissociation (900kJ/mol/nm). Among the two substrates, o-nitrotrifluoroacetanilide required lesser force (380kJ/mol/nm) than o-nitroacetanilide the (550kJ/mol/nm) for its binding, thus validating o-nitrotrifluoroacetanilide as a better substrate. With these observations, we resolve that the AAA activity of AChE is mediated through its side door. Therefore, binding of PAS inhibitors at the main door of AChE remain ineffective against AAA activity.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ponne Saravanaraman
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
14
|
Renou J, Loiodice M, Arboléas M, Baati R, Jean L, Nachon F, Renard PY. Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Chem Commun (Camb) 2014; 50:3947-50. [DOI: 10.1039/c4cc00561a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncharged reactivators able to efficiently reactivate human butyrylcholinesterase and human acetylcholinesterase inhibited by organophosphorus nerve agents.
Collapse
Affiliation(s)
- Julien Renou
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| | - Mélanie Loiodice
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Mélanie Arboléas
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Rachid Baati
- Faculté de Pharmacie
- Université de Strasbourg
- BP 24, 67401 Illkirch, France
| | - Ludovic Jean
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| | - Florian Nachon
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Pierre-Yves Renard
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
15
|
Zare-Zardini H, Tolueinia B, Hashemi A, ebrahimi L, Fesahat F. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am J Alzheimers Dis Other Demen 2013; 28:702-9. [PMID: 24005854 PMCID: PMC10852667 DOI: 10.1177/1533317513500839] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Young Researchers and Elite Club, Yazd Branch, Islamic Azad University, Yazd, Islamic Republic of Iran
- Department of Pediatric Hematology, Oncology and Genetics Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| | - Behnaz Tolueinia
- Department of biology, University of Applied Science and Technology of Sistan and Baluchestan, Minushargh Branch, Zahedan, Islamic Republic of Iran
| | - Azam Hashemi
- Department of Pediatric Hematology, Oncology and Genetics Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| | - Leila ebrahimi
- Department of Hematology, Iranian Blood Transfusion Organization, Tehran, Islamic Republic of Iran
| | - Farzaneh Fesahat
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| |
Collapse
|
16
|
Chitra L, Kumar CR, Basha HM, Ponne S, Boopathy R. Interaction of metal chelators with different molecular forms of acetylcholinesterase and its significance in Alzheimer's disease treatment. Proteins 2013; 81:1179-91. [DOI: 10.1002/prot.24267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Loganathan Chitra
- DRDO-BU Center for Life Sciences; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Chinnadurai Raj Kumar
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Haleema M. Basha
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Saravanaraman Ponne
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | | |
Collapse
|
17
|
Cai T, Zhang L, Wang H, Zhang J, Wang R, Zhang Y, Guo Y. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:521-530. [PMID: 23654197 DOI: 10.1255/ejms.1207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.
Collapse
Affiliation(s)
- Tingting Cai
- Shanghai Mass Spectrometry Center, Shanghai institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol 2011; 8:168-81. [PMID: 21358968 PMCID: PMC3001211 DOI: 10.2174/157015910792246244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 02/10/2010] [Accepted: 02/18/2010] [Indexed: 01/05/2023] Open
Abstract
The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
19
|
Guo DS, Uzunova VD, Su X, Liu Y, Nau WM. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem Sci 2011. [DOI: 10.1039/c1sc00231g] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
20
|
Alves-Amaral G, Pires-Oliveira M, Andrade-Lopes AL, Chiavegatti T, Godinho RO. Gender-related differences in circadian rhythm of rat plasma acetyl- and butyrylcholinesterase: effects of sex hormone withdrawal. Chem Biol Interact 2010; 186:9-15. [PMID: 20399201 DOI: 10.1016/j.cbi.2010.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/14/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
Abstract
The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2-30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease.
Collapse
Affiliation(s)
- Gracielle Alves-Amaral
- Department of Pharmacology (INFAR), Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
21
|
Rathore R, Corr JJ, Lebre DT, Seibel WL, Greis KD. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3293-3300. [PMID: 19757451 DOI: 10.1002/rcm.4248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mass spectrometry (MS)-based high-throughput screening (HTS) has tremendous potential as an alternative to current screening methods due to its speed, sensitivity, reproducibility and label-free readout. We recently reported that a new generation matrix-assisted laser desorption/ionization triple quadrupole (MALDI-QqQ) mass spectrometer is ideally suited for a variety of enzyme assays and screening protocols. However, all the targets measured to date had peptide substrates that were easily monitored by selected ion monitoring (SIM) without interference from the MALDI matrix. To further extend the application to enzymes with small molecule, non-peptide substrates, we evaluated this method for measuring enzyme activity and inhibition of acetylcholinesterase (AChE). Due to the potential of MALDI matrix interference, multiple reaction monitoring (MRM) was investigated for selective MS/MS transitions and to accurately measure the conversion of acetylcholine into choline. Importantly, ionization, detection and MRM transition efficiency differences between the substrate and product can be overcome by pre-balancing the MRM transitions during method development, thus allowing for a direct readout of the enzyme activity using the ratio of the substrate and product signals. Further validation of the assay showed accurate concentration-dependent inhibition measurements of AChE with several known inhibitors. Finally, a small library of 1008 drug-like compounds was screened at a single dose (10 microM) and the top 10 inhibitors from this primary screen were validated in a secondary screen to determine the rank order of inhibitory potency for each compound. Collectively, these data demonstrate that a MALDI-QqQMS-based readout platform is amenable to measuring small molecule substrates and products and offers significant advantages over current HTS methods in terms of speed, sensitivity, reproducibility and reagent costs.
Collapse
Affiliation(s)
- Rakesh Rathore
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Eu Vian Tan
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K
| | - Christopher R. Lowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K
| |
Collapse
|
23
|
Montenegro MF, Moral-Naranjo MT, Muñoz-Delgado E, Campoy FJ, Vidal CJ. Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase. FEBS J 2009; 276:2074-83. [PMID: 19292875 DOI: 10.1111/j.1742-4658.2009.06942.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Besides esterase activity, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze o-nitroacetanilides through aryl acylamidase activity. We have reported that BuChE tetramers and monomers of human blood plasma differ in o-nitroacetanilide (ONA) hydrolysis. The homology in quaternary structure and folding of subunits in the prevalent BuChE species (G4(H)) of human plasma and AChE forms of fetal bovine serum prompted us to study the esterase and amidase activities of fetal bovine serum AChE. The k(cat)/K(m) values for acetylthiocholine (ATCh), ONA and its trifluoro derivative N-(2-nitrophenyl)-trifluoroacetamide (F-ONA) were 398 x 10(6) M(-1) min(-1), 0.8 x 10(6) M(-1) min(-1), and 17.5 x 10(6) M(-1) min(-1), respectively. The lack of inhibition of amidase activity at high F-ONA concentrations makes it unlikely that there is a role for the peripheral anionic site (PAS) in F-ONA degradation, but the inhibition of ATCh, ONA and F-ONA hydrolysis by the PAS ligand fasciculin-2 points to the transit of o-nitroacetalinides near the PAS on their way to the active site. Sedimentation analysis confirmed substrate hydrolysis by tetrameric 10.9S AChE. As compared with esterase activity, amidase activity was less sensitive to guanidine hydrochloride. This reagent led to the formation of 9.3S tetramers with partially unfolded subunits. Their capacity to hydrolyze ATCh and F-ONA revealed that, despite the conformational change, the active site architecture and functionality of AChE were partially retained.
Collapse
Affiliation(s)
- María F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
24
|
Xu Z, Yao S, Wei Y, Zhou J, Zhang L, Wang C, Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1849-55. [PMID: 18789720 DOI: 10.1016/j.jasms.2008.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/05/2008] [Accepted: 07/30/2008] [Indexed: 05/09/2023]
Abstract
A matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS)-based assay was developed for kinetic measurements and inhibitor screening of acetylcholinesterase. Here, FTMS coupled to MALDI was applied to quantitative analysis of choline using the ratio of choline/acetylcholine without the use of additional internal standard, which simplified the experiment. The Michaelis constant (K(m)) of acetylcholinesterase (AChE) was determined to be 73.9 micromol L(-1) by this approach. For Huperzine A, the linear mixed inhibition of AChE reflected the presence of competitive and noncompetitive components. The half maximal inhibitory concentration (IC(50)) value of galantamine obtained for AChE was 2.39 micromol L(-1). Inhibitory potentials of Rhizoma Coptidis extracts were identified with the present method. In light of the results the referred extracts as a whole showed inhibitory action against AChE. The use of high-resolution FTMS largely eliminated the interference with the determination of ACh and Ch, produced by the low-mass compounds of chemical libraries for inhibitor screening. The excellent correlation with the reported kinetic parameters confirms that the MS-based assay is both accurate and precise for determining kinetic constants and for identifying enzyme inhibitors. The obvious advantages were demonstrated for quantitative analysis and also high-throughput characterization. This study offers a perspective into the utility of MALDI-FTMS as an alternate quantitative tool for inhibitor screening of AChE.
Collapse
Affiliation(s)
- Zhe Xu
- Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Masson P, Froment MT, Gillon E, Nachon F, Lockridge O, Schopfer LM. Kinetic analysis of effector modulation of butyrylcholinesterase-catalysed hydrolysis of acetanilides and homologous esters. FEBS J 2008; 275:2617-31. [PMID: 18422653 DOI: 10.1111/j.1742-4658.2008.06409.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of tyramine, serotonin and benzalkonium on the esterase and aryl acylamidase activities of wild-type human butyrylcholinesterase and its peripheral anionic site mutant, D70G, were investigated. The kinetic study was carried out under steady-state conditions with neutral and positively charged aryl acylamides [o-nitrophenylacetanilide, o-nitrotrifluorophenylacetanilide and m-(acetamido) N,N,N-trimethylanilinium] and homologous esters (o-nitrophenyl acetate and acetylthiocholine). Tyramine was an activator of hydrolysis for neutral substrates and an inhibitor of hydrolysis for positively charged substrates. The affinity of D70G for tyramine was lower than that of the wild-type enzyme. Tyramine activation of hydrolysis for neutral substrates by D70G was linear. Tyramine was found to be a pure competitive inhibitor of hydrolysis for positively charged substrates with both wild-type butyrylcholinesterase and D70G. Serotonin inhibited both esterase and aryl acylamidase activities for both positively charged and neutral substrates. Inhibition of wild-type butyrylcholinesterase was hyperbolic (i.e. partial) with neutral substrates and linear with positively charged substrates. Inhibition of D70G was linear with all substrates. A comparison of the effects of tyramine and serotonin on D70G versus the wild-type enzyme indicated that: (a) the peripheral anionic site is involved in the nonlinear activation and inhibition of the wild-type enzyme; and (b) in the presence of charged substrates, the ligand does not bind to the peripheral anionic site, so that ligand effects are linear, reflecting their sole interaction with the active site binding locus. Benzalkonium acted as an activator at low concentrations with neutral substrates. High concentrations of benzalkonium caused parabolic inhibition of the activity with neutral substrates for both wild-type butyrylcholinesterase and D70G, suggesting multiple binding sites. Benzalkonium caused linear, noncompetitive inhibition of the positively charged aryl acetanilide m-(acetamido) N,N,N-trimethylanilinium for D70G, and an unusual mixed-type inhibition/activation (alpha > beta > 1) for wild-type butyrylcholinesterase with this substrate. No fundamental difference was observed between the effects of ligands on the butyrylcholinesterase-catalysed hydrolysis of esters and amides. Thus, butyrylcholinesterase uses the same machinery, i.e. the catalytic triad S198/H448/E325, for the hydrolysis of both types of substrate. The differences in response to ligand binding depend on whether the substrates are neutral or positively charged, i.e. the differences depend on the function of the peripheral site in wild-type butyrylcholinesterase, or the absence of its function in the D70G mutant. The complex inhibition/activation effects of effectors, depending on the integrity of the peripheral anionic site, reflect the allosteric 'cross-talk' between the peripheral anionic site and the catalytic centre.
Collapse
Affiliation(s)
- Patrick Masson
- Unité d'Enzymologie, Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, La Tronche Cedex, France.
| | | | | | | | | | | |
Collapse
|
26
|
Hsieh BC, Matsumoto K, Cheng TJ, Yuu G, Chen RLC. Choline biosensor constructed with chitinous membrane from soldier crab and its application in measuring cholinesterase inhibitory activities. J Pharm Biomed Anal 2007; 45:673-8. [PMID: 17329059 DOI: 10.1016/j.jpba.2007.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
An amperometric flow-injection choline biosensor was assembled utilizing natural chitinous membrane as the supporting material for biocatalyst immobilization, and the membrane was purified from Taiwanese soldier crab, Mictyris brevidactylus. The chitinous membrane (<50.0 microm in thickness) was covalently immobilized with choline oxidase (EC 3.1.1.17 from Alcaligenes sp.) and then attached onto the platinum electrode of an amperometric flow cell. The flow cell served as the choline sensing device of the proposed FIA system. The sensor signal (peak height of the FIAgram) was linearly related to choline concentration (r=0.999 for choline up to 5.0mM) with low detection limit (S/N>3 for 10.0 microM choline) and high reproducibility (CV<3% for 1.0mM choline, n=7). The system was proved to be useful in measuring cholinesterase inhibitory activities of synthetic chemicals or natural products.
Collapse
Affiliation(s)
- Bo-Chuan Hsieh
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 136 Chou-Shan Road, Taipei City 106, Taiwan, ROC
| | | | | | | | | |
Collapse
|
27
|
Masson P, Froment MT, Gillon E, Nachon F, Darvesh S, Schopfer LM. Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1139-47. [PMID: 17690023 DOI: 10.1016/j.bbapap.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/09/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
The aryl-acylamidase (AAA) activity of butyrylcholinesterase (BuChE) has been known for a long time. However, the kinetic mechanism of aryl-acylamide hydrolysis by BuChE has not been investigated. Therefore, the catalytic properties of human BuChE and its peripheral site mutant (D70G) toward neutral and charged aryl-acylamides were determined. Three neutral (o-nitroacetanilide, m-nitroacetanilide, o-nitrophenyltrifluoroacetamide) and one positively charged (3-(acetamido) N,N,N-trimethylanilinium, ATMA) acetanilides were studied. Hydrolysis of ATMA by wild-type and D70G enzymes showed a long transient phase preceding the steady state. The induction phase was characterized by a hysteretic "burst". This reflects the existence of two enzyme states in slow equilibrium with different catalytic properties. Steady-state parameters for hydrolysis of the three acetanilides were compared to catalytic parameters for hydrolysis of esters giving the same acetyl intermediate. Wild-type BuChE showed substrate activation while D70G displayed a Michaelian behavior with ATMA as with positively charged esters. Owing to the low affinity of BuChE for amide substrates, the hydrolysis kinetics of neutral amides was first order. Acylation was the rate-determining step for hydrolysis of aryl-acetylamide substrates. Slow acylation of the enzyme, relative to that by esters may, in part, be due suboptimal fit of the aryl-acylamides in the active center of BuChE. The hypothesis that AAA and esterase active sites of BuChE are non-identical was tested with mutant BuChE. It was found that mutations on the catalytic serine, S198C and S198D, led to complete loss of both activities. The silent variant (FS117) had neither esterase nor AAA activity. Mutation in the peripheral site (D70G) had the same effect on esterase and AAA activities. Echothiophate inhibited both activities identically. It was concluded that the active sites for esterase and AAA activities are identical, i.e. S198. This excludes any other residue present in the gorge for being the catalytic nucleophile pole.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, Unité d'Enzymologie, BP 87, 38702 La Tronche cedex, France.
| | | | | | | | | | | |
Collapse
|
28
|
Pastorin G, Marchesan S, Hoebeke J, Da Ros T, Ehret-Sabatier L, Briand JP, Prato M, Bianco A. Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesterase. Org Biomol Chem 2006; 4:2556-62. [PMID: 16791318 DOI: 10.1039/b604361e] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four different regioisomers of cationic bis-N,N-dimethylfulleropyrrolidinium salts have been prepared and evaluated as inhibitors of the enzymatic activity of acetylcholinesterase. These fullerene-based derivatives were found to be noncompetitive inhibitors of acetylthiocholine hydrolysis. Molecular modelling was used to describe the possible interactions between the fullerene cage and the amino acids surrounding the cavity of the enzyme. The cationic C(60) derivatives used in this study represent a new class of molecules potentially able to modulate the enzymatic activity of acetylcholinesterase.
Collapse
Affiliation(s)
- Giorgia Pastorin
- Institute of Molecular and Cellular Biology, UPR 9021 CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagabukuro H, Doi T. Differential effects of TAK-802, a selective acetylcholinesterase inhibitor, and carbamate acetylcholinesterase inhibitors on contraction of the detrusor smooth muscle of the guinea pig. Life Sci 2005; 77:3276-86. [PMID: 15978636 DOI: 10.1016/j.lfs.2005.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 04/01/2005] [Indexed: 11/18/2022]
Abstract
The aim of this study was to compare the effects of TAK-802, a novel acetylcholinesterase (AChE) inhibitor, and carbamate AChE inhibitors on the detrusor smooth muscle contractility in vitro using isometric tension measurements. The effects of drugs on the nicotine-induced contractions and basal tone of the isolated detrusor muscle of the guinea pig were examined. All of the drugs, namely, TAK-802, distigmine, neostigmine and pyridostigmine, enhanced the nicotine-induced contractions of the muscle strips in a concentration-dependent manner. On the other hand, while neostigmine and pyridostigmine markedly increased the basal tone, and distigmine slightly but significantly increased the basal tone, TAK-802 had no influence on the basal tone of the muscle strips at all. However, following co-treatment with tetraisopropyl pyrophosphoramide, a selective butyrylcholinesterase (BuChE) inhibitor, TAK-802 also did increase the basal tone. The increase of the basal tone by all of the above treatments was completely abolished by atropine. These results reveal that while all the four AChE inhibitors enhanced endogenous acetylcholine-induced contractions, their effects on the basal tone were clearly different. The effect of carbamate AChE inhibitors of increasing the basal tone could be partly attributed to their dual inhibition of both AChE and BuChE, because both cholinesterases may play a critical role in maintaining the resting tension of the urinary bladder. TAK-802, however, did not increase the basal tone of the detrusor muscle strips, probably because of its selective inhibitory effect against AChE. The effect of carbamate AChE inhibitors on the basal tone of the detrusor muscle may explain the decrease of bladder compliance observed in our previous study on guinea pigs as well as the deterioration of the bladder-storage function reported with their clinical use.
Collapse
Affiliation(s)
- Hiroshi Nagabukuro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Osaka, 532-8686, Japan.
| | | |
Collapse
|
30
|
Xiao Y, Pavlov V, Shlyahovsky B, Willner I. An OsII-Bisbipyridine-4-Picolinic Acid Complex Mediates the Biocatalytic Growth of Au Nanoparticles: Optical Detection of Glucose and Acetylcholine Esterase Inhibition. Chemistry 2005; 11:2698-704. [PMID: 15729675 DOI: 10.1002/chem.200400988] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complex Os(II)-bisbipyridine-4-picolinic acid, [Os(bpy)(2)PyCO(2)H](2+) (1), mediates the biocatalyzed growth of Au nanoparticles, Au NPs, and enables the spectroscopic assay of biocatalyzed transformations and enzyme inhibition by following the Au NP plasmon absorbance. In one system, [Os(bpy)(2)PyCO(2)H](2+) mediates the biocatalyzed oxidation of glucose and the growth of Au NPs in the presence of glucose oxidase, GOx, AuCl(4) (-), citrate and Au NP seeds. The mechanism of the Au NPs growth involves the oxidation of the [Os(bpy)(2)PyCO(2)H](2+) complex by AuCl(4) (-) to form [Os(bpy)(2)PyCO(2)H](3+) and Au(I). The [Os(bpy)(2)PyCO(2)H](3+) complex mediates the GOx biocatalyzed oxidation of glucose and the regeneration of the mediator 1. Citrate reduces Au(I) and enlarges the Au seeds by the catalytic deposition of gold on the Au NP seeds. In the second system, the enzyme acetylcholine esterase, AChE, is assayed by the catalytic growth of the Au NPs. The hydrolysis of acetylcholine (2) by AChE to choline is followed by the [Os(bpy)(2)PyCO(2)H](3+) mediated oxidation of choline to betaine and the concomitant growth of the Au NPs. The mediated growth of the Au NPs is inhibited by 1,5-bis(4-allyldimethylammonium-phenyl)pentane-3-one dibromide (3). A competitive inhibition process was demonstrated (K(M)=0.13 mM, K(I)=2.6 microM) by following the growth of the Au NPs.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
31
|
Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord 2003; 17:117-26. [PMID: 12794390 DOI: 10.1097/00002093-200304000-00011] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Current approaches to the treatment of cognitive and behavioral symptoms of Alzheimer disease emphasize the use of cholinesterase inhibitors. The kinetic effects of the cholinesterase inhibitors donepezil, galantamine, metrifonate, physostigmine, rivastigmine, and tetrahydroaminoacridine were examined with respect to their action on the esterase and aryl acylamidase activities of human acetylcholinesterase (AChE) and human butyrylcholinesterase (BuChE). Each of these drugs inhibited both AChE and BuChE, but to different degrees. Inhibition of BuChE by these compounds was approximately the same, or better, when acetylthiocholine, the analog of the neurotransmitter acetylcholine, was used as the substrate, instead of butyrylthiocholine. In addition, for these drugs, the inhibition of aryl acylamidase activity paralleled that observed for inhibition of esterase activity of AChE and BuChE. Given that drugs that are currently in use for the treatment of Alzheimer disease inhibit both AChE and BuChE, the development of drugs targeted toward the exclusive inhibition of one or the other cholinesterase may be important for understanding the relative importance of inhibition of BuChE and AChE in the treatment of this disease.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Darvesh S, Walsh R, Martin E. Enantiomer effects of huperzine A on the aryl acylamidase activity of human cholinesterases. Cell Mol Neurobiol 2003; 23:93-100. [PMID: 12701885 PMCID: PMC11530204 DOI: 10.1023/a:1022597102063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are serine hydrolase enzymes that catalyze the hydrolysis of acetylcholine. 2. (-) Huperzine A is an inhibitor of AChE and is being considered for the treatment of Alzheimer's disease. 3. In addition to esterase activity, AChE and BuChE have intrinsic aryl acylamidase activity. 4. The function of aryl acylamidase is unknown but has been speculated to be important in Alzheimer pathology. 5. Kinetic effects of (-) huperzine A and (+/-) huperzine A on the aryl acylamidase activity of human cholinesterases were examined. 6. (-) Huperzine A inhibited the aryl acylamidase activities of both AChE and BuChE. 7. (+/-) Huperzine A inhibited this function in AChE but stimulated BuChE aryl acylamidase suggesting that the (+) enantiomer is a powerful activator of this enzyme activity. 8. The two huperzine enantiomers may prove to be useful tools to examine the function of aryl acylamidase activity, including its role in Alzheimer pathology.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine) Dalhousie University, Halifax, Nova Scotia.
| | | | | |
Collapse
|
33
|
Mallender WD, Szegletes T, Rosenberry TL. Organophosphorylation of acetylcholinesterase in the presence of peripheral site ligands. Distinct effects of propidium and fasciculin. J Biol Chem 1999; 274:8491-9. [PMID: 10085081 DOI: 10.1074/jbc.274.13.8491] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural analysis of acetylcholinesterase (AChE) has revealed two sites of ligand interaction in the active site gorge: an acylation site at the base of the gorge and a peripheral site at its mouth. A goal of our studies is to understand how ligand binding to the peripheral site alters the reactivity of substrates and organophosphates at the acylation site. Kinetic rate constants were determined for the phosphorylation of AChE by two fluorogenic organophosphates, 7-[(diethoxyphosphoryl)oxy]-1-methylquinolinium iodide (DEPQ) and 7-[(methylethoxyphosphonyl)oxy]-4-methylcoumarin (EMPC), by monitoring release of the fluorescent leaving group. Rate constants obtained with human erythrocyte AChE were in good agreement with those obtained for recombinant human AChE produced from a high level Drosophila S2 cell expression system. First-order rate constants kOP were 1,600 +/- 300 min-1 for DEPQ and 150 +/- 11 min-1 for EMPC, and second-order rate constants kOP/KOP were 193 +/- 13 microM-1 min-1 for DEPQ and 0.7-1.0 +/- 0.1 microM-1 min-1 for EMPC. Binding of the small ligand propidium to the AChE peripheral site decreased kOP/KOP by factors of 2-20 for these organophosphates. Such modest inhibitory effects are consistent with our recently proposed steric blockade model (Szegletes, T., Mallender, W. D., and Rosenberry, T. L. (1998) Biochemistry 37, 4206-4216). Moreover, the binding of propidium resulted in a clear increase in kOP for EMPC, suggesting that molecular or electronic strain caused by the proximity of propidium to EMPC in the ternary complex may promote phosphorylation. In contrast, the binding of the polypeptide neurotoxin fasciculin to the peripheral site of AChE dramatically decreased phosphorylation rate constants. Values of kOP/KOP were decreased by factors of 10(3) to 10(5), and kOP was decreased by factors of 300-4,000. Such pronounced inhibition suggested a conformational change in the acylation site induced by fasciculin binding. As a note of caution to other investigators, measurements of phosphorylation of the fasciculin-AChE complex by AChE inactivation gave misleading rate constants because a small fraction of the AChE was resistant to inhibition by fasciculin.
Collapse
Affiliation(s)
- W D Mallender
- Department of Pharmacology, Mayo Foundation for Medical Education and Research, and the Department of Research, Mayo Clinic Jacksonville, Jacksonville, Florida 32224, USA
| | | | | |
Collapse
|