1
|
Xin Q, Wang J, Zheng J, Tan Y, Jia X, Ni Z, Xu Z, Feng J, Wu Z, Li Y, Li XM, Ma H, Hu H. Neuron-astrocyte coupling in lateral habenula mediates depressive-like behaviors. Cell 2025:S0092-8674(25)00411-8. [PMID: 40280131 DOI: 10.1016/j.cell.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
The lateral habenula (LHb) neurons and astrocytes have been strongly implicated in depression etiology, but it was not clear how the two dynamically interact during depression onset. Here, using multi-brain-region calcium photometry recording in freely moving mice, we discover that stress induces a most rapid astrocytic calcium rise and a bimodal neuronal response in the LHb. LHb astrocytic calcium requires the α1A-adrenergic receptor and depends on a recurrent neural network between the LHb and locus coeruleus (LC). Through the gliotransmitter glutamate and ATP/adenosine, LHb astrocytes mediate the second-wave LHb neuronal activation and norepinephrine (NE) release. Activation or inhibition of LHb astrocytic calcium signaling facilitates or prevents stress-induced depressive-like behaviors, respectively. These results identify a stress-induced positive feedback loop in the LHb-LC axis, with astrocytes being a critical signaling relay. The identification of this prominent neuron-glia interaction may shed light on stress management and depression prevention.
Collapse
Affiliation(s)
- Qianqian Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Junying Wang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jinkun Zheng
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoning Jia
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zijie Xu
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiao-Ming Li
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
2
|
Ulke C, Kayser J, Tenke CE, Mergl R, Sander C, Panier LY, Alvarenga JE, Fava M, McGrath PJ, Deldin PJ, McInnis MG, Trivedi MH, Weissman MM, Pizzagalli DA, Hegerl U, Bruder GE. EEG measures of brain arousal in relation to symptom improvement in patients with major depressive disorder: Results from a randomized placebo-controlled clinical trial. Psychiatry Res 2024; 342:116165. [PMID: 39316999 DOI: 10.1016/j.psychres.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
Hyperstable arousal regulation during a 15-min resting electroencephalogram (EEG) has been linked to a favorable response to antidepressants. The EMBARC study, a multicenter randomized placebo-controlled clinical trial, provides an opportunity to examine arousal stability as putative antidepressant response predictor in short EEG recordings. We tested the hypothesis that high arousal stability during a 2-min resting EEG at baseline is related to better outcome in the sertraline arm and explored the specificity of this effect. Outpatients with chronic/recurrent MDD were recruited from four university hospitals and randomized to treatment with sertraline (n = 100) or placebo (n = 104). The change in the Hamilton Rating Scale for Depression (HRSD-17) was the main outcome. Patients were stratified into high and low arousal stability groups. In mixed-model repeated measures (MMRM) analysis HRSD-17 change differed significantly between arousal groups, with high arousal stability being associated with a better outcome in the sertraline arm, and worse outcome in the placebo arm at week 4, with moderate effect sizes. When considering both treatment arms, a significant arousal group x time x treatment interaction emerged, highlighting specificity to the sertraline arm. Although findings indicate that arousal stability is likely to be a treatment-specific marker of response, further out-of-sample validation is warranted.
Collapse
Affiliation(s)
- Christine Ulke
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany.
| | - Jürgen Kayser
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Craig E Tenke
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Roland Mergl
- Institute of Psychology, University of the Bundeswehr Munich, Munich, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | | | | | - Maurizio Fava
- Depression Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick J McGrath
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Patricia J Deldin
- Departments of Psychology and Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - Melvin G McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Madhukar H Trivedi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Myrna M Weissman
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, USA
| | - Ulrich Hegerl
- Research Center of the German Depression Foundation, Leipzig, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt, Germany
| | - Gerard E Bruder
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
3
|
Xie M, Huang Y, Cai W, Zhang B, Huang H, Li Q, Qin P, Han J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sci 2024; 14:50. [PMID: 38248265 PMCID: PMC10813043 DOI: 10.3390/brainsci14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Patients with major depressive disorder (MDD) exhibit an abnormal physiological arousal pattern known as hyperarousal, which may contribute to their depressive symptoms. However, the neurobiological mechanisms linking this abnormal arousal to depressive symptoms are not yet fully understood. In this review, we summarize the physiological and neural features of arousal, and review the literature indicating abnormal arousal in depressed patients. Evidence suggests that a hyperarousal state in depression is characterized by abnormalities in sleep behavior, physiological (e.g., heart rate, skin conductance, pupil diameter) and electroencephalography (EEG) features, and altered activity in subcortical (e.g., hypothalamus and locus coeruleus) and cortical regions. While recent studies highlight the importance of subcortical-cortical interactions in arousal, few have explored the relationship between subcortical-cortical interactions and hyperarousal in depressed patients. This gap limits our understanding of the neural mechanism through which hyperarousal affects depressive symptoms, which involves various cognitive processes and the cerebral cortex. Based on the current literature, we propose that the hyperconnectivity in the thalamocortical circuit may contribute to both the hyperarousal pattern and depressive symptoms. Future research should investigate the relationship between thalamocortical connections and abnormal arousal in depression, and explore its implications for non-invasive treatments for depression.
Collapse
Affiliation(s)
- Musi Xie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Ying Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Wendan Cai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Bingqi Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Haonan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
- Pazhou Laboratory, Guangzhou 510330, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| |
Collapse
|
4
|
Sklivanioti Greenfield M, Wang Y, Msghina M. Behavioral, cortical and autonomic effects of single-dose escitalopram on the induction and regulation of fear and disgust: Comparison with single-session psychological emotion regulation with reappraisal. Front Psychiatry 2022; 13:988893. [PMID: 36684004 PMCID: PMC9845894 DOI: 10.3389/fpsyt.2022.988893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Adaptive and successful emotion regulation, the ability to flexibly exert voluntary control over emotional experience and the ensuing behavior, is vital for optimal daily functioning and good mental health. In clinical settings, pharmacological and psychological interventions are widely employed to modify pathological emotion processing and ameliorate its deleterious consequences. METHODS In this study, we investigated the acute effects of single-dose escitalopram on the induction and regulation of fear and disgust in healthy subjects. Furthermore, we compared these pharmacological effects with psychological emotion regulation that utilized a cognitive strategy with reappraisal. Emotion induction and regulation tasks were performed before and 4 h after ingestion of placebo or 10 mg escitalopram in a randomized, double-blind design. The International Affective Picture System (IAPS) was used as a source of images, with threat-related pictures selected for fear and disease and contamination-related pictures for disgust. Behavioral data, electrodermal activity (EDA), and functional near-infrared spectroscopy (fNIRS) recordings were collected. RESULTS Escitalopram significantly reduced emotion intensity for both fear and disgust during emotion induction, albeit with differing electrodermal and hemodynamic activity patterns for the two negative emotions. At rest, i.e., in the absence of emotive stimuli, escitalopram increased sympathetic activity during the fear but not during the disgust experiments. For both fear and disgust, emotion regulation with reappraisal was more effective in reducing emotion intensity compared to pharmacological intervention with escitalopram or placebo. DISCUSSION We concluded that emotion regulation with reappraisal and acute administration of escitalopram, but not placebo, reduce emotion intensity for both fear and disgust, with cognitive regulation being significantly more efficient compared to pharmacological regulation under the conditions of this study. Results from the fNIRS and EDA recordings support the concept of differential mechanisms of emotion regulation that could be emotion-specific.
Collapse
Affiliation(s)
| | - Yanlu Wang
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden.,MR Physics, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mussie Msghina
- Department of Clinical Neuroscience (CNS), Karolinska Institute, Stockholm, Sweden.,Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Re-assessing the catecholamine hypothesis of depression: the case of melancholic depression. Mol Psychiatry 2021; 26:6121-6124. [PMID: 33981005 DOI: 10.1038/s41380-021-01133-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
|
6
|
Ali SHK, Raja KWA, Irfan N, Habeeb M, Ismail Y. Antioxidants Supplementation in Acute Amitriptyline Abuse for Pain. Appl Biochem Biotechnol 2021; 194:556-569. [PMID: 34699040 DOI: 10.1007/s12010-021-03721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
The fundamental aim of this study is to establish the role of antioxidant supplementation in alleviating acute amitriptyline induced oxidative stress. The effect of supplementation was compared on treatment of acute amitriptyline intoxication cases for pain management, with alpha lipoic acid (ALA) alone or with vitamin C, with that of healthy individuals (group I), and those receiving only routine standard treatment (RST) as control (group II). A total of 132 human subjects divided into 5 groups were supplemented with either placebo, RST, RST with vitamin C, RST with ALA, or RST with vitamin C, and ALA. Results of this study revealed that the decrease in the level of oxidative stress and enzyme activity was observed among those supplemented with either alpha lipoic acid alone or along with vitamin C, with a slightly more decrease in the latter group. P value of < 0.001 was considered statistically significant. The percentage of benefit of treatment on supplementation with vitamin C and alpha lipoic acid showed a marked increase in group V cases after supplementation with both in combination. The results provided that the oxidative stress induced by acute amitriptyline poisoning is comparatively decreased by supplementation with antioxidants like alpha lipoic acid and vitamin C, than those only on routine standard treatment.
Collapse
Affiliation(s)
- S Hameed Kadar Ali
- School of Social Sciences, BSA Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - K Wasim Ali Raja
- Sri Lakshmi Narayana Institute of Medical Sciences, Puducherry, 605502, India
| | - N Irfan
- Crescent School of Pharmacy, BSA Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohammad Habeeb
- Crescent School of Pharmacy, BSA Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Y Ismail
- Crescent School of Pharmacy, BSA Crescent Institute of Science and Technology, Chennai, 600048, India
| |
Collapse
|
7
|
Alba-Delgado C, Mico JA, Berrocoso E. Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110121. [PMID: 33007320 DOI: 10.1016/j.pnpbp.2020.110121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023]
Abstract
The noradrenergic locus coeruleus nucleus is an important station in both the ascending and descending pain regulatory pathways. These neurons discharge in tonic and phasic modes in response to sensory stimuli. However, few studies have set out to characterize the electrophysiological response of the locus coeruleus to noxious stimuli in conditions of neuropathic pain. Thus, the effects of mechanical nociceptive stimulation of the sciatic nerve area on spontaneous (tonic) and sensory-evoked (phasic) locus coeruleus discharge were studied by extracellular recording in anesthetized rats seven, fourteen and twenty-eight days after chronic constriction injury. Minor significant electrophysiological changes were found seven and fourteen days after nerve injury. However, alterations to the spontaneous activity in both the ipsilateral and contralateral locus coeruleus were found twenty-eight days after nerve constriction, as witnessed by an increase of burst firing incidence and irregular firing patterns. Furthermore, noxious-evoked responses were exacerbated in the contralateral and ipsilateral nucleus at twenty-eight days after injury, as were the responses evoked when stimulating the uninjured paw. In addition, mechanical stimulation of the hindpaw produced a significant sensitization of neuronal tonic activity after 28 days of neuropathy. In summary, long-term nerve injury led to higher spontaneous activity and exacerbated noxious-evoked responses in the locus coeruleus to stimulation of nerve-injured and even uninjured hindpaws, coinciding temporally with the development of depressive and anxiogenic-like behavior.
Collapse
Affiliation(s)
| | - Juan Antonio Mico
- Neuropsychopharmacology Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cádiz, Spain.
| |
Collapse
|
8
|
Hayashida KI, Obata H. Strategies to Treat Chronic Pain and Strengthen Impaired Descending Noradrenergic Inhibitory System. Int J Mol Sci 2019; 20:ijms20040822. [PMID: 30769838 PMCID: PMC6412536 DOI: 10.3390/ijms20040822] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Gabapentinoids (gabapentin and pregabalin) and antidepressants (tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors) are often used to treat chronic pain. The descending noradrenergic inhibitory system from the locus coeruleus (LC) to the dorsal horn of the spinal cord plays an important role in the analgesic mechanisms of these drugs. Gabapentinoids activate the LC by inhibiting the release of γ-aminobutyric acid (GABA) and inducing the release of glutamate, thereby increasing noradrenaline levels in the spinal cord. Antidepressants increase noradrenaline levels in the spinal cord by inhibiting reuptake, and accumulating noradrenaline inhibits chronic pain through α2-adrenergic receptors in the spinal cord. Recent animal studies, however, revealed that the function of the descending noradrenergic inhibitory system is impaired in chronic pain states. Other recent studies found that histone deacetylase inhibitors and antidepressants restore the impaired noradrenergic descending inhibitory system acting on noradrenergic neurons in the LC.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashida
- Doctorial Course in Medicine, Organ Function-Oriented Medicine, Akita University Graduate School of Medicine;1-1-1, Hondo, Akita-City, Akita 010-8543, Japan.
| | - Hideaki Obata
- Center for Pain Management and Department of Anesthesiology, Fukushima Medical University; 1 Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan.
| |
Collapse
|
9
|
The onset of treatment with the antidepressant desipramine is critical for the emotional consequences of neuropathic pain. Pain 2018; 159:2606-2619. [DOI: 10.1097/j.pain.0000000000001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci 2017; 18:ijms18112483. [PMID: 29160850 PMCID: PMC5713449 DOI: 10.3390/ijms18112483] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022] Open
Abstract
Tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors are used to treat chronic pain, such as neuropathic pain. Why antidepressants are effective for treatment of neuropathic pain and the precise mechanisms underlying their effects, however, remain unclear. The inhibitory effects of these antidepressants for neuropathic pain manifest more quickly than their antidepressive effects, suggesting different modes of action. Recent studies of animal models of neuropathic pain revealed that noradrenaline is extremely important for the inhibition of neuropathic pain. First, increasing noradrenaline in the spinal cord by reuptake inhibition directly inhibits neuropathic pain through α2-adrenergic receptors. Second, increasing noradrenaline acts on the locus coeruleus and improves the function of an impaired descending noradrenergic inhibitory system. Serotonin and dopamine may reinforce the noradrenergic effects to inhibit neuropathic pain. The mechanisms of neuropathic pain inhibition by antidepressants based mainly on experimental findings from animal models of neuropathic pain are discussed in this review.
Collapse
|
11
|
Torres-Sanchez S, Perez-Caballero L, Mico JA, Celada P, Berrocoso E. Effect of Deep Brain Stimulation of the ventromedial prefrontal cortex on the noradrenergic system in rats. Brain Stimul 2017; 11:222-230. [PMID: 29074339 DOI: 10.1016/j.brs.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the subgenual cingulate cortex (SCC) is a promising therapeutic alternative to treat resistant major depressive disorder. In preclinical studies, DBS of the ventromedial prefrontal cortex (vmPFC, the rodent SCC correlate) provokes an antidepressant-like effect, along with changes in noradrenaline levels at the site of stimulation. Hence, DBS appears to activate the noradrenergic-locus coeruleus (LC) system. OBJECTIVE/HYPOTHESIS The aim of this study was to evaluate the effect of vmPFC DBS on the electrical activity of noradrenergic LC neurons, cortical oscillations and coherence between both brain areas in male rats. METHODS The antidepressant-like effect of vmPFC DBS was evaluated through the forced swimming test. Tonic and evoked activity of LC neurons, LC activity of alpha2-adrenoceptors, local field potentials from LC and electrocorticogram signals were studied after DBS by electrophysiological recordings in anaesthetized rats. The effect of DBS on tyrosine hydroxylase (TH), noradrenaline transporters (NAT), phosphorylation of the extracellular signal-regulated kinase (ERK) and corticotropin releasing factor (CRF) expression in the LC were measured by western blot assays. RESULTS DBS induced an antidepressant-like effect increasing climbing behaviour in the FST that was accompanied by a robust increase of TH expression in the rat LC. The tonic and evoked activity of LC neurons was enhanced by DBS, which impaired alpha2-adrenoceptors activity. DBS also promoted an increase in slow LC oscillations, as well as a shift in LC-cortical coherence. CONCLUSION DBS of the vmPFC appears to affect the LC, producing changes that may underlie its antidepressant-like effects.
Collapse
Affiliation(s)
- Sonia Torres-Sanchez
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Cádiz, Spain; CIBER of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Laura Perez-Caballero
- CIBER of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, Area of Psychobiology, University of Cádiz, Puerto Real, Cádiz, Spain
| | - Juan A Mico
- CIBER of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
| | - Pau Celada
- CIBER of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain; Institut d'Investigacions Biomèdiques de Barcelona IIBB-CSIC, Department of Neurochemistry and Neuropharmacology, Barcelona, Spain
| | - Esther Berrocoso
- CIBER of Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, Area of Psychobiology, University of Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
12
|
Dohrmann AL, Stengler K, Jahn I, Olbrich S. EEG-arousal regulation as predictor of treatment response in patients suffering from obsessive compulsive disorder. Clin Neurophysiol 2017; 128:1906-1914. [PMID: 28826021 DOI: 10.1016/j.clinph.2017.07.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Aim of this study was to analyze whether electroencephalogram (EEG)-based CNS-arousal markers differ for patients suffering from obsessive compulsive disorder (OCD) that either respond or do not respond to cognitive behavioral therapy (CBT), selective serotonin reuptake inhibitors (SSRIs) or their combination. Further the study aimed to identify specific response-predictors for the different therapy approaches. METHODS CNS-arousal from 51 unmedicated patients during fifteen-minute resting state was assessed using VIGALL (Vigilance Algorithm Leipzig). Clinical Global Impression (CGI) scores were used to assess response or non-response after three to six months following therapy (CBT, n=18; SSRI, n=11 or combination, n=22). Differences between Responders (R) and Non-Responders (NR) were identified using multivariate analysis of covariance (MANCOVA) models. RESULTS MANCOVA revealed that Responders spent significant less time at the highest CNS-arousal stage 0. Further, low amounts of the highest CNS-arousal stages were specifically predictive for a response to a combined treatment approach. CONCLUSIONS The fact that CNS-arousal markers allowed discrimination between Responders and Non-Responders and also between Responders of different treatment arms underlines a possible clinical value of EEG-based markers. SIGNIFICANCE These results encourage further research on EEG-arousal regulation for determining pathophysiological subgroups for treatment response.
Collapse
Affiliation(s)
- Anna-Lena Dohrmann
- Department for Psychiatry and Psychotherapy, University Leipzig, Germany.
| | - Katarina Stengler
- Department for Psychiatry and Psychotherapy, University Leipzig, Germany
| | - Ina Jahn
- Department for Psychiatry and Psychotherapy, University Leipzig, Germany
| | | |
Collapse
|
13
|
Affiliation(s)
| | - Terri Levien
- Drug Information Center, Washington State University Spokane
| | - Danial E. Baker
- Drug Information Center, College of Pharmacy, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
14
|
Antkiewicz-Michaluk L, Romańska I, Wąsik A, Michaluk J. Antidepressant-Like Effect of the Endogenous Neuroprotective Amine, 1MeTIQ in Clonidine-Induced Depression: Behavioral and Neurochemical Studies in Rats. Neurotox Res 2017; 32:94-106. [PMID: 28367606 PMCID: PMC5487857 DOI: 10.1007/s12640-017-9715-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/05/2022]
Abstract
Biogenic amines such as norepinephrine, dopamine, and serotonin play a well-described role in the treatment of mood disorders especially depression. Animal models are widely used to study antidepressant-like effect in rodents; however, it should be taken into account that pharmacological models do not always answer to the complexity of the disease processes. This study verified the behavioral (forced swim test (FST), locomotor activity test) and neurochemical effects (monoamines metabolism) of a low dose of clonidine (0.1 mg/kg i.p.) which was used as an experimental model of depression. In such pharmacological model, we investigated the antidepressant-like effect of an endogenous neuroprotective amine, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) administered in a dose of 25 mg/kg (i.p.) before clonidine in the behavioral and neurochemical tests carried out in rats. The behavioral study has shown that clonidine produced depression in the locomotor activity test but did not cause pro-depressive effect in the FST. 1MeTIQ produced antidepressant-like effect in the FST and completely antagonized clonidine-induced sedation in the locomotor activity test. Neurochemical data demonstrated that clonidine produced a significant inhibition of monoamine metabolism in the central nervous system. The release of dopamine, noradrenaline, and serotonin as well as the rate of their metabolism were diminished in the investigated brain structures (frontal cortex, hypothalamus, and striatum). 1MeTIQ completely antagonized the clonidine-induced depression of monoaminergic systems and restored their levels to the control values. 1MeTIQ as an endogenous neuroprotective compound with a distinct antidepressant-like activity in rodents produces hope on the efficiency of antidepressant medicines for future practical clinical use.
Collapse
Affiliation(s)
- Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| | - Irena Romańska
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Jerzy Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| |
Collapse
|
15
|
Schmidt FM, Sander C, Dietz ME, Nowak C, Schröder T, Mergl R, Schönknecht P, Himmerich H, Hegerl U. Brain arousal regulation as response predictor for antidepressant therapy in major depression. Sci Rep 2017; 7:45187. [PMID: 28345662 PMCID: PMC5366924 DOI: 10.1038/srep45187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
A tonically high level of brain arousal and its hyperstable regulation is supposed to be a pathogenic factor in major depression. Preclinical studies indicate that most antidepressants may counteract this dysregulation. Therefore, it was hypothesized that responders to antidepressants show a) a high level of EEG-vigilance (an indicator of brain arousal) and b) a more stable EEG-vigilance regulation than non-responders. In 65 unmedicated depressed patients 15-min resting-state EEGs were recorded off medication (baseline). In 57 patients an additional EEG was recorded 14 ± 1 days following onset of antidepressant treatment (T1). Response was defined as a ≥50% HAMD-17-improvement after 28 ± 1 days of treatment (T2), resulting in 29 responders and 36 non-responders. Brain arousal was assessed using the Vigilance Algorithm Leipzig (VIGALL 2.1). At baseline responders and non-responders differed in distribution of overall EEG-vigilance stages (F2,133 = 4.780, p = 0.009), with responders showing significantly more high vigilance stage A and less low vigilance stage B. The 15-minutes Time-course of EEG-vigilance did not differ significantly between groups. Exploratory analyses revealed that responders showed a stronger decline in EEG-vigilance levels from baseline to T1 than non-responders (F2,130 = 4.978, p = 0.005). Higher brain arousal level in responders to antidepressants supports the concept that dysregulation of brain arousal is a possible predictor of treatment response in affective disorders.
Collapse
Affiliation(s)
- Frank M. Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
- Research Center of the German Depression Foundation, Leipzig, Germany
| | - Marie-Elisa Dietz
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
| | - Claudia Nowak
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
| | - Thomas Schröder
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
| | - Roland Mergl
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
- Saxonian Hospital Arnsdorf, Arnsdorf, Germany
| | - Hubertus Himmerich
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, D-04103, Leipzig, Germany
- Research Center of the German Depression Foundation, Leipzig, Germany
| |
Collapse
|
16
|
Borges G, Miguelez C, Neto F, Mico JA, Ugedo L, Berrocoso E. Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats. Int J Neuropsychopharmacol 2017; 20:463. [PMID: 28158734 PMCID: PMC5458337 DOI: 10.1093/ijnp/pyx005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is increasing evidence suggesting that the Locus Coeruleus plays a role in pain-related anxiety. Indeed, we previously found that prolonged arthritis produces anxiety-like behavior in rats, along with enhanced expression of phosphorylated extracellular signal-regulated kinase 1/2 (a marker of plasticity) in the Locus Coeruleus. However, it is unknown how this effect correlates with the electrophysiological activity of Locus Coeruleus neurons or pain-related anxiety. METHODS Using the complete Freund's adjuvant model of monoarthritis in male Sprague-Dawley rats, we studied the behavioral attributes of pain and anxiety as well as Locus Coeruleus electrophysiology in vivo 1 (MA1W) and 4 weeks (MA4W) after disease induction. RESULTS The manifestation of anxiety in MA4W was accompanied by dampened tonic Locus Coeruleus activity, which was coupled to an exacerbated evoked Locus Coeruleus response to noxious stimulation of the inflamed and healthy paw. When a mitogen-activating extracellular kinase inhibitor was administered to the contralateral Locus Coeruleus of MA4W, the phosphorylated extracellular signal-regulated kinase 1/2 levels in the Locus Coeruleus were restored and the exaggerated evoked response was blocked, reversing the anxiogenic-like behavior while pain hypersensitivity remained unaltered. CONCLUSION As phosphorylated extracellular signal-regulated kinase 1/2 blockade in the Locus Coeruleus relieved anxiety and counteracted altered LC function, we propose that phosphorylated extracellular signal-regulated kinase 1/2 activation in the Locus Coeruleus plays a crucial role in pain-related anxiety.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| | - Cristina Miguelez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| | - Fani Neto
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| | - Juan Antonio Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| | - Luisa Ugedo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain (Drs Borges and Mico); Departamento de Biomedicina-Unidade de Biologia Experimental, da Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal (Drs Borges and Neto); Instituto de Biologia Molecular e Celular (IBMC) e Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal (Drs Borges and Neto); Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain (Drs Miguelez and Ugedo); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain (Drs Mico and Berrocoso); Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain (Dr Berrocoso); Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain (Drs Mico and Berrocoso)
| |
Collapse
|
17
|
Wittekind DA, Spada J, Gross A, Hensch T, Jawinski P, Ulke C, Sander C, Hegerl U. Early report on brain arousal regulation in manic vs depressive episodes in bipolar disorder. Bipolar Disord 2016; 18:502-510. [PMID: 27759213 DOI: 10.1111/bdi.12440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The arousal regulation model of affective disorders attributes an important role in the pathophysiology of affective disorders to dysregulation of brain arousal regulation. According to this model, sensation avoidance and withdrawal in depression and sensation seeking and hyperactivity in mania can be explained as auto-regulatory attempts to counteract a tonically high (depression) or unstable (mania) arousal. The aim of this study was to compare brain arousal regulation between manic and depressive bipolar patients and healthy controls. We hypothesized that currently depressed patients with bipolar disorder show hyperstable arousal regulation, while currently manic patients show unstable arousal regulation. METHODS Twenty-eight patients with bipolar disorder received a 15-min resting electroencephalogram (EEG) during a depressive episode and 19 patients received the same during a manic/hypomanic episode. Twenty-eight healthy control subjects were matched for age and sex. The Vigilance Algorithm Leipzig (VIGALL), which classifies 1-s EEG segments as one of seven EEG-vigilance substages, was used to measure brain arousal regulation. RESULTS Manic patients showed more unstable EEG-vigilance regulation as compared to the control sample (P = .004) and to patients with a depressive episode (P ≤ .001). Depressive patients had significantly higher mean vigilance levels (P = .045) than controls. CONCLUSIONS A clear difference was found in the regulation of brain arousal of manic patients vs depressive patients and controls. These data suggest that brain arousal might depend on the current mood state, which would support the arousal regulation model of affective disorders.
Collapse
Affiliation(s)
| | - Janek Spada
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Alexander Gross
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany
| | - Philippe Jawinski
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Christine Ulke
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016; 338:93-113. [PMID: 27267247 DOI: 10.1016/j.neuroscience.2016.05.057] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
The noradrenergic system is crucial for several activities in the body, including the modulation of pain. As the major producer of noradrenaline (NA) in the central nervous system (CNS), the Locus Coeruleus (LC) is a nucleus that has been studied in several pain conditions, mostly due to its strategic location. Indeed, apart from a well-known descending LC-spinal pathway that is important for pain control, an ascending pathway passing through this nucleus may be responsible for the noradrenergic inputs to higher centers of the pain processing, such as the limbic system and frontal cortices. Thus, the noradrenergic system appears to modulate different components of the pain experience and accordingly, its manipulation has distinct behavioral outcomes. The main goal of this review is to bring together the data available regarding the noradrenergic system in relation to pain, particularly focusing on the ascending and descending LC projections in different conditions. How such findings influence our understanding of these conditions is also discussed.
Collapse
|
19
|
Olbrich S, Tränkner A, Surova G, Gevirtz R, Gordon E, Hegerl U, Arns M. CNS- and ANS-arousal predict response to antidepressant medication: Findings from the randomized iSPOT-D study. J Psychiatr Res 2016; 73:108-15. [PMID: 26714202 DOI: 10.1016/j.jpsychires.2015.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 11/26/2022]
Abstract
Arousal systems are one of the recently announced NIMH Research Domain Criteria to inform future diagnostics and treatment prediction. In major depressive disorder (MDD), altered central nervous system (CNS) wakefulness regulation and an increased sympathetic autonomic nervous system (ANS) activity have been identified as biomarkers with possible discriminative value for prediction of antidepressant treatment response. Therefore, the hypothesis of a more pronounced decline of CNS and ANS-arousal being predictive for a positive treatment outcome to selective-serotonin-reuptake-inhibitor (SSRI) treatment was derived from a small, independent exploratory dataset (N = 25) and replicated using data from the randomized international Study to Predict Optimized Treatment Response in Depression (iSPOT-D). There, 1008 MDD participants were randomized to either a SSRI (escitalopram or sertraline) or a serotonin-norepinephrine-reuptake-inhibitor (SNRI-venlafaxine) arm. Treatment response was established after eight weeks using the 17-item Hamilton Rating Scale for Depression. CNS-arousal (i.e. electroencephalogram-vigilance), ANS-arousal (heart rate) and their change across time were assessed during rest. Responders and remitters to SSRI treatment were characterized by a faster decline of CNS-arousal during rest whereas SNRI responders showed a significant increase of ANS-arousal. Furthermore, SSRI responders/remitters showed an association between ANS- and CNS-arousal regulation in comparison to non-responders/non-remitters while this was not the case for SNRI treatment arm. Since positive treatment outcome to SSRI and SNRI was linked to distinct CNS and ANS-arousal profiles, these predictive markers probably are not disorder specific alterations but reflect the responsiveness of the nervous system to specific drugs.
Collapse
Affiliation(s)
- Sebastian Olbrich
- Dept. of Psychiatry and Psychotherapy, University of Leipzig, Germany; Dept. of Psychiatry, Psychotherapy and Psychosomatic, University Zürich, Switzerland.
| | - Anja Tränkner
- Dept. of Psychiatry and Psychotherapy, University of Leipzig, Germany
| | - Galina Surova
- Dept. of Psychiatry and Psychotherapy, University of Leipzig, Germany
| | | | - Evian Gordon
- Brain Resource Ltd, Sydney, NSW, Australia; Brain Resource Ltd, San Francisco, CA, USA
| | - Ulrich Hegerl
- Dept. of Psychiatry and Psychotherapy, University of Leipzig, Germany
| | - Martijn Arns
- Dept. of Experimental Psychology, Utrecht University, Utrecht, The Netherlands; Research Institute Brainclinics, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Szot P, Franklin A, Miguelez C, Wang Y, Vidaurrazaga I, Ugedo L, Sikkema C, Wilkinson CW, Raskind MA. Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine. Neuropharmacology 2015; 101:76-86. [PMID: 26362360 DOI: 10.1016/j.neuropharm.2015.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/01/2015] [Accepted: 09/03/2015] [Indexed: 01/23/2023]
Abstract
Depression is a common co-morbid condition most often observed in subjects with mild cognitive impairment (MCI) and during the early stages of Alzheimer's disease (AD). Dysfunction of the central noradrenergic nervous system is an important component in depression. In AD, locus coeruleus (LC) noradrenergic neurons are significantly reduced pathologically and the reduction of LC neurons is hypothesized to begin very early in the progression of the disorder; however, it is not known if dysfunction of the noradrenergic system due to early LC neuronal loss is involved in mediating depression in early AD. Therefore, the purpose of this study was to determine in an animal model if a loss of noradrenergic LC neurons results in depressive-like behavior. The LC noradrenergic neuronal population was reduced by the bilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA) directly into the LC. Forced swim test (FST) was performed three weeks after the administration of 6-OHDA (5, 10 and 14 μg/μl), animals administered the 5 μg/μl of 6-OHDA demonstrated a significant increase in immobility, indicating depressive-like behavior. This increase in immobility at the 5 μg/μl dose was observed with a minimal loss of LC noradrenergic neurons as compared to LC neuronal loss observed at 10 and 14 μg/μl dose. A significant positive correlation between the number of surviving LC neurons after 6-OHDA and FST immobile time was observed, suggesting that in animals with a minimal loss of LC neurons (or a greater number of surviving LC neurons) following 6-OHDA demonstrated depressive-like behavior. As the 6-OHDA-induced loss of LC neurons is increased, the time spent immobile is reduced. Depressive-like behavior was also observed with the 5 μg/μl dose of 6-OHDA with a second behavior test, sucrose consumption. FST increased immobility following 6-OHDA (5 μg/μl) was reversed by the administration of a single dose of L-1-3-4-dihydroxyphenylalanine (DOPA) or l-threo-3,4-dihydroxyphenylserine (DOPS) prior to behavioral assessment. Surviving LC neurons 3 weeks after 6-OHDA (5 μg/μl) demonstrated compensatory changes of increased firing frequency, a more irregular firing pattern, and a higher percentage of cells firing in bursts. These results indicate that depressive-like behavior in mice is observed following the administration of 6-OHDA and the loss of LC noradrenergic neurons; however, the depressive-like behavior correlates positively with the number of surviving LC neurons with 6-OHDA administration. This data suggests the depression observed in MCI subjects and in the early stages of AD may due to the hypothesized early, minimal loss of LC neurons with remaining LC neurons being more active than normal.
Collapse
Affiliation(s)
- Patricia Szot
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - Allyn Franklin
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Yangqing Wang
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Igor Vidaurrazaga
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Carl Sikkema
- Geriatric Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Charles W Wilkinson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Murray A Raskind
- Mental Illness Research, Education and Clinical Center, Veterans Administration Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Li J, Meng H, Cao W, Qiu T. MiR-335 is involved in major depression disorder and antidepressant treatment through targeting GRM4. Neurosci Lett 2015; 606:167-72. [PMID: 26314506 DOI: 10.1016/j.neulet.2015.08.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023]
Abstract
Major depressive disorder (MDD) is a prevalent mood disorder. Treatment of MDD includes a variety of biopsychosocial approaches. Glutamate receptor, metabotropic 4 (GRM4) has been implicated in the regulation of MDD and it is seen as an attractive target for drug discovery and development. Here we reported using cellular assays and blood samples from MDD patients and showed that miR-335 was downregulated in individuals with depression compared with healthy controls. Additionally, we confirmed that miR-335 can directly target GRM4, which can further regulated the expression of miR-335. Antidepressant drug treatment with citalopram can upregulate miR-335 expression and downregulate GRM4 expression. These results suggest that miR-335 is associated with the pathophysiology of depression and is a potential target for new antidepressant treatments.
Collapse
Affiliation(s)
- Jing Li
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016, China
| | - Huaqing Meng
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016, China.
| | - Wan Cao
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016, China
| | - Tian Qiu
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016, China
| |
Collapse
|
23
|
Marcinkiewcz CA, Devine DP. Modulation of OCT3 expression by stress, and antidepressant-like activity of decynium-22 in an animal model of depression. Pharmacol Biochem Behav 2015; 131:33-41. [PMID: 25597272 DOI: 10.1016/j.pbb.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
The organic cation transporter-3 (OCT3) is a glucocorticoid-sensitive uptake mechanism that has been shown to regulate the bioavailability of monoamines in brain regions that are implicated in the pathophysiology of depression. In the present study, the relative impacts of acute stress alone and acute stress with a history of repeated stress (chronic+acute) were evaluated in two strains of rats: the stress-vulnerable Wistar-Kyoto (WKY) strain and the somewhat more stress-resilient Long-Evans (LE) strain. OCT3 mRNA was significantly upregulated in the hippocampus of LE rats 2h after exposure to acute restraint stress, but not in acutely-restrained rats with a history of repeated social defeat stress. WKY rats exhibited a very different pattern. OCT3 mRNA was unaffected by acute restraint stress alone but was robustly upregulated after repeated+acute stress. There was also a corresponding increase in cytosolic OCT3 protein following repeated+acute stress in WKY rats 3h after presentation of the acute stressor. These results are consistent with the hypothesis that altered expression of the OCT3 may play a role in stress coping, and strain differences in regulation of this expression may contribute to differences in physiological and behavioral responses to stress. Furthermore, the OCT3 inhibitor, decynium 22 (1 and 10μg/kg, i.p.) reduced immobility of WKY rats, but not that of LE rats, in the forced swim test, suggesting that blockade of the OCT3 has antidepressant-like effects. Since WKY rats also appear to be resistant to the behavioral effects of traditional antidepressants, this also suggests that OCT3 antagonism may be an alternative therapeutic strategy for the treatment of depression in individuals who do not respond to conventional antidepressants.
Collapse
Affiliation(s)
- C A Marcinkiewcz
- University of Florida, Department of Neuroscience, McKnight Brain Institute, Gainesville, FL 32610-0015, USA
| | - D P Devine
- University of Florida, Department of Neuroscience, McKnight Brain Institute, Gainesville, FL 32610-0015, USA; University of Florida, Department of Psychology, Behavioral and Cognitive Neuroscience Program, Gainesville, FL 32611-2250, USA.
| |
Collapse
|
24
|
Effects of Acute Intracerebroventricular Microinfusions of Bupropion on Background Spike Activity of Locus Coeruleus Neurons in Rats. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int J Neuropsychopharmacol 2014; 17:1569-78. [PMID: 24925192 DOI: 10.1017/s1461145714000662] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects.
Collapse
|
26
|
van Zyl PJ, Dimatelis JJ, Russell VA. Changes in behavior and ultrasonic vocalizations during antidepressant treatment in the maternally separated Wistar-Kyoto rat model of depression. Metab Brain Dis 2014; 29:495-507. [PMID: 24338028 DOI: 10.1007/s11011-013-9463-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/22/2013] [Indexed: 01/08/2023]
Abstract
Genetic predisposition and stress are major factors in depression. The objective of this study was to establish a robust animal model of depression by selecting the appropriate substrain of the Wistar-Kyoto (WKY) rat, and subjecting these rats to the stress of maternal separation during the early stages of development. The initial experiment identified WKY/NCrl as the appropriate substrain of WKY to use for the study. In the second part of the study, depression-like behavior and ultrasonic vocalizations (USVs) were recorded in WKY/NCrl and maternally separated WKY/NCrl rats during the course of reversal of depression-like behavior. Wistar rats served as the reference strain. In adulthood, non-separated WKY/NCrl, maternally separated WKY/NCrl and Wistar rats were injected intraperitoneally with either saline or desipramine (15 mg/kg/day) for 15 days and their behavior recorded. Desipramine decreased immobility and increased active swimming and struggling behavior of WKY/NCrl in the FST and also decreased their USVs in response to removal of cage mates. The USVs in this study appeared to signal an attempt to re-establish social contact with cage mates and provided a measure of social dependence. Maternally separated WKY/NCrl rats displayed more anxiety than normally reared WKY/NCrl rats and responded to the anxiolytic effects of desipramine. The present findings support the use of WKY/NCrl as an animal model of depression. Maternal separation increased the anxiety-like behavior of the WKY/NCrl, thus providing a robust model to study depression- and anxiety-related behavior.
Collapse
Affiliation(s)
- P J van Zyl
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa,
| | | | | |
Collapse
|
27
|
Inherited behaviors, BDNF expression and response to treatment in a novel multifactorial rat model for depression. Int J Neuropsychopharmacol 2014; 17:945-55. [PMID: 24513109 DOI: 10.1017/s1461145714000030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a common and devastating mental illness behaviorally characterized by various symptoms, including reduced motivation, anhedonia and psychomotor retardation. Although the etiology of MDD is still obscure, a genetic predisposition appears to play an important role. Here we used, for the first time, a multifactorial selective breeding procedure to generate a distinct 'depressed' rat line (DRL); our selection was based upon mobility in the forced swim test, sucrose preference and home-cage locomotion, three widely used tests associated with core characteristics of MDD. Other behavioral effects of the selection process, as well as changes in brain-derived neurotrophic factor (BDNF) and the response to three antidepressant treatments, were also examined. We show that decreased mobility in the forced swim test and decreased sucrose preference (two directly selected traits), as well as decreased exploration in the open field test (an indirectly selected trait), are hereditary components in DRL rats. In addition, lower BDNF levels are observed in the dorsal hippocampus of DRL rats, complying with the neurotrophic hypothesis of depression. Finally, electroconvulsive shocks (ECS) but not pharmacological treatment normalizes both the depressive-like behavioral impairments and the BDNF-related molecular alterations in DRL rats, highlighting the need for robust treatment when the disease is inherited and not necessarily triggered by salient chronic stress. We therefore provide a novel multifactorial genetic rat model for depression-related behaviors. The model can be used to further study the etiology of the disease and suggest molecular correlates and possible treatments for the disease.
Collapse
|
28
|
Naderi S, Ghaderi Pakdel F, Ashrafi Osalou M, Cankurt U. Acute systemic infusion of bupropion decrease formalin induced pain behavior in rat. Korean J Pain 2014; 27:118-24. [PMID: 24748939 PMCID: PMC3990819 DOI: 10.3344/kjp.2014.27.2.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/05/2022] Open
Abstract
Background The chronic pain can disturb physical, psychological, and social performances. Analgesic agents are widely used but some antidepressants (ADs) showed analgesia also. Bupropion is using for smoke cessation but it can change morphine withdrawal signs such as pain. This study tested the acute systemic effect of bupropion on formalin induced pain behavior in rats. Methods Wistar male healthy rats were divided into 7 groups (control, sham, and 5 treated groups with 10, 30, 90, 120, and 200 mg/kg of bupropion, i.p.). The bupropion injected 3 hours prior to formalin induced pain behavior. Formalin (50 µl, 2.5%) was injected subcutaneously in dorsal region of right hindpaw in all animals. Nociceptive signs were observed continuously on-line and off-line each minute. Common pain scoring was used for pain assessment. Results The analysis of data by one-way ANOVA showed that bupropion can reduce pain scores in the second phase but not in first phase. Bupropion decreased the licking/biting duration significantly in first and second phase of formalin test. Conclusions The results showed that bupropion has analgesic effects at systemic application. The change of second phase of the pain behavior was significant and it revealed that central mechanisms involve in bupropion analgesia.
Collapse
Affiliation(s)
- Somayyeh Naderi
- Danesh Pey Hadi Co., Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz Ghaderi Pakdel
- Neurophysiology Resaerch Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. ; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Ashrafi Osalou
- Department of Histology & Embryology, School of Medicine, Dokuz EyluL University (DEU), Izmir, Turkey
| | - Ulker Cankurt
- Department of Histology & Embryology, School of Medicine, Dokuz EyluL University (DEU), Izmir, Turkey
| |
Collapse
|
29
|
Fentress HM, Klar R, Krueger JJ, Sabb T, Redmon SN, Wallace NM, Shirey-Rice JK, Hahn MK. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior. GENES, BRAIN, AND BEHAVIOR 2013; 12:749-59. [PMID: 24102798 PMCID: PMC3852905 DOI: 10.1111/gbb.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/26/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023]
Abstract
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders.
Collapse
Affiliation(s)
- H M Fentress
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: The role of the locus coeruleus. Pain 2013; 154:2014-2023. [DOI: 10.1016/j.pain.2013.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/28/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022]
|
31
|
Targowska-Duda KM, Jozwiak K, Arias HR. Role of the nicotinic receptor β4 subunit in the antidepressant activity of novel N,6-dimethyltricyclo[5.2.1.02,6]decan-2-amine enantiomers. Neurosci Lett 2013; 553:186-90. [DOI: 10.1016/j.neulet.2013.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 01/04/2023]
|
32
|
Torres-Sanchez S, Alba-Delgado C, Llorca-Torralba M, Mico JA, Berrocoso E. Effect of tapentadol on neurons in the locus coeruleus. Neuropharmacology 2013; 72:250-8. [DOI: 10.1016/j.neuropharm.2013.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
|
33
|
Tsen P, El Mansari M, Blier P. Effects of repeated electroconvulsive shocks on catecholamine systems: Electrophysiological studies in the rat brain. Synapse 2013; 67:716-27. [DOI: 10.1002/syn.21685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/21/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mostafa El Mansari
- Institute of Mental Health Research, University of Ottawa; Ottawa; Ontario; K1Z 7K4; Canada
| | | |
Collapse
|
34
|
Abstract
While antidepressants are supposed to exert similar effects on mood and drive via various mechanisms of action, diverging effects are observed regarding side-effects and accordingly on neural correlates of motivation, emotion, reward and salient stimuli processing as a function of the drugs impact on neurotransmission. In the context of erotic stimulation, a unidirectional modulation of attentional functioning despite opposite effects on sexual arousal has been suggested for the selective serotonin reuptake-inhibitor (SSRI) paroxetine and the selective dopamine and noradrenaline reuptake-inhibitor (SDNRI) bupropion. To further elucidate the effects of antidepressant-related alterations of neural attention networks, we investigated 18 healthy males under subchronic administration (7 d) of paroxetine (20 mg), bupropion (150 mg) and placebo within a randomized placebo-controlled cross-over double-blind functional magnetic resonance imaging (fMRI) design during an established preceding attention task. Neuropsychological effects beyond the fMRI-paradigm were assessed by measuring alertness and divided attention. Comparing preceding attention periods of salient vs. neutral pictures, we revealed congruent effects of both drugs vs. placebo within the anterior midcingulate cortex, dorsolateral prefrontal cortex, anterior prefrontal cortex, superior temporal gyrus, anterior insula and the thalamus. Relatively decreased activation in this network was paralleled by slower reaction times in the divided attention task in both verum conditions compared to placebo. Our results suggest similar effects of antidepressant treatments on behavioural and neural attentional functioning by diverging neurochemical pathways. Concurrent alterations of brain regions within a fronto-parietal and cingulo-opercular attention network for top-down control could point to basic neural mechanisms of antidepressant action irrespective of receptor profiles.
Collapse
|
35
|
Role of GIRK channels on the noradrenergic transmission in vivo: an electrophysiological and neurochemical study on GIRK2 mutant mice. Int J Neuropsychopharmacol 2013; 16:1093-104. [PMID: 23040084 DOI: 10.1017/s1461145712000971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dysfunctional noradrenergic transmission is related to several neuropsychiatric conditions, such as depression. Nowadays, the role of G protein-coupled inwardly rectifying potassium (GIRK)2 subunit containing GIRK channels controlling neuronal intrinsic excitability in vitro is well known. The aim of this study was to investigate the impact of GIRK2 subunit mutation on the central noradrenergic transmission in vivo. For that purpose, single-unit extracellular activity of locus coeruleus (LC) noradrenergic neurons and brain monoamine levels using the HPLC technique were measured in wild-type and GIRK2 mutant mice. Girk2 gene mutation induced significant differences among genotypes regarding burst activity of LC neurons. In fact, the proportion of neurons displaying burst firing was increased in GIRK2 heterozygous mice as compared to that recorded from wild-type mice. Furthermore, this augmentation was even greater in the homozygous genotype. However, neither the basal firing rate nor the coefficient of variation of LC neurons was different among genotypes. Noradrenaline and serotonin basal levels were altered in the dorsal raphe nucleus from GIRK2 heterozygous and homozygous mice, respectively. Furthermore, noradrenaline levels were increased in LC projecting areas such as the hippocampus and amygdale from homozygous mice, although not in the prefrontal cortex. Finally, potency of clonidine and morphine inhibiting LC activity was reduced in GIRK2 mutant mice, although the efficacy remained unchanged. Altogether, the present study supports the role of GIRK2 subunit-containing GIRK channels on the maintenance of tonic noradrenergic activity in vivo. Electric and neurochemical consequences derived from an altered GIRK2-dependent signalling could facilitate the understanding of the neurobiological basis of pathologies related to a dysfunctional monoaminergic transmission.
Collapse
|
36
|
Penninx BWJH, Milaneschi Y, Lamers F, Vogelzangs N. Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 2013; 11:129. [PMID: 23672628 PMCID: PMC3661358 DOI: 10.1186/1741-7015-11-129] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/17/2013] [Indexed: 12/17/2022] Open
Abstract
Depression is the most common psychiatric disorder worldwide. The burden of disease for depression goes beyond functioning and quality of life and extends to somatic health. Depression has been shown to subsequently increase the risk of, for example, cardiovascular, stroke, diabetes and obesity morbidity. These somatic consequences could partly be due to metabolic, immuno-inflammatory, autonomic and hypothalamic-pituitary-adrenal (HPA)-axis dysregulations which have been suggested to be more often present among depressed patients. Evidence linking depression to metabolic syndrome abnormalities indicates that depression is especially associated with its obesity-related components (for example, abdominal obesity and dyslipidemia). In addition, systemic inflammation and hyperactivity of the HPA-axis have been consistently observed among depressed patients. Slightly less consistent observations are for autonomic dysregulation among depressed patients. The heterogeneity of the depression concept seems to play a differentiating role: metabolic syndrome and inflammation up-regulations appear more specific to the atypical depression subtype, whereas hypercortisolemia appears more specific for melancholic depression. This review finishes with potential treatment implications for the downward spiral in which different depressive symptom profiles and biological dysregulations may impact on each other and interact with somatic health decline.
Collapse
Affiliation(s)
- Brenda W J H Penninx
- Department of Psychiatry, EMGO+ Institute and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
37
|
George SA, Knox D, Curtis AL, Aldridge JW, Valentino RJ, Liberzon I. Altered locus coeruleus-norepinephrine function following single prolonged stress. Eur J Neurosci 2012; 37:901-9. [PMID: 23279008 DOI: 10.1111/ejn.12095] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Data from preclinical and clinical studies have implicated the norepinephrine system in the development and maintenance of post-traumatic stress disorder. The primary source of norepinephrine in the forebrain is the locus coeruleus (LC); however, LC activity cannot be directly measured in humans, and previous research has often relied upon peripheral measures of norepinephrine to infer changes in central LC-norepinephrine function. To directly assess LC-norepinephrine function, we measured single-unit activity of LC neurons in a validated rat model of post-traumatic stress disorder - single prolonged stress (SPS). We also examined tyrosine hydroxylase mRNA levels in the LC of SPS and control rats as an index of norepinephrine utilisation. For electrophysiological recordings, 92 LC neurons were identified from 19 rats (SPS, 12; control, 7), and spontaneous and evoked responses to a noxious event (paw compression) were recorded. Baseline and restraint stress-evoked tyrosine hydroxylase mRNA expression levels were measured in SPS and control rats (n = 16 per group) in a separate experiment. SPS rats showed lower spontaneous activity but higher evoked responses, leading to an enhanced signal-to-noise ratio of LC neurons, accompanied by impaired recovery from post-stimulus inhibition. In concert, tyrosine hydroxylase mRNA expression in the LC of SPS rats tended to be lower at baseline, but was exaggerated following restraint stress. These data demonstrate persistent changes in LC function following stress/trauma in a rat model of post-traumatic stress, as measured by differences in both the electrophysiological properties of LC neurons and tyrosine hydroxylase mRNA transcription.
Collapse
Affiliation(s)
- Sophie A George
- University of Michigan, Rachel Upjohn Building, 4250 Plymouth Rd (Box 5765), Ann Arbor, MI 48109-2700, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hegerl U, Hensch T. The vigilance regulation model of affective disorders and ADHD. Neurosci Biobehav Rev 2012; 44:45-57. [PMID: 23092655 DOI: 10.1016/j.neubiorev.2012.10.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
According to the recently proposed vigilance model of affective disorders (vigilance in the sense of "brain arousal"), manic behaviour is partly interpreted as an autoregulatory attempt to stabilise vigilance by creating a stimulating environment, and the sensation avoidance and withdrawal in Major Depressive Disorder (MDD) is seen as an autoregulatory reaction to tonically increased vigilance. Indeed, using a newly developed EEG-based algorithm, hyperstable vigilance was found in MDD, and the contrary, with rapid drops to sleep stages, in mania. Furthermore, destabilising vigilance (e.g. by sleep deprivation) triggers (hypo)mania and improves depression, whereas stabilising vigilance, e.g. by prolonged sleep, improves mania. ADHD and mania have common symptoms, and the unstable vigilance might be a common pathophysiology. There is even evidence that psychostimulants might ameliorate both ADHD and mania. Hyperactivity of the noradrenergic system could explain both the high vigilance level in MDD and, as recently argued, anhedonia and behavioural inhibition. Interestingly, antidepressants and electroconvulsions decrease the firing rate of neurons in the noradrenergic locus coeruleus, whereas many antimanic drugs have opposite effects.
Collapse
Key Words
- Vigilance regulation, Arousal, EEG, Autoregulatory behaviour, Sensation seeking, Novelty seeking, Mania, ADHD, Bipolar disorder, Depression, Noradrenergic system, Norepinephrine, Locus coeruleus, Anti-manic drugs, Antidepressants
Collapse
Affiliation(s)
- Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstr. 10, 04103, Leipzig, Germany.
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstr. 10, 04103, Leipzig, Germany
| |
Collapse
|
39
|
Licht CMM, Penninx BWJH, de Geus EJC. Effects of antidepressants, but not psychopathology, on cardiac sympathetic control: a longitudinal study. Neuropsychopharmacology 2012; 37:2487-95. [PMID: 22763618 PMCID: PMC3442343 DOI: 10.1038/npp.2012.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of antidepressant medication. The aim of this study was to test longitudinally whether cardiac sympathetic control, measured by pre-ejection period (PEP), was increased by depression/anxiety status and by antidepressant use. Cross-sectional and longitudinal data were from a depression and anxiety cohort: the Netherlands Study of Depression and Anxiety (NESDA). Baseline data of 2838 NESDA subjects (mean age 41.7 years, 66.7% female) and 2-year follow-up data of 2226 subjects were available for analyses. Included were subjects with and without depressive/anxiety disorders, using or not using different antidepressants at baseline or follow-up. The PEP was measured non-invasively by 1.5 h of ambulatory impedance cardiography. Cross-sectional analyses compared PEP across psychopathology and antidepressant groups. Longitudinal analyses compared 2-year changes in PEP in relation to changes in psychopathology and antidepressant use. Cross-sectional analyses showed that antidepressant-naïve depressive/anxious subjects had comparable PEP as controls, whereas subjects using tricyclic (TCA) or combined serotonergic/noradrenergic antidepressants (SNRI) had significantly shorter PEP compared with controls. In contrast, subjects using selective serotonin re-uptake inhibitors (SSRIs) had longer PEP than controls. Longitudinal results confirmed these findings: compared with 2-year change in PEP in continuous non-users (+2 ms), subjects who started TCA or SNRI treatment showed significantly shortened PEP (-11 ms, p=0.005 and p<0.001), whereas subjects who started SSRI treatment showed significant prolongation of PEP (+9 ms, p=0.002). Reversed findings were observed among those who stopped antidepressant use. These findings suggest that depressive and anxiety disorders are not associated with increased cardiac sympathetic control. However, results pose that TCA and SNRI use increases sympathetic control, whereas SSRI use decreases sympathetic control.
Collapse
Affiliation(s)
- Carmilla M M Licht
- Department of Psychiatry/EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - Brenda W J H Penninx
- Department of Psychiatry/EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands,Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands,Department of Psychiatry, Groningen University Medical Center, Groningen, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
41
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Effect of paroxetine and bupropion on human resting brain perfusion: An arterial spin labeling study. Neuroimage 2012; 61:773-9. [DOI: 10.1016/j.neuroimage.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
|
43
|
Alba-Delgado C, Mico JA, Sánchez-Blázquez P, Berrocoso E. Analgesic antidepressants promote the responsiveness of locus coeruleus neurons to noxious stimulation: implications for neuropathic pain. Pain 2012; 153:1438-1449. [PMID: 22591831 DOI: 10.1016/j.pain.2012.03.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/08/2012] [Accepted: 03/29/2012] [Indexed: 11/15/2022]
Abstract
Antidepressants that block the reuptake of noradrenaline and/or serotonin are among the first-line treatments for neuropathic pain, although the mechanisms underlying this analgesia remain unclear. The noradrenergic locus coeruleus is an essential element of both the ascending and descending pain modulator systems regulated by these antidepressants. Hence, we investigated the effect of analgesic antidepressants on locus coeruleus activity in Sprague-Dawley rats subjected to chronic constriction injury (CCI), a model of neuropathic pain. In vivo extracellular recordings of locus coeruleus revealed that CCI did not modify the basal tonic activity of this nucleus, although its sensory-evoked response to noxious stimuli was significantly altered. Under normal conditions, noxious stimulation evokes an early response, corresponding to the activation of myelinated A fibers, which is followed by an inhibitory period and a subsequent late capsaicin-sensitive response, consistent with the activation of unmyelinated C fibers. CCI provokes an enhanced excitatory early response in the animals and the loss of the late response. Antidepressant administration over 7 days (desipramine, 10mg/kg/day or duloxetine, 5mg/kg/day, delivered by osmotic minipumps) decreased the excitatory firing rate of the early response in the CCI group. Moreover, in all animals, these antidepressants reduced the inhibitory period and augmented the late response. We propose that N-methyl-d-aspartate and alpha-2-adrenoceptors are involved in the analgesic effect of antidepressants. Antidepressant-mediated changes were correlated with behavioral effects indicative of analgesia in healthy and neuropathic rats.
Collapse
Affiliation(s)
- Cristina Alba-Delgado
- Neuropsychopharmacology Research Group, Department of Neuroscience, University of Cadiz, Cadiz, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain Instituto Cajal CSIC, Madrid, Spain Neuropsychopharmacology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cadiz, Spain
| | | | | | | |
Collapse
|
44
|
Rovin ML, Boss-Williams KA, Alisch RS, Ritchie JC, Weinshenker D, West CH, Weiss JM. Influence of chronic administration of antidepressant drugs on mRNA for galanin, galanin receptors, and tyrosine hydroxylase in catecholaminergic and serotonergic cell-body regions in rat brain. Neuropeptides 2012; 46:81-91. [PMID: 22317959 PMCID: PMC3759228 DOI: 10.1016/j.npep.2012.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/11/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022]
Abstract
Activity of locus coeruleus (LC) neurons and release of the peptide galanin (GAL), which is colocalized with norepinephrine (NE) in LC neurons, has been implicated in depression and, conversely, in antidepressant action. The present study examined the influence of chronic administration (for 14days, via subcutaneously-implanted minipump) of antidepressant (AD) drugs representing three different classes (tricyclic [desipramine], selective serotonin reuptake inhibitor [SSRI] [paroxetine], and monoamine oxidase inhibitor [MAOI] [phenelzine]) on mRNA for GAL, GAL receptors (GalR1, GalR2, and GalR3), and tyrosine hydroxylase (TH), the rate-limiting enzyme for NE synthesis, in four brain regions--LC, A1/C1, dorsal raphe (DRN), and ventral tegmentum (VTA) of rats. Consistent with previous findings that chronic administration of AD drugs decreases activity of LC neurons, administration of AD drugs reduced mRNA for both GAL and TH in LC neurons. GAL and TH mRNA in LC neurons was highly correlated. AD drugs also reduced GAL and TH mRNA in A1/C1 and VTA but effects were smaller than in LC. The largest change in mRNA for GAL receptors produced by AD administration was to decrease mRNA for GalR2 receptors in the VTA region. Also, mRNA for GalR2 and GalR3 receptors was significantly (positively) correlated in all three predominantly catecholaminergic brain regions (LC, A1/C1, and VTA). Relative to these three brain regions, unique effects were seen in the DRN region, with the SSRI elevating GAL mRNA and with mRNA for GalR1 and GalR3 being highly correlated in this brain region. The findings show that chronic administration of AD drugs, which produces effective antidepressant action, results in changes in mRNA for GAL, GAL receptors, and TH in brain regions that likely participate in depression and antidepressant effects.
Collapse
Affiliation(s)
| | | | | | - James C. Ritchie
- Department of Pathology Emory University School of Medicine Atlanta, GA, USA
| | | | | | | |
Collapse
|
45
|
Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex. Int J Neuropsychopharmacol 2011; 14:1219-32. [PMID: 21208501 PMCID: PMC3117082 DOI: 10.1017/s1461145710001525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabelling for NET and co-localization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 d, 15 mg/kg.d), NET-immunoreactive (ir) axons were significantly less likely to co-localize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI- and vehicle-treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labelling. Our findings encourage consideration of possible post-translational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance.
Collapse
|
46
|
Effects of chronic antidepressant drug administration and electroconvulsive shock on activity of dopaminergic neurons in the ventral tegmentum. Int J Neuropsychopharmacol 2011; 14:201-10. [PMID: 20482941 PMCID: PMC3032823 DOI: 10.1017/s1461145710000489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 d via subcutaneously implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anaesthesia. Further, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either 3 d or 5 d after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on 'burst' firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions.
Collapse
|
47
|
West CHK, Ritchie JC, Weiss JM. Paroxetine-induced increase in activity of locus coeruleus neurons in adolescent rats: implication of a countertherapeutic effect of an antidepressant. Neuropsychopharmacology 2010; 35:1653-63. [PMID: 20357759 PMCID: PMC2888691 DOI: 10.1038/npp.2010.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 02/18/2010] [Indexed: 11/08/2022]
Abstract
The concern that antidepressant (AD) drugs, especially selective serotonin reuptake inhibitors and paroxetine (PAR) in particular, can increase suicidality during the early treatment of juvenile patients (children and adolescents) has created a dilemma for clinicians treating depressives. Although preclinical research cannot resolve controversy in this area, our present findings may provide insight into how AD drugs might, under certain conditions, exacerbate rather than ameliorate the depressive state. Both clinical and preclinical evidences indicate that the principal noradrenergic cell group in the brain, the locus coeruleus (LC), is overactive in depressives and that, conversely, effective AD treatments decrease the activity of LC neurons. We report here that short-term (2 and 4 days) administration of PAR produces an increase in the activity of LC neurons (spontaneous firing rate and sensory-evoked responses) in young rats, contrary to the 'therapeutic' decrease in activity typically observed in adult rats. Blood levels of PAR were lower in young rats than in adult rats, although similar low blood levels produced by a lower dose of PAR in adult rats failed to produce an increase in LC activity. In addition, activity of young rats in the swim test was determined to assess depressive-like responses. The same dose/durations of PAR, which produced the largest increases in LC activity in young rats, produced decreases in swim-test activity, indicating that brief administration of PAR in young rats can promote, rather than reduce, the depressive state. These results offer a model that may help screen potential adjunctive treatments to avoid early adverse effects of ADs.
Collapse
|
48
|
Stone EA, Lin Y, Sarfraz Y, Quartermain D. Marked behavioral activation from inhibitory stimulation of locus coeruleus alpha1-adrenoceptors by a full agonist. Brain Res 2009; 1291:21-31. [PMID: 19632210 DOI: 10.1016/j.brainres.2009.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/23/2009] [Accepted: 07/15/2009] [Indexed: 01/04/2023]
Abstract
alpha(1)-Adrenoceptors are concentrated in the locus coeruleus (LC) where they appear to regulate various active behaviors but have been difficult to stimulate effectively. The present study examined the behavioral, pharmacological and neural effects of possible stimulation of these receptors with 6-fluoronorepinephrine (6FNE), the only known selective alpha-agonist that has full efficacy at all brain alpha-receptors. Infusion of this compound in the mouse LC was found to produce extreme activation of diverse motivated behaviors of exploration, wheel-running and operant approach responding in different environments consistent with a global behavioral function of the dorsal noradrenergic system. Infusion of selective antagonists of alpha(1)- (terazosin) or alpha(2)- (atipamezole) receptors or of either the partial alpha(1)-agonist, phenylephrine, or full alpha(2)-agonist, dexmedetomidine, indicated that the behavioral effects of 6FNE were due largely due to activation of LC alpha(1)-receptors consistent with the known greater density of alpha(1)- than alpha(2)-adrenoreceptors in the mouse nucleus. Immunohistochemistry of fos in tyrosine hydroxylase-positive LC neurons following IV ventricular infusions indicated that 6FNE markedly depressed whereas terazosin strongly enhanced the apparent functional activity of the nucleus. The changes in fos expression following 6FNE and terazosin were significantly greater than those following dexmedetomidine and atipamezole. It is hypothesized that the alpha(1)-receptors of the mouse LC are strongly activated by 6FNE and serve to potently inhibit its tonic or stress-induced activity which in turn disinhibits prepotent motivated behaviors.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
49
|
Antidepressant drugs with differing pharmacological actions decrease activity of locus coeruleus neurons. Int J Neuropsychopharmacol 2009; 12:627-41. [PMID: 18950545 PMCID: PMC2700044 DOI: 10.1017/s1461145708009474] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies suggest that all effective antidepressant (AD) drugs decrease activity of locus coeruleus (LC) neurons. However, little data exist regarding blood levels of drug in these studies, and what data do exist suggest blood levels might have been very high. To assess whether decreased LC activity is produced by drugs that selectively block reuptake for either norepinephrine or serotonin at therapeutically relevant blood levels, effects of chronic administration of desipramine, paroxetine, and escitalopram on LC activity were measured across a range of doses and blood levels of drug. Further, effects of a range of doses of mirtazapine were examined; in that mirtazapine blocks alpha2 adrenergic receptors, it might be anticipated to increase rather than decrease LC activity. Finally, to begin to assess whether the response of LC to ADs was specific to these drugs, effects of four non-AD drugs (single dose) were measured. Drugs were administered via osmotic minipump for 14 d. Electrophysiological recording of LC activity (assessment of both spontaneous firing rate and sensory-evoked 'burst' firing) then took place under isoflurane anaesthesia on the last day of drug treatment. The blood level of drugs present at the end of the recording session was also measured. All AD drugs tested decreased LC spontaneous and sensory-evoked 'burst' firing, and this was observed across a wide range of blood levels for the drugs. Non-AD drugs did not decrease LC activity. The findings of this investigation continue to support the possibility that all effective AD drugs decrease LC activity.
Collapse
|
50
|
Tyrosine hydroxylase immunoreactivity in the locus coeruleus is elevated in violent suicidal depressive patients. Eur Arch Psychiatry Clin Neurosci 2008; 258:513-20. [PMID: 18574609 DOI: 10.1007/s00406-008-0825-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
Our postmortem study aimed to determine the impact of suicide on the number of noradrenergic neurons of the locus coeruleus (LC) in suicidal depressive patients. Noradrenergic neurons were shown by immunostaining tyrosine hydroxylase in the LC of 22 non-elderly patients with mood disorders compared to 21 age- and sex-matched normal controls. Eleven patients were suicide victims and the other eleven died of natural causes. Seven violent suicide victims revealed an increased number of tyrosine hydroxylase immunoreactive (TH-ir) neurons compared with non-violent suicide victims and controls. No difference was found between the number of TH-ir neurons in all suicidal patients and controls and between non-suicidal patients and controls. The differences of TH-immunoreactivity could neither be attributed to medication nor to the polarity of depressive disorder (unipolar/bipolar). The numbers of TH-ir neurons in suicidal patients correlated negatively with the mean doses of antidepressants. The study suggested a presynaptic noradrenergic dysregulation in the LC related to the level of self-aggression. Traditional antidepressants may, therefore, regulate noradrenergic activity of the LC in suicide patients, however, without demonstrating the suicide-preventing effect.
Collapse
|