1
|
Seidlmayer LK, Hanson BJ, Thai PN, Schaefer S, Bers DM, Dedkova EN. PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action. Front Physiol 2021; 12:628508. [PMID: 34149440 PMCID: PMC8212865 DOI: 10.3389/fphys.2021.628508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Reperfusion after myocardial ischemia causes cellular injury, in part due to changes in mitochondrial Ca2+ handling, oxidative stress, and myocyte energetics. We have previously shown that the 18-kDa translocator protein of the outer mitochondrial membrane (TSPO) can modulate Ca2+ handling. Here, we aim to evaluate the role of the TSPO in ischemia/reperfusion (I/R) injury. Methods: Rabbit ventricular myocytes underwent simulated acute ischemia (20 min) and reperfusion (at 15 min, 1 h, and 3 h) in the absence and presence of 50 μM PK11195, a TSPO inhibitor. Cell death was measured by lactate dehydrogenase (LDH) assay, while changes in mitochondrial Ca2+, membrane potential (ΔΨm), and reactive oxygen species (ROS) generation were monitored using confocal microscopy in combination with fluorescent indicators. Substrate utilization was measured with Biolog mitochondrial plates. Results: Cell death was increased by ~200% following I/R compared to control untreated ventricular myocytes. Incubation with 50 μM PK11195 during both ischemia and reperfusion did not reduce cell death but increased mitochondrial Ca2+ uptake and ROS generation. However, application of 50 μM PK11195 only at the onset and during reperfusion effectively protected against cell death. The large-scale oscillations in ΔΨm observed after ~1 h of reperfusion were significantly delayed by 1 μM cyclosporin A and almost completely prevented by 50 μM PK11195 applied during 3 h of reperfusion. After an initial increase, mitochondrial Ca2+, measured with Myticam, rapidly declined during 3 h of reperfusion after the initial transient increase. This decline was prevented by application of PK11195 at the onset and during reperfusion. PK11195 prevented a significant increase in succinate utilization following I/R and succinate-induced forward-mode ROS generation. Treatment with PK11195 was also associated with a significant increase in glutamate and a decrease in leucine utilization. Conclusion: PK11195 administered specifically at the moment of reperfusion limited ROS-induced ROS release and cell death, likely in part, by a shift from succinate to glutamate utilization. These data demonstrate a unique mechanism to limit cardiac injury after I/R.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Cardiology, University Hospital Olbenburg, Olbenburg, Germany
| | - Benjamin J Hanson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Saul Schaefer
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elena N Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Iacobazzi RM, Lopalco A, Cutrignelli A, Laquintana V, Lopedota A, Franco M, Denora N. Bridging Pharmaceutical Chemistry with Drug and Nanoparticle Targeting to Investigate the Role of the 18-kDa Translocator Protein TSPO. ChemMedChem 2017; 12:1261-1274. [PMID: 28771957 DOI: 10.1002/cmdc.201700322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Abstract
An interesting mitochondrial biomarker is the 18-kDa mitochondrial translocator protein (TSPO). Decades of study have shown that this protein plays an important role in a wide range of cellular functions, including opening of the mitochondrial permeability transition pore as well as programmed cell death and proliferation. Variations in TSPO expression have been correlated to different diseases, from tumors to endocrine and neurological disorders. TSPO has therefore become an appealing target for both early diagnosis and selective mitochondrial drug delivery. The number of structurally different TSPO ligands examined has increased over time, highlighting the scientific community's growing understanding of the roles of TSPO in normal and pathological conditions. However, only few TSPO ligands are characterized by the presence of groups that are potentially derivatizable; therefore only few such ligands are well suited for the preparation of targeted prodrugs or nanocarriers able to deliver therapeutics and/or diagnostic agents to mitochondria. This review provides an overview of the very few examples of drug delivery systems characterized by moieties that target TSPO.
Collapse
Affiliation(s)
| | - Antonio Lopalco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Angela Lopedota
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Massimo Franco
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
3
|
|
4
|
Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria. Int J Mol Sci 2016; 17:ijms17122096. [PMID: 27983605 PMCID: PMC5187896 DOI: 10.3390/ijms17122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide may participate in the regulation of mitochondrial membrane permeability. Herein, we report the effect of the synthetic CRAC peptide, VLNYYVW, on mitochondrial permeability transition pore (mPTP) opening. It was found that the CRAC peptide alone prevents the mPTP from opening, as well as the release of apoptotic factors (cytochrome c, AIF, and EndoG) in rat brain mitochondria (RBM). Co-incubation of CRAC, together with the TSPO drug ligand, PK 11195, resulted in the acceleration of mPTP opening and in the increase of apoptotic factor release. VLNYYVW did not induce swelling in rat liver mitochondria (RLM). 3,17,19-androsten-5-triol (19-Atriol; an inhibitor of the cholesterol-binding activity of the CRAC peptide) alone and in combination with the peptide was able to stimulate RLM swelling, which was Ca2+- and CsA-sensitive. Additionally, a combination of 19-Atriol with 100 nM PK 11195 or with 100 µM PK 11195 displayed the opposite effect: namely, the addition of 19-Atriol with 100 µM PK 11195 in a suspension of RLM suppressed the Ca2+-induced swelling of RLM by 40%, while the presence of 100 nM PK 11195 with 19-Atriol enhanced the swelling of RLM by 60%. Taken together, these data suggest the participation of the TSPO’s CRAC domain in the regulation of permeability transition.
Collapse
|
5
|
TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. Int J Mol Sci 2016; 17:ijms17071028. [PMID: 27367681 PMCID: PMC4964404 DOI: 10.3390/ijms17071028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.
Collapse
|
6
|
Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18. [PMID: 24633813 DOI: 10.1007/s12035-014-8663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT). One prominent target of the mutant huntingtin protein (mhtt) is the mitochondrion, affecting its morphology, distribution, and function. Thus, mitochondria have been suggested as potential therapeutic targets for the treatment of HD. Olesoxime, a cholesterol-like compound, promotes motor neuron survival and neurite outgrowth in vitro, and its effects are presumed to occur via a direct interaction with mitochondrial membranes (MMs). We examined the properties of MMs isolated from cell and animal models of HD as well as the effects of olesoxime on MM fluidity and cholesterol levels. MMs isolated from brains of aged Hdh Q111/Q111 knock-in mice showed a significant decrease in 1,6-diphenyl-hexatriene (DPH) anisotropy, which is inversely correlated with membrane fluidity. Similar increases in MM fluidity were observed in striatal STHdh Q111/Q111 cells as well as in MMs isolated from brains of BACHD transgenic rats. Treatment of STHdh cells with olesoxime decreased the fluidity of isolated MMs. Decreased membrane fluidity was also measured in olesoxime-treated MMs isolated from brains of HD knock-in mice. In both models, treatment with olesoxime restored HD-specific changes in MMs. Accordingly, olesoxime significantly counteracted the mhtt-induced increase in MM fluidity of MMs isolated from brains of BACHD rats after 12 months of treatment in vivo, possibly by enhancing MM cholesterol levels. Thus, olesoxime may represent a novel pharmacological tool to treat mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Janett Eckmann
- Department of Pharmacology, Biocenter, Goethe-University Campus Riedberg, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hatty CR, Le Brun AP, Lake V, Clifton LA, Liu GJ, James M, Banati RB. Investigating the interactions of the 18kDa translocator protein and its ligand PK11195 in planar lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1019-30. [PMID: 24374318 DOI: 10.1016/j.bbamem.2013.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
The functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug-membrane interactions may contribute to the apparent affinity of TSPO ligands.
Collapse
Affiliation(s)
- Claire R Hatty
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Anton P Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Vanessa Lake
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK
| | - Guo Jun Liu
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia; Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Michael James
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Richard B Banati
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia; Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
8
|
Cellai C, Balliu M, Laurenzana A, Guandalini L, Matucci R, Miniati D, Torre E, Nebbioso A, Carafa V, Altucci L, Romanelli MN, Paoletti F. The new low-toxic histone deacetylase inhibitor S-(2) induces apoptosis in various acute myeloid leukaemia cells. J Cell Mol Med 2012; 16:1758-65. [PMID: 22004558 PMCID: PMC3822689 DOI: 10.1111/j.1582-4934.2011.01464.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/05/2011] [Indexed: 02/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn(++)--chelating group. Here, we explored the anti-leukaemic properties of three novel hybrids, namely the chiral compounds (S)-2 and (R)-2, and their non-chiral analogue 4, which were first comparatively tested in promyelocytic NB4 cells. (S)-2 and partially 4--but not (R)-2--caused G0/G1 cell-cycle arrest by up-regulating cyclin G2 and p21 expression and down-regulating cyclin D2 expression, and also apoptosis as assessed by cell morphology and cytofluorimetric assay, histone H2AX phosphorylation and PARP cleavage. Notably, these events were partly prevented by an anti-oxidant. Moreover, novel HDACi prompted p53 and α-tubulin acetylation and, consistently, inhibited HDAC1 and 6 activity. The rank order of potency was (S)-2 > 4 > (R)-2, reflecting that of other biological assays and addressing (S)-2 as the most effective compound capable of triggering apoptosis in various acute myeloid leukaemia (AML) cell lines and blasts from patients with different AML subtypes. Importantly, (S)-2 was safe in mice (up to 150 mg/kg/week) as determined by liver, spleen, kidney and bone marrow histopathology; and displayed negligible affinity for peripheral/central BDZ-receptors. Overall, the BDZ-hydroxamate (S)-2 showed to be a low-toxic HDACi with powerful anti-proliferative and pro-apototic activities towards different cultured and primary AML cells, and therefore of clinical interest to support conventional anti-leukaemic therapy.
Collapse
Affiliation(s)
- C Cellai
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - M Balliu
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - A Laurenzana
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - L Guandalini
- Department of Pharmaceutical Sciences, University of FlorenceSesto Fiorentino, Italy
| | - R Matucci
- Department of Preclinical and Clinical Pharmacology, University of FlorenceSesto Fiorentino, Italy
| | - D Miniati
- Department of Preclinical and Clinical Pharmacology, University of FlorenceSesto Fiorentino, Italy
| | - E Torre
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - A Nebbioso
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - V Carafa
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - L Altucci
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - M N Romanelli
- Department of Pharmaceutical Sciences, University of FlorenceSesto Fiorentino, Italy
| | - F Paoletti
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
9
|
Tsuchiya H, Nagayama M. Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity. J Biomed Sci 2008; 15:653-60. [PMID: 18506599 DOI: 10.1007/s11373-008-9257-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022] Open
Abstract
As a novel approach to the mode of medicinal action of garlic, its constituents were comparatively studied with respect to their interactions with membrane lipids to modify the membrane fluidity. Allyl derivatives rigidified tumor cell and platelet model membranes consisting of unsaturated phospholipids and cholesterol at 20-500 muM with the potency being diallyl trisulfide (DATS) > diallyl disulfide (DADS) by preferentially acting on the hydrocarbon cores of lipid bilayers. They were also effective in rigidifying candida cell model membranes prepared with ergosterol and phospholipids at 100-500 microM with the potency being DADS > DATS > diallyl sulfide (DAS), but not bacteria cell model membranes without ergosterol. Alliin, a precursor of these DASs, was not active on any membranes at 500 microM. Both relative intensity and selectivity in membrane effects correlated with those in antiproliferative, antiplatelet and antimicrobial effects. In cell culture experiments, membrane-active DASs inhibited the growth of tumor cells cultured for 24 and 48 h at 20-500 muM to show the potency being DATS > DADS, together with rigidifying cell membranes by acting on their deeper regions more intensively. However, membrane-inactive allyl derivatives were not growth-inhibitory on tumor cells. The membrane lipid interactions of DASs appear to be one of possible mechanisms underlying different effects of garlic.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Building 3, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | | |
Collapse
|
10
|
Tsuchiya H, Tanaka T, Nagayama M, Oyama M, Iinuma M. Membrane Activity-Guided Isolation of Antiproliferative and Antiplatelet Constituent from Evodiopanax Innovans. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bark of Evodiopanax innovans (Araliaceae) was subjected to membrane activity-guided extraction and chromatographic fractionation. The potency to interact with lipid membranes and change their fluidity was determined by measuring fluorescence polarization of liposomal and cell membranes. Plant preparations, including the MeOH extract and the specified fraction, reduced the fluidity of model biomembranes prepared with different phospholipids and cholesterol. Further purification led to the isolation of maltol 3- O-β-glucopyranoside, which inhibited tumor cell growth and platelet aggregation, together with rigidifying the cell membranes as well as the membrane-active antitumor compound (-)-epigallocatechin gallate and doxorubicin. The isolate at 100 μM and 1.0 mM showed growth inhibition of 13–49% against tumor cells cultured for 24 and 48 h. At 1.8–3.6 mM, it also produced 50% inhibition of platelet aggregation induced by collagen, adenosine 5′-diphosphate and thrombin. E. innovans is considered as a medicinal plant containing a potent bioactive constituent that exerts antiproliferative and antiplatelet effects through interaction with cell membranes to modify their fluidity.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Toshiyuki Tanaka
- Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Motohiko Nagayama
- Department of Dental Basic Education, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Masayoshi Oyama
- Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Munekazu Iinuma
- Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| |
Collapse
|
11
|
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118:1-17. [PMID: 18374421 DOI: 10.1016/j.pharmthera.2007.12.004] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
For over 15 years, the peripheral benzodiazepine receptor (PBR), recently named translocator protein 18 kDa (TSPO) has been studied as a biomarker of reactive gliosis and inflammation associated with a variety of neuropathological conditions. Early studies documented that in the brain parenchyma, TSPO is exclusively localized in glial cells. Under normal physiological conditions, TSPO levels are low in the brain neuropil but they markedly increase at sites of brain injury and inflammation making it uniquely suited for assessing active gliosis. This research has generated significant efforts from multiple research groups throughout the world to apply TSPO as a marker of "active" brain pathology using in vivo imaging modalities such as Positron Emission Tomography (PET) in experimental animals and humans. Further, in the last few years, there has been an increased interest in understanding the molecular and cellular function(s) of TSPO in glial cells. The latest evidence suggests that TSPO may not only serve as a biomarker of active brain disease but also the use of TSPO-specific ligands may have therapeutic implications in brain injury and repair. This review presents an overview of the history and function of TSPO focusing on studies related to its use as a sensor of active brain disease in experimental animals and in human studies.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Neurotoxicology & Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
12
|
Doucet C, Zhang K, Desurmont T, Hebrard W, Scepi M, Nadeau C, Cau J, Leyre P, Febrer G, Carretier M, Richer JP, Papadopoulos V, Hauet T, Burucoa C, Goujon JM. Influence of warm ischemia time on peripheral-type benzodiazepine receptor: a new aspect of the role of mitochondria. Nephron Clin Pract 2007; 107:e1-11. [PMID: 17622771 DOI: 10.1159/000105139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 01/11/2007] [Indexed: 11/19/2022] Open
Abstract
The peripheral benzodiazepine receptor (PBR) is located mainly in the outer mitochondrial membrane and many functions are associated directly or indirectly with the PBR. We have studied the influence of different durations of warm ischemia (WI) on renal function, tissue damage and PBR expression in a Large Whitepig model. After a midline incision, the renal pedicle was clamped for 10 (WI10), 30 (WI30), 45 (WI45), 60 (WI60) or 90 min (WI90), and blood and renal tissue samples were collected between 1 day and 2 weeks after reperfusion for assessment of renal function. Metabolite excretion associated with renal ischemia reperfusion injury such as trimethylamine-N-oxide (TMAO) was quantified in blood by magnetic resonance spectroscopy. PBR mRNA and protein expression were determined in renal tissue. TMAO levels rose progressively and significantly with increasing duration of WI. PBR mRNA expression was upregulated between 3 h and 1 day after reperfusion in WI30, WI45 and WI60. Its upregulation was noted 3 days after reperfusion in WI90. At day 14, PBR transcript expression was not different from basal level in any group. PBR protein followed the same pattern. These findings suggest a new role for PBR which could be a major target in the regeneration process during ischemia reperfusion.
Collapse
Affiliation(s)
- Carole Doucet
- Inserm, E0 324, Poitiers and Université Poitiers, Poitiers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morris RL, Varnes ME, Kenney ME, Li YS, Azizuddin K, McEnery MW, Oleinick NL. The Peripheral Benzodiazepine Receptor in Photodynamic Therapy with the Phthalocyanine Photosensitizer Pc 4¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750652tpbrip2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Chen MK, Guilarte TR. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol Sci 2006; 91:532-9. [PMID: 16554315 DOI: 10.1093/toxsci/kfj172] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used a rodent model of cuprizone-induced demyelination to examine the peripheral benzodiazepine receptor (PBR) response during remyelination. C57BL/6J mice were fed a 0.2% cuprizone-containing or control diet for 3 weeks and then removed to allow for remyelination. Quantitative autoradiography of 3H-(R)-PK11195 binding to PBR in the corpus callosum showed increased levels at 3 weeks of demyelination and gradually decreased as a function of remyelination. PBR levels were associated with the degree of remyelination and activation of microglia and astrocytes. However, the temporal pattern suggests that the PBR signal during the late stages of remyelination was primarily associated with astrocytes. We also used small-animal positron-emission tomography (PET) imaging to determine if this technique could be used to monitor PBR levels in the brain of living mice. The results indicate that 11C-(R)-PK11195 levels are significantly elevated in the mouse brain during cuprizone-induced demyelination and normalize at a time in which remyelination is complete. These findings support the notion that PBR is a sensitive marker for the visualization and quantification of brain injury and recovery. Further, the in vivo imaging of the PBR response is now possible in the living rodent brain.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Molecular Neurotoxicology Laboratory, Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
15
|
Furusawa M, Tsuchiya H, Nagayama M, Tanaka T, Oyama M, Ito T, Iinuma M, Takeuchi H. Cell Growth Inhibition by Membrane-Active Components in Brownish Scale of Onion. ACTA ACUST UNITED AC 2006. [DOI: 10.1248/jhs.52.578] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Miyuki Furusawa
- Gifu Prefectural Institute of Health and Environmental Sciences
| | | | | | | | | | - Tetsuro Ito
- Gifu Prefectural Institute of Health and Environmental Sciences
| | | | | |
Collapse
|
16
|
Costa B, Salvetti A, Rossi L, Spinetti F, Lena A, Chelli B, Rechichi M, Da Pozzo E, Gremigni V, Martini C. Peripheral benzodiazepine receptor: characterization in human T-lymphoma Jurkat cells. Mol Pharmacol 2006; 69:37-44. [PMID: 16189298 DOI: 10.1124/mol.105.015289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral benzodiazepine receptor (PBR) has been considered a promising drug target for cancer therapy, and several ligands have been developed for this purpose. Human T-lymphoma Jurkat cells have been considered as lacking PBR and are often used as negative control to prove the specificity of PBR ligands effects. It is surprising that we evidenced PBR protein expression in this cell line by means of Western blotting and immunocytochemistry assays using specific anti-PBR antibodies. PBR intracellular localization was evidenced in mitochondria and nuclei, as demonstrated by confocal and electron microscopy. The binding of the [(3)H]4'-chloro derivative of diazepam [(3)H]7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and the isoquinoline carboxamide derivative [(3)H]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3 isoquinolinecarboxamide (PK11195) evidenced a single class of binding sites with an unusual affinity constant (K(d)) of 1.77 +/- 0.30 and 2.20 +/- 0.20 microM, respectively. The pharmacological profile of the classic ligands showed that PK11195 was the most potent inhibitor in the radioligand binding assays followed by Ro5-4864 and diazepam, whereas clonazepam, a specific ligand for the central-type receptor, showed a K(i) >1.0 x 10(-4) M. By a combined strategy of reverse transcriptase-polymerase chain reaction and Southern blot experiments, we succeeded in isolating and cloning the full-length Jurkat PBR cDNA, called JuPBR. The JuPBR gene showed two single-nucleotide polymorphisms resulting in the two substitutions, Ala147 --> threonine and His162 --> arginine, of PBR amino acidic sequence. In conclusion, for the first time, we demonstrated PBR expression in Jurkat cells: the protein bound classic PBR ligands with micromolar affinity constants and presented a modified amino acidic sequence consequent to the detection of two gene polymorphisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Benzodiazepinones/pharmacology
- Blotting, Western
- Cloning, Molecular
- DNA Primers
- DNA, Complementary
- Humans
- Immunohistochemistry
- Isoquinolines/pharmacology
- Jurkat Cells
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Microscopy, Electron
- Point Mutation
- Radioligand Assay
- Rats
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Barbara Costa
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Tumor cell targeted therapies, by induction or enhancement of apoptosis, constitute recent promising approaches achieving more specific anti-tumor efficacy. The peripheral benzodiazepine receptor (PBR), which belongs to the permeability transition pore (PTP), the central regulatory complex of apoptosis, is a potential target. A number of findings argue in favor of the development of PBR targeting approaches: (i) overexpression of PBR has been described in a large range of human cancers, (ii) PTP-mediated regulation of programmed cell death is an apoptotic-inducing factor-independent check-point that could be modulated by various conventional cancer therapies, and (iii) PBR ligation enhances apoptosis induction in many types of tumors and reverses Bcl-2 cytoprotective effects. Altogether, these observations support the use of PBR-directed drugs, particularly PBR ligands such as Ro5-4864, in the treatment of human cancers.
Collapse
Affiliation(s)
- Didier Decaudin
- Department of Clinical Hematology, Institut Curie, Paris, France.
| |
Collapse
|
18
|
Morris RL, Varnes ME, Kenney ME, Li YS, Azizuddin K, McEnery MW, Oleinick NL. The peripheral benzodiazepine receptor in photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Photochem Photobiol 2002; 75:652-61. [PMID: 12081328 DOI: 10.1562/0031-8655(2002)075<0652:tpbrip>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The peripheral benzodiazepine receptor (PBR) is an 18 kDa protein of the outer mitochondrial membrane that interacts with the voltage-dependent anion channel and may participate in formation of the permeability transition pore. The physiological role of PBR is reflected in the high-affinity binding of endogenous ligands that are metabolites of both cholesterol and heme. Certain porphyrin precursors of heme can be photosensitizers for photodynamic therapy (PDT), which depends on visible light activation of porphyrin-related macrocycles. Because the apparent binding affinity of a series of porphyrin analogs for PBR paralleled their ability to photoinactivate cells, PBR has been proposed as the molecular target for porphyrin-derived photocytotoxicity. The phthalocyanine (Pc) photosensitizer Pc 4 accumulates in mitochondria and structurally resembles porphyrins. Therefore, we tested the relevance of PBR binding on Pc 4-PDT. Binding affinity was measured by competition with 3H-PK11195, a high-affinity ligand of PBR, for binding to rat kidney mitochondria (RKM) or intact Chinese hamster ovary (CHO) cells. To assess the binding of the Pc directly, we synthesized 14C-labeled Pc 4 and found that whereas Pc 4 was a competitive inhibitor of 3H-PK11195 binding to the PBR, PK11195 did not inhibit the binding of 14C-Pc 4 to RKM. Further, 14C-Pc 4 binding to RKM showed no evidence of saturation up to 10 microM. Finally, when Pc 4-loaded CHO cells were exposed to activating red light, apoptosis was induced; Pc 4-PDT was less effective in causing apoptosis in a companion cell line overexpressing the antiapoptotic protein Bcl-2. For both cell lines, PK11195 inhibited PDT-induced apoptosis; however, the inhibition was transient and did not extend to overall cell death, as determined by clonogenic assay. The results demonstrate (1) the presence of low-affinity binding sites for Pc 4 on PBR; (2) the presence of multiple binding sites for Pc 4 in RKM and CHO cells other than those that influence PK11195 binding; and (3) the ability of high supersaturating levels of PK11195 to transiently inhibit apoptosis initiated by Pc 4-PDT, with less influence on overall cell killing. We conclude that the binding of Pc 4 to PBR is less relevant to the photocytotoxicity of Pc 4-PDT than are other mitochondrial events, such as photodamage to Bcl-2 and that the observed inhibition of Pc 4-PDT-induced apoptosis by PK11195 likely occurs through a mechanism independent of PBR.
Collapse
Affiliation(s)
- Rachel L Morris
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fennell DA, Corbo M, Pallaska A, Cotter FE. Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species. Br J Cancer 2001; 84:1397-404. [PMID: 11355954 PMCID: PMC2363650 DOI: 10.1054/bjoc.2001.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to apoptosis is a major obstacle preventing effective therapy for malignancy. Mitochondria localized anti-death proteins of the Bcl-2 family play a central role in inhibiting apoptosis and therefore present valid targets for novel therapy. The peripheral benzodiazepine receptor (PBR) shares a close physical association with the permeability transition pore complex (PTPC), a pivotal regulator of cell death located at mitochondrial contact sites. In this study we investigated the cytotoxicity of the PBR ligand, PK11195, in the micromolar concentration range. PK11195 induced antioxidant inhibitable collapse of the inner mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial swelling in HL60 human leukaemia cells, but not in SUDHL4 lymphoma cells (which exhibited a higher level of reduced glutathione and relative tolerance to chemotherapy or pro-oxidant induced DeltaPsi(m)dissipation). PK11195 induced the production of hydrogen peroxide that was not inhibited by Bcl-2 transfection, nor depletion of mitochondrial DNA. ROS production was however blocked by protonophore, implicating a requirement for DeltaPsi(m). Our findings suggest that PK11195-induced cytotoxicity relies upon Bcl-2 resistant generation of oxidative stress; a process only observed at concentrations several orders of magnitude higher that required to saturate its receptor.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's & The Royal London School of Medicine, Turner Street, London, E1 2AD, UK
| | | | | | | |
Collapse
|
20
|
Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF. The peripheral benzodiazepine receptors: a review. J Neurooncol 2001; 46:45-56. [PMID: 10896204 DOI: 10.1023/a:1006456715525] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peripheral benzodiazepine receptors (PBRs) have been identified in various peripheral tissues as well as in glial cells in the brain. This review describes the tissue and subcellular distribution of the PBR in mammalian tissues and analyzes its many putative endogenous ligands. It deals with the pharmacological, structural and molecular characterization of the PBR, the proteins associated with the receptor (VDAC, ANC, PRAX-1) and their roles in cell growth and differentiation, cancer, steroid biosynthesis, and other physiological roles.
Collapse
Affiliation(s)
- A Beurdeley-Thomas
- Laboratoire de Cytogénétique Moléculaire et Oncologie, CNRS UMR 147, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Klegeris A, McGeer EG, McGeer PL. Inhibitory action of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxam ide (PK 11195) on some mononuclear phagocyte functions. Biochem Pharmacol 2000; 59:1305-14. [PMID: 10736431 DOI: 10.1016/s0006-2952(00)00252-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral benzodiazepine receptors (PBRs) are widely distributed throughout the body, but their functions are unknown. They are found on mononuclear phagocytes, and they are up-regulated in a number of neurological and other disease states. We explored the functional consequences of PBR ligand binding to mononuclear-derived cells using the high-affinity ligands 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxam ide (PK 11195) and 4'-chlorodiazepam (7-chloro-5-(4'-chlorophenyl)-1, 3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one; Ro 5-4864). The functions were the following: respiratory burst; secretion of glutamate, interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha); toxicity of culture supernatants towards SH-SY5Y human neuroblastoma cells; and expression of the inflammatory surface markers HLA-DR and Fcgamma RII (CDw32). PK 11195 inhibited the respiratory burst response, reduced release of glutamate and IL-1beta, and suppressed secretion of products cytotoxic to neuronal cells. Selectivity was suggested by the failure of PK 11195 to influence TNF-alpha secretion or expression of HLA-DR and CDw32. Powerful ligands of PBRs, such as PK 11195, may be useful inhibitors of selective macrophage functions, retarding both local and systemic inflammation. Since PK 11195 readily enters the brain, it may be beneficial in treating central as well as peripheral inflammatory diseases.
Collapse
Affiliation(s)
- A Klegeris
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|