1
|
Khan T, Samad A, Waseem R, Tazeen A, Shahid M, Parveen S, Hassan MI, Islam A. Delineating the Mechanistic Insight of Inhibition of α-Synuclein Fibrillation by Neuro Metabolite, Myo-inositol: Implications in Synucleopathies-Related Disorders. ACS Chem Neurosci 2025; 16:1767-1779. [PMID: 40259622 DOI: 10.1021/acschemneuro.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
The fibrillation of α-synuclein (α-syn) is a major factor contributing to neuronal damage and is critical in developing synucleopathies-related disorders. Considering this, the discovery of new compounds that can inhibit or modulate α-syn aggregation is a significant area of research. While polyol osmolytes have been shown to reduce α-syn fibrillation, the impact of brain metabolites such as myo-inositol (MI) on α-syn aggregation has not yet been explored. This study is the first to examine the effects of MI on α-syn aggregation, utilizing spectroscopic, microscopic, and cell cytotoxicity assay. Various aggregation assays revealed that MI inhibits the α-syn fibrillation in a dose-dependent manner. Fluorescence microscopy observations suggest that MI inhibits the α-syn fibrillation by forming amorphous aggregates. MTT assay revealed that α-syn aggregates in the presence of different concentrations of MI were not toxic as compared to α-syn fibrils. Thus, the mechanistic insight of inhibition of α-syn fibrillation by MI was explored by employing interaction studies using spectroscopic, calorimetric, and in silico approaches. Surface plasmon resonance and isothermal titration calorimetry suggest that MI-α-syn interacted with significant binding affinity, and the reaction was spontaneous. Molecular docking results depict that MI interacted with the aggregation-prone residues (36-42) at the N-terminal of α-syn, thereby stabilizing the α-syn and preventing the fibril formation. Molecular dynamics simulation results demonstrate the stability of the complex formation of MI with α-syn. This study highlighted the mechanistic insight of MI on preventing the α-syn from forming amyloid fibril, which could be further explored for therapeutic management of synucleopathies-related disorders.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdus Samad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ayesha Tazeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Collée M, Rajkumar R, Farrher E, Hagen J, Ramkiran S, Schnellbächer GJ, Khudeish N, Shah NJ, Veselinović T, Neuner I. Predicting performance in attention by measuring key metabolites in the PCC with 7T MRS. Sci Rep 2024; 14:17099. [PMID: 39048626 PMCID: PMC11269673 DOI: 10.1038/s41598-024-67866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.
Collapse
Affiliation(s)
- M Collée
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - R Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - E Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - J Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - G J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N J Shah
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - T Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - I Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA - BRAIN - Translational Medicine, Aachen, Germany.
| |
Collapse
|
3
|
Dreha-Kulaczewski S, Sahoo P, Preusse M, Gkalimani I, Dechent P, Helms G, Hofer S, Steinfeld R, Gärtner J. Folate receptor α deficiency - Myelin-sensitive MRI as a reliable biomarker to monitor the efficacy and long-term outcome of a new therapeutic approach. J Inherit Metab Dis 2024; 47:387-403. [PMID: 38200656 DOI: 10.1002/jimd.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.
Collapse
Affiliation(s)
- Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Preusse
- Kinderkrankenhaus Amsterdamer Strasse, Klinik für Kinder- und Jugendmedizin, Köln, Germany
| | - Irini Gkalimani
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neuroscience, Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gunther Helms
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Sabine Hofer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Abstract
Depression remains difficult to manage, despite the many registered treatments available. For many depressed individuals, particularly those who have not responded to and/or had adverse effects from standard therapies, herbal and natural medications represent a potentially valuable alternative. This chapter will review several natural remedies used in the treatment of depression. Specific remedies covered include St. John's wort (SJW), S-adenosyl-L-methionine (SAMe), omega-3 fatty acids, rhodiola, and others. We will begin by providing some historical and social context about these remedies. Then we will review efficacy and safety data, as well as biological mechanisms of action of these therapies. Finally, we will discuss the limitations of the current state of knowledge and provide suggestions for a productive research agenda focused on natural remedies. While many questions about these treatments remain unanswered and much work needs to be done before we determine their place in the psychiatric armamentarium, we believe that this chapter will give psychiatrists a good perspective on the pros and cons of herbal and natural antidepressants as part of the pharmacological armamentarium and sensible guidelines on how and when they should be used.
Collapse
|
6
|
Lowry D, Burke T, Galvin Z, Ryan JD, Russell J, Murphy A, Hegarty J, Stewart S, Crowe J. Is psychosocial and cognitive dysfunction misattributed to the virus in hepatitis C infection? Select psychosocial contributors identified. J Viral Hepat 2016; 23:584-95. [PMID: 27167497 DOI: 10.1111/jvh.12544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C is associated with health-related quality of life and cognitive impairments, even in mild disease. Recent evidence demonstrating hepatitis C virus (HCV) neurotropism has strengthened a neuropathophysiological hypothesis. However, sample heterogeneity confounds study outcomes. A uniquely homogeneous cohort of Irish women, following an iatrogenic HCV outbreak, offers a rare opportunity to control for HCV chronicity and the virus' purported impact on quality of life and cognition. A multi site, three-group, cross-sectional design was employed. Noncirrhotic, iatrogenically infected women, developing either acute or chronic infection, were recruited from prospective tertiary-care liver clinics and the community. Well-matched healthy controls were also recruited. All participants completed a psychosocial survey and were invited to undergo a comprehensive neuropsychological test battery. Significantly distressed psychosocial symptom profiles were observed in those with an iatrogenic HCV exposure history, which was independent of viral chronicity. Chronic and cleared HCV cohorts were not differentiated from each other. Two distinct subgroups, demarcated along 'impaired' vs 'nonimpaired' quality-of-life reports, were clearly identified and logistic regression analysis identified depressed mood and cognitive fatigue, rather than viral status, as statistically significant predictors of group membership. Compared with matched controls, significant cognitive impairments were not observed in either HCV cohort. Our findings provide strong evidence of nonviral factors accounting for quality of life impairment in chronic HCV and they also appear to question existing reports of cognitive dysfunction in mild disease. Depressed mood and cognitive fatigue appear to be critical psychosocial mediators of reduced quality-of-life and we hypothesize that metabolite abnormalities reported in HCV samples may also be confounded by these factors, given the associated literature.
Collapse
Affiliation(s)
- D Lowry
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland.,Cognitive and Behavioural Neuroscience Research Group, School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland
| | - T Burke
- Cognitive and Behavioural Neuroscience Research Group, School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland.,School of Nursing and Human Sciences, Dublin City University, Dublin 9, Ireland
| | - Z Galvin
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - J D Ryan
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - J Russell
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - A Murphy
- Liver Unit, St. Vincent's University Hospital, Dublin 4, Ireland
| | - J Hegarty
- Liver Unit, St. Vincent's University Hospital, Dublin 4, Ireland
| | - S Stewart
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - J Crowe
- Liver Centre, Mater Misericordiae University Hospital, Dublin 7, Ireland
| |
Collapse
|
7
|
Contributions of magnetic resonance spectroscopy to understanding development: potential applications in the study of adolescent alcohol use and abuse. Dev Psychopathol 2014; 26:405-23. [PMID: 24621605 DOI: 10.1017/s0954579414000030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing body of research has documented structural and functional brain development during adolescence, yet little is known about neurochemical changes that occur during this important developmental period. Magnetic resonance spectroscopy (MRS) is a well-developed technology that permits the in vivo quantification of multiple brain neurochemicals relevant to neuronal health and functioning. However, MRS technology has been underused in exploring normative developmental changes during adolescence and the onset of alcohol and drug use and abuse during this developmental period. This review begins with a brief overview of normative cognitive and neurobiological development during adolescence, followed by an introduction to MRS principles. The subsequent sections provide a comprehensive review of the existing MRS studies of development and cognitive functioning in healthy children and adolescents. The final sections of this article address the potential application of MRS in identifying neurochemical predictors and consequences of alcohol use and abuse in adolescence. MRS studies of adolescent populations hold promise for advancing our understanding of neurobiological risk factors for psychopathology by identifying the biochemical signatures associated with healthy brain development, as well as neurobiological and cognitive correlates of alcohol and substance use and abuse.
Collapse
|
8
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
9
|
Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry 2012; 2:e69. [PMID: 22832731 PMCID: PMC3309540 DOI: 10.1038/tp.2011.65] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 02/05/2023] Open
Abstract
Abnormal trajectory of brain development has been suggested by previous structural magnetic resonance imaging and head circumference findings in autism spectrum disorders (ASDs); however, the neurochemical backgrounds remain unclear. To elucidate neurochemical processes underlying aberrant brain growth in ASD, we conducted a comprehensive literature search and a meta-analysis of (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies in ASD. From the 22 articles identified as satisfying the criteria, means and s.d. of measure of N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-Inositol and glutamate+glutamine in frontal, temporal, parietal, amygdala-hippocampus complex, thalamus and cerebellum were extracted. Random effect model analyses showed significantly lower NAA levels in all the examined brain regions but cerebellum in ASD children compared with typically developed children (n=1295 at the maximum in frontal, P<0.05 Bonferroni-corrected), although there was no significant difference in metabolite levels in adulthood. Meta-regression analysis further revealed that the effect size of lower frontal NAA levels linearly declined with older mean age in ASD (n=844, P<0.05 Bonferroni-corrected). The significance of all frontal NAA findings was preserved after considering between-study heterogeneities (P<0.05 Bonferroni-corrected). This first meta-analysis of (1)H-MRS studies in ASD demonstrated robust developmental changes in the degree of abnormality in NAA levels, especially in frontal lobes of ASD. Previously reported larger-than-normal brain size in ASD children and the coincident lower-than-normal NAA levels suggest that early transient brain expansion in ASD is mainly caused by an increase in non-neuron tissues, such as glial cell proliferation.
Collapse
Affiliation(s)
- Y Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
10
|
Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord 2011; 130:343-57. [PMID: 20579741 DOI: 10.1016/j.jad.2010.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/29/2010] [Accepted: 06/03/2010] [Indexed: 12/16/2022]
Abstract
The use of Complementary and Alternative Medicine (CAM) for physical and mental problems has increased significantly in the US over the past two decades, and depression is one of the leading indications for the use of CAM. This article reviews some of the lesser-known natural products with potential psychiatric applications that are starting to emerge with some scientific and clinical evidence and may constitute a next wave of natural antidepressants: Rhodiola rosea, chromium, 5-Hydroxytryptophan (5-HTP) and inositol. Background information, efficacy data, proposed mechanisms of action, recommended doses, side effects, and precautions are reviewed. We found some encouraging data for the use of these natural products in specific populations of depressed patients. R. rosea is an adaptogen plant that can be especially helpful in treating asthenic or lethargic depression, and may be combined with conventional antidepressants to alleviate some of their common side effects. Chromium has a beneficial effect on eating-related atypical symptoms of depression, and may be a valuable agent in treating atypical depression and seasonal affective disorder. Inositol may be useful in the treatment of bipolar depression when combined with mood stabilizers. Evidence for the clinical efficacy of 5-HTP is also promising but still preliminary. Although more well-designed and larger controlled studies are needed before any substantive conclusions can be drawn, the available evidence is compelling and these natural products deserve further investigation as a possibly significant addition to the antidepressant armamentarium.
Collapse
Affiliation(s)
- Nadia Iovieno
- Depression Clinical and Research Program at Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
11
|
Kim SY, Choi CB, Lee HS, Lee SH, Woo DC, Kim HY, Hong KS, Lee CH, Choe BY. Reversal of myo-inositol metabolic level in the left dorsolateral prefrontal cortex of rats exposed to forced swimming test following desipramine treatment: an in vivo localized 1H-MRS study at 4.7 T. Magn Reson Imaging 2010; 28:1461-7. [DOI: 10.1016/j.mri.2010.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 05/11/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
12
|
Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gärtner J. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 2009; 85:354-63. [PMID: 19732866 DOI: 10.1016/j.ajhg.2009.08.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 07/22/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRalpha). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRalpha or FRbeta could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development.
Collapse
Affiliation(s)
- Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Top Magn Reson Imaging 2009; 19:81-96. [PMID: 19363431 DOI: 10.1097/rmr.0b013e318181e0be] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Advances in magnetic resonance spectroscopy (MRS) methodology and related analytic strategies allow sophisticated testing of neurobiological models of disease pathology in psychiatric disorders. An overview of principles underlying MRS, methodological considerations, and investigative approaches is presented. A review of recent research is presented that highlights innovative approaches applying MRS, in particular, hydrogen MRS, to systematically investigate specific psychiatric disorders, including autism spectrum disorders, schizophrenia, panic disorder, major depression, and bipolar disorder.
Collapse
|
14
|
Potter M, Moses A, Wozniak J. Alternative treatments in pediatric bipolar disorder. Child Adolesc Psychiatr Clin N Am 2009; 18:483-514, xi. [PMID: 19264275 DOI: 10.1016/j.chc.2008.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There has been growing interest in the use of complementary and alternative treatments in pediatric bipolar disorder (BPD). There are limited data, however, regarding the safety and efficacy of these treatments. This article discusses select complementary and alternative treatments that have been considered for use in pediatric BPD and/or depression, including omega-3-fatty acids, inositol, St. John's wort, SAMe, melatonin, lecithin, and acupuncture. Background information, reference to available adult and pediatric data, proposed mechanisms of action, dosing, side effects, and precautions of these treatments are included. Across the board, more research is necessary and warranted regarding the long-term safety and efficacy of available complementary and alternative treatments for the management of pediatric BPD.
Collapse
Affiliation(s)
- Mona Potter
- Department of Child and Adolescent Psychiatry, Massachusetts General Hospital and McLean Hospital, Yawkey Center for Outpatient Care, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
15
|
Domange C, Canlet C, Traoré A, Biélicki G, Keller C, Paris A, Priymenko N. Orthologous Metabonomic Qualification of a Rodent Model Combined with Magnetic Resonance Imaging for an Integrated Evaluation of the Toxicity of Hypochœris radicata. Chem Res Toxicol 2008; 21:2082-96. [DOI: 10.1021/tx800159x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Céline Domange
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Cécile Canlet
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Amidou Traoré
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Guy Biélicki
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Cécile Keller
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Alain Paris
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| | - Nathalie Priymenko
- UMR 1089 INRA/ENVT, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse, INRA Clermont-Ferrand/Theix QuaPA STIM, F-63122 St. Genès Champanelle, and Department of Nutrition and Botanic and Vegetal Toxicology, ENVT, 23 Chemin des Capelles, F-31300 Toulouse, France
| |
Collapse
|
16
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
17
|
Port JD, Unal SS, Mrazek DA, Marcus SM. Metabolic alterations in medication-free patients with bipolar disorder: a 3T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Res 2008; 162:113-21. [PMID: 18164911 DOI: 10.1016/j.pscychresns.2007.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/05/2007] [Accepted: 08/06/2007] [Indexed: 01/07/2023]
Abstract
The objective of this study was to determine whether cerebrospinal fluid(CSF)-corrected concentrations of N-acetylaspartate are lower in several brain regions of drug- and medication-free subjects with bipolar disorder as compared with matched healthy controls. Bipolar subjects (n=21) and age- and sex-matched healthy control (n=21) were studied using proton magnetic resonance spectroscopic imaging on a 3T magnetic resonance (MR) scanner. Spectra were quantified using the LCModel, and metabolite values were CSF-corrected to yield metabolite concentrations. Fourteen regions of interest and five metabolite concentrations in each subject were selected for statistical analysis. We found that bipolar subjects had significantly decreased N-acetylaspartate concentrations in both caudate heads and the left lentiform nucleus. Choline and creatine in the head of the right caudate were also significantly decreased in bipolar subjects. Significantly increased myo-inositol was found in the left caudate head in bipolar subjects. Bipolar subjects showed significantly decreased glutamate/glutamine concentrations in the frontal white matter bilaterally and in the right lentiform nucleus. No differences were found for other metabolites examined. These preliminary findings suggest decreased neuronal density or viability in the basal ganglia and neurometabolic abnormalities in the frontal lobes of subjects with bipolar disorder.
Collapse
Affiliation(s)
- John D Port
- Department of Radiology (Mayo E2A), Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | | | | |
Collapse
|
18
|
Dager SR, Friedman SD, Petropoulos H, Shaw DW. Imaging Evidence for Pathological Brain Development in Autism Spectrum Disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Spector R, Johanson C. Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm Res 2006; 23:2515-24. [PMID: 17048121 DOI: 10.1007/s11095-006-9091-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
With application of molecular biology techniques, there has been rapid progress in understanding how many drugs and micronutrients (e.g., vitamins) are transferred across the choroid plexus (CP), the main transport locus of the blood-cerebrospinal fluid (CSF) barrier, and the renal tubular epithelial cells. In many cases, these molecules are transported by separate, specific carriers or receptors on the apical and/or basal side of the CP or renal epithelial cells. This commentary focuses on four micronutrient transport systems in CP (ascorbic acid, folate, inositol, and riboflavin), all of which have been recently cloned, expressed and for which knockout mice models were developed and transporter localization studies performed. Also reviewed is the recently cloned uric acid transport system in human kidney in which there exists a human "knockout" model. The implications of these transport systems for drug therapy of central nervous system and renal disorders are discussed, especially with regard to methods to circumvent the blood-brain and blood-CSF barriers to deliver drugs to the brain.
Collapse
|
20
|
Personality and neurochemicals in the human brain: A preliminary study using1H MRS. CHINESE SCIENCE BULLETIN-CHINESE 2005. [DOI: 10.1007/bf03183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Kim H, McGrath BM, Silverstone PH. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders--focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 2005; 20:309-26. [PMID: 15880397 DOI: 10.1002/hup.693] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myo-inositol is an important part of the phosphatidylinositol second messenger system (PI-cycle). Abnormalities in nerve cell myo-inositol levels and/or PI-cycle regulation has been suggested as being involved in the pathophysiology and/or treatment of many psychiatric disorders including bipolar disorder, major depressive disorder, panic disorder, obsessive-compulsive disorder, eating disorders and schizophrenia. This review examines the metabolism and biochemical importance of myo-inositol and the PI-cycle. It relates this to the current in vivo evidence for myo-inositol and PI-cycle involvement in these psychiatric disorders, particularly focusing upon the magnetic resonance spectroscopy (MRS) findings in patient studies to date. From this review it is concluded that while the evidence suggests probable relevance to the pathophysiology and/or treatment of bipolar disorder, there is much less support for a significant role for the PI-cycle or myo-inositol in any other psychiatric disorder. More definitive investigation is required before PI-cycle dysfunction can be considered specific to bipolar disorder.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
22
|
Agam G, Shamir A, Shaltiel G, Greenberg ML. Myo-inositol-1-phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disord 2003; 4 Suppl 1:15-20. [PMID: 12479670 DOI: 10.1034/j.1399-5618.4.s1.2.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inositol metabolism is well characterized in yeast at a molecular level, and yeast is the only eukaryote in which genetic, molecular and functional genomic approaches to identify lithium. valproate and inositol targets may be combined readily. It has been shown that lithium inhibits yeast inositol monophosphatase (encoded by INM1 and INM2), and both valproate and lithium reduce intracellular inositol. Unlike lithium, valproate causes a decrease in intracellular inositol-1-phosphate as well. suggesting that myo-inositol-1-P (MIP) synthase is a site of valproate action in the yeast PI cycle. MIP synthase is the rate-limiting step in inositol biosynthesis and is highly regulated in response to inositol. Yeast genes that are affected by both lithium and valproate in the phosphoinositide pathways (INO1 increased over 10-fold, INO2 increased twofold and INM1 decreased about twofold) have been identified. It has also been reported previously that both lithium and inositol mildly up-regulate IMPA1 (encoding mammalian inositol monophosphatase) expression in human cells. These findings indicate that IMPA is regulated only mildly by lithium, and therefore may not be the major target in the inositol pathway. Given the substantial evidence for the role of inositol in the mechanism of action of lithium and valproate. the opposing and mild effects of lithium on the genes encoding inositol monophosphatase in yeast and human cells, but the powerful effect of lithium and valproate on INO1 in yeast, it is hypothesized that human hIANO1 is a factor in the psychopharmacology of mood stabilizers.
Collapse
Affiliation(s)
- Galila Agam
- Stanley Foundation Research Center, Ministry of Health Mental Health Center, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Guron University of the Negev, Beersheva Israel
| | | | | | | |
Collapse
|
23
|
Shared effects of all three conventionalanti-bipolar drugs on the phosphoinositide system in astrocytes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82:736-54. [PMID: 12358779 DOI: 10.1046/j.1471-4159.2002.01041.x] [Citation(s) in RCA: 478] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol phospholipids and inositol phosphates mediate well-established functions in signal transduction and in Ca2+ homeostasis in the CNS and non-neural tissues. More recently, there has been renewed interest in other roles that both myo-inositol and its highly phosphorylated forms may play in neural function. We review evidence that myo-inositol serves as a clinically relevant osmolyte in the CNS, and that its hexakisphosphate and pyrophosphorylated derivatives may play roles in such diverse cellular functions as DNA repair, nuclear RNA export and synaptic membrane trafficking.
Collapse
Affiliation(s)
- Stephen K Fisher
- Mental Health Research Institute, and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
25
|
Abstract
OBJECTIVE This paper briefly describes neuroimaging using magnetic resonance spectroscopy (MRS) and provides a systematic review of its application to psychiatric disorders. METHOD A literature review (Index Medicus/Medline) was carried out, as well as a review of other relevant papers and data known to the authors. RESULTS Magnetic resonance spectroscopy is a complex and sophisticated neuroimaging technique that allows reliable and reproducible quantification of brain neurochemistry provided its limitations are respected. In some branches of medicine it is already used clinically, for instance, to diagnose tumours and in psychiatry its applications are gradually extending beyond research. Neurochemical changes have been found in a variety of brain regions in dementia, schizophrenia and affective disorders and promising discoveries have also been made in anxiety disorders. CONCLUSION Magnetic resonance spectroscopy is a non-invasive investigative technique that has provided useful insights into the biochemical basis of many neuropsychiatric disorders. It allows direct measurement, in vivo, of medication levels within the brain and has made it possible to track the neurochemical changes that occur as a consequence of disease and ageing or in response to treatment. It is an extremely useful advance in neuroimaging technology and one that will undoubtedly have many clinical uses in the near future.
Collapse
Affiliation(s)
- Gin S Malhi
- Mood Disorders Unit, The Villa, Prince of Wales Hospital, Randwick NSW 2031, Sydney, Australia.
| | | | | | | |
Collapse
|
26
|
Harvey BH, Brink CB, Seedat S, Stein DJ. Defining the neuromolecular action of myo-inositol: application to obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:21-32. [PMID: 11853115 DOI: 10.1016/s0278-5846(01)00244-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dietary inositol is incorporated into neuronal cell membranes as inositol phospholipids where it serves as a key metabolic precursor in G protein-coupled receptors. In the brain, several subtypes of adrenergic, cholinergic, serotonergic and metabotropic glutamatergic receptors are coupled to the hydrolysis of phosphoinositides (PI) with myo-inositol (MI) crucial to the resynthesis of PI and the maintenance and effectiveness of signalling. Despite a mode of action that remains illusive, MI has demonstrated therapeutic efficacy in obsessive-compulsive disorder (OCD), putative OCD-spectrum disorders, as well as panic and depression. Behavioural and biochemical studies indicate that this efficacy does not involve simply the replenishing of the membrane PI pool. In addition to its precursory role in cell signalling, inositol lipids alter receptor sensitivity, can direct membrane trafficking events, and have been found to modulate an increasing array of signalling proteins. These effects may afford MI an ability to modulate the interaction between neurotransmitters, drugs, receptors and signalling proteins. This paper reviews the neuromolecular and genetic aspects of OCD in terms of the PI-linked 5HT receptor subtypes and relates these to the behavioural and therapeutic effects of MI. Since OCD often is poorly responsive to current drug treatment, understanding the neuropharmacology of MI holds great promise for understanding the neuropathology of this and other MI-responsive disorders.
Collapse
Affiliation(s)
- Brian H Harvey
- Division of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Potchefstroom University for Christian Higher Education, South Africa.
| | | | | | | |
Collapse
|
27
|
Grachev ID, Apkarian AV. Chemical network of the living human brain. Evidence of reorganization with aging. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2001; 11:185-97. [PMID: 11275481 DOI: 10.1016/s0926-6410(00)00068-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We recently described the chemical network properties of the human brain using in vivo proton magnetic resonance spectroscopy ((1)H MRS). In a separate study of aging we found increased concentration of chemicals in the prefrontal and sensorimotor cortices up to the third decade of life, and subsequent decrease of chemical concentrations in the same brain regions after the third decade between young and middle age. We anticipated that these age-dependent differences in chemical concentrations might be a reflection of the chemical network reorganization of the brain during aging. The pattern of chemical connectivity within and across brain regions for all regional chemicals, and specific patterns of chemical connectivity for each chemical type were examined for young and middle age groups using (1)H MRS and correlation analysis. For all studied ages, the dominant positive correlations occurred within brain regions and negative correlations were seen across brain regions. However, the pattern of negative chemical connectivity across brain regions was weaker in middle-aged group (F = 40.4, P < 10(-7) comparing r-values between the two age groups, ANOVA). Within brain regions, the age effects on chemical correlations were seen in the cingulate cortex (46% decrease in the middle-aged group, F = 7.2, P < 0.007) and sensorimotor cortex (SMC) (27% decrease, F = 8.9, P<0.003). Between brain regions, the age effects on chemical correlations were seen in the chemical interactions between the thalamus (433.3% increase in the middle-aged group, F = 11.7, P < 0.003), SMC (280% increase, F=20.1, P < 10(-5)), cingulate cortex (100.7% increase, F = 21.3, P < 10(-7)), and other brain regions. We found also age-differential patterns of chemical connectivity across the studied brain regions for most chemical types. The results provide evidence that normal aging is associated with reorganization of chemical network of the human brain.
Collapse
Affiliation(s)
- I D Grachev
- Department of Radiology, SUNY Upstate Medical University, 750 E. Adams Street, IHP 4109, Syracuse, NY 13210, USA.
| | | |
Collapse
|
28
|
Abstract
New technologies are offering increasingly powerful means to obtain structural, chemical, and functional images of the brain during life, often without the use of ionizing radiation. Bipolar disorder, with its clear physiologic features, would appear to be a prime candidate for the application of current brain imaging; however, only a modest number of studies have been reported to date, and most studies have small sample sizes and heterogeneous subject groups. Nonetheless, there are a few consistent findings among these studies, including the following: 1) Structural imaging studies suggest an increased number of white matter hyperintensities in patients with bipolar disorder. These may be lesions unique to bipolar disorder and its treatment, or related to cardiovascular risk factors, which are more common in bipolar patients. Decreased cerebellar size and anomalies of cerebellar blood volume have also been reported. Increased sulcal prominence and enlargement of the lateral and third ventricles are less consistently observed findings. 2) Spectroscopic imaging suggests abnormalities of metabolism of choline-containing compounds in symptomatically ill bipolar patients and, possibly, treatment-induced changes in choline- and myoinositol-containing compounds. Each of these groups of metabolites serves as a component of membrane phospholipids and cellular second-messenger cycles. 3) Metabolic and blood flow studies provide evidence for decreased activity of the prefrontal cortex (PFC) in bipolar patients during depression. It is not clear if these changes are restricted to particular subregions of the PFC, nor if they are reversed with mania. No single pathophysiologic mechanism yet explains these findings, although all might be due to regional alterations in cellular activity and metabolism or changes in cell membrane composition and turnover. The development of imaging technologies has far outpaced their use in bipolar disorder. The promise of future studies is great, with more powerful magnetic resonance scanners, additional ligands for positron emission tomography and single photon emission computed tomography imaging, and improved image generation and processing already available.
Collapse
Affiliation(s)
- A L Stoll
- Psychopharmacology Research Laboratory, McLean Hospital, Belmont, MA 02178, USA
| | | | | | | |
Collapse
|
29
|
Moore CM, Breeze JL, Gruber SA, Babb SM, Frederick BB, Villafuerte RA, Stoll AL, Hennen J, Yurgelun-Todd DA, Cohen BM, Renshaw PF. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord 2000; 2:207-16. [PMID: 11249799 DOI: 10.1034/j.1399-5618.2000.20302.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Alterations in choline and myo-inositol metabolism have been noted in bipolar disorder, and the therapeutic efficacy of lithium in mania may be related to these effects. We wished to determine the relationship between anterior cingulate cortex choline and myo-inositol levels, assessed using proton magnetic resonance spectroscopic imaging (MRSI), and mood state in subjects with bipolar disorder. METHODS Serial assessments of anterior cingulate cortex choline and myo-inositol metabolism were performed in nine subjects with bipolar disorder, taking either lithium or valproate, and 14 controls. Each bipolar subject was examined between one and four times (3.1 +/- 1.3). On the occasion of each examination, standardized ratings of both depression and mania were recorded. RESULTS In the left cingulate cortex, the bipolar subjects' depression ratings correlated positively with MRSI measures of Cho/Cr-PCr. In the right cingulate cortex, the Cho/Cr-PCr ratio was significantly higher in subjects with bipolar disorder compared with control subjects. In addition, bipolar subjects not taking antidepressants had a significantly higher right cingulate cortex Cho/Cr-PCr ratio compared with patients taking antidepressants or controls. No clinical or drug-related changes were observed for the Ino/Cr-PCr ratio. CONCLUSIONS The results of this study suggest that bipolar disorder is associated with alterations in the metabolism of cytosolic, choline-containing compounds in the anterior cingulate cortex. As this resonance arises primarily from phosphocholine and glycerophosphocholine, both of which are metabolites of phosphatidylcholine, these results are consistent with impaired intraneuronal signaling mechanisms.
Collapse
Affiliation(s)
- C M Moore
- Brain Imaging Center, McLean Hospital, Belmont, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|