1
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving Mitochondrial Fission Improves Cognitive, but not Motor Deficits in a Mouse Model of Ataxia of Charlevoix-Saguenay. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2042-2049. [PMID: 38735882 DOI: 10.1007/s12311-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Bang M, Park K, Choi SH, Ahn SS, Kim J, Lee SK, Park YW, Lee SH. Identification of schizophrenia by applying interpretable radiomics modeling with structural magnetic resonance imaging of the cerebellum. Psychiatry Clin Neurosci 2024; 78:527-535. [PMID: 38953397 DOI: 10.1111/pcn.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
AIMS The cerebellum is involved in higher-order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1-weighted magnetic resonance imaging (T1-MRI) of the cerebellum. METHODS A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1-MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. RESULTS We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82-0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second-order size zone non-uniformity feature from the right lobule IX and first-order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. CONCLUSION The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease-defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker-based decision-making in clinical practice.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kisung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seoung-Ho Choi
- National Program Excellence in Software at Kwangwoon University, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving mitochondrial fission improves cognitive, but not motor deficits in a mouse model of Ataxia of Charlevoix-Saguenay. RESEARCH SQUARE 2024:rs.3.rs-4178088. [PMID: 38659734 PMCID: PMC11042405 DOI: 10.21203/rs.3.rs-4178088/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
|
4
|
Kang N, Chung S, Lee SH, Bang M. Cerebro-cerebellar gray matter abnormalities associated with cognitive impairment in patients with recent-onset and chronic schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:11. [PMID: 38280893 PMCID: PMC10851702 DOI: 10.1038/s41537-024-00434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Although the role of the cerebellum in schizophrenia has gained attention, its contribution to cognitive impairment remains unclear. We aimed to investigate volumetric alterations in the cerebro-cerebellar gray matter (GM) in patients with recent-onset schizophrenia (ROS) and chronic schizophrenia (CS) compared with healthy controls (HCs). Seventy-two ROS, 43 CS, and 127 HC participants were recruited, and high-resolution T1-weighted structural magnetic resonance images of the brain were acquired. We compared cerebellar GM volumes among the groups using voxel-based morphometry and examined the cerebro-cerebellar GM volumetric correlations in participants with schizophrenia. Exploratory correlation analysis investigated the functional relevance of cerebro-cerebellar GM volume alterations to cognitive function in the schizophrenia group. The ROS and CS participants demonstrated smaller cerebellar GM volumes, particularly in Crus I and II, than HCs. Extracted cerebellar GM volumes demonstrated significant positive correlations with the cerebral GM volume in the fronto-temporo-parietal association areas engaged in higher-order association. The exploratory analysis showed that smaller cerebellar GM in the posterior lobe regions was associated with poorer cognitive performance in participants with schizophrenia. Our study suggests that cerebellar pathogenesis is present in the early stages of schizophrenia and interconnected with structural abnormalities in the cerebral cortex. Integrating the cerebellum into the pathogenesis of schizophrenia will help advance our understanding of the disease and identify novel treatment targets concerning dysfunctional cerebro-cerebellar interactions.
Collapse
Affiliation(s)
- Naok Kang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Subin Chung
- CHA University School of Medicine, Pocheon, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
5
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Sun Y, Wang L, Gao K, Ying S, Lin W, Humphreys KL, Li G, Niu S, Liu M, Wang L. Self-supervised learning with application for infant cerebellum segmentation and analysis. Nat Commun 2023; 14:4717. [PMID: 37543620 PMCID: PMC10404262 DOI: 10.1038/s41467-023-40446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Accurate tissue segmentation is critical to characterize early cerebellar development in the first two postnatal years. However, challenges in tissue segmentation arising from tightly-folded cortex, low and dynamic tissue contrast, and large inter-site data heterogeneity have limited our understanding of early cerebellar development. In this paper, we propose an accurate self-supervised learning framework for infant cerebellum segmentation. We validate its accuracy using 358 subjects from three datasets. Our results suggest the first six months exhibit the most rapid and dynamic changes, with gray matter (GM) playing a dominant role in cerebellar growth over white matter (WM). We also find both GM and WM volumes are larger in males than females, and GM and WM volumes are larger in autistic males than neurotypical males. Application of our method to a larger population will fuel more cerebellar studies, ultimately advancing our comprehension of its structure and function in neurotypical and disordered development.
Collapse
Affiliation(s)
- Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Limei Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Gao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shihui Ying
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37203, USA
- Department of Psychiatric and Behavioral Sciences, School of Medicine, Tulane University, New Orleans, LA, 70118, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sijie Niu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Mohamed Mokhtarudin MJ, Wan Abd. Naim WN, Shabudin A, Payne SJ. Multiscale modelling of brain tissue oxygen and glucose dynamics in tortuous capillary during ischaemia-reperfusion. APPLIED MATHEMATICAL MODELLING 2022; 109:358-373. [DOI: 10.1016/j.apm.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models. Int J Mol Sci 2021; 22:ijms221810076. [PMID: 34576238 PMCID: PMC8469990 DOI: 10.3390/ijms221810076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Despite the growing importance of the cerebellum as a region highly vulnerable to accumulating molecular errors in schizophrenia, limited information is available regarding altered molecular networks with potential therapeutic targets. To identify altered networks, we conducted one-shot liquid chromatography–tandem mass spectrometry in postmortem cerebellar cortex in schizophrenia and healthy individuals followed by bioinformatic analysis (PXD024937 identifier in ProteomeXchange repository). A total of 108 up-regulated proteins were enriched in stress-related proteins, half of which were also enriched in axonal cytoskeletal organization and vesicle-mediated transport. A total of 142 down-regulated proteins showed an enrichment in proteins involved in mitochondrial disease, most of which were also enriched in energy-related biological functions. Network analysis identified a mixed module of mainly axonal-related pathways for up-regulated proteins with a high number of interactions for stress-related proteins. Energy metabolism and neutrophil degranulation modules were found for down-regulated proteins. Further, two double-hit postnatal stress murine models based on maternal deprivation combined with social isolation or chronic restraint stress were used to investigate the most robust candidates of generated networks. CLASP1 from the axonal module in the model of maternal deprivation was combined with social isolation, while YWHAZ was not altered in either model. METTL7A from the degranulation pathway was reduced in both models and was identified as altered also in previous gene expression studies, while NDUFB9 from the energy network was reduced only in the model of maternal deprivation combined with social isolation. This work provides altered stress- and mitochondrial disease-related proteins involved in energy, immune and axonal networks in the cerebellum in schizophrenia as possible novel targets for therapeutic interventions and suggests that METTL7A is a possible relevant altered stress-related protein in this context.
Collapse
|
9
|
Morimoto C, Uematsu A, Nakatani H, Takano Y, Iwashiro N, Abe O, Yamasue H, Kasai K, Koike S. Volumetric differences in gray and white matter of cerebellar Crus I/II across the different clinical stages of schizophrenia. Psychiatry Clin Neurosci 2021; 75:256-264. [PMID: 34081816 DOI: 10.1111/pcn.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
AIM Schizophrenia is considered to be a disorder of progressive structural brain abnormalities. Previous studies have indicated that the cerebellar Crus I/II plays a critical role in schizophrenia. We aimed to investigate how specific morphological features in the Crus I/II at different critical stages of the schizophrenia spectrum contribute to the disease. METHODS The study involved 73 participants on the schizophrenia spectrum (28 with ultra-high risk for psychosis [UHR], 17 with first-episode schizophrenia [FES], and 28 with chronic schizophrenia) and 79 healthy controls. We undertook a detailed investigation into differences in Crus I/II volume using a semiautomated segmentation method optimized for the cerebellum. We analyzed the effects of group and sex, as well as their interaction, on Crus I/II volume in gray matter (GM) and white matter (WM). RESULTS Significant group × sex interactions were found in WM volumes of the bilateral Crus I/II; the males with UHR demonstrated significantly larger WM volumes compared with the other male groups, whereas no significant group differences were found in the female groups. Additionally, WM and GM volumes of the Crus I/II had positive associations with symptom severity in the UHR group, whereas, in contrast, GM volumes in the FES group were negatively associated with symptom severity. CONCLUSIONS The present findings provide evidence that the morphology of Crus I/II is involved in schizophrenia in a sex- and disease stage-dependent manner. Additionally, alterations of WM volumes of Crus I/II may have potential as a biological marker of early detection and treatment for individuals with UHR.
Collapse
Affiliation(s)
- Chie Morimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hironori Nakatani
- Department of Information Media Technology, School of Information and Telecommunication Engineering, Tokai University, Tokyo, Japan
| | - Yosuke Takano
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Science, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| |
Collapse
|
10
|
Iliuta FP, Manea MC, Budisteanu M, Ciobanu AM, Manea M. Magnetic resonance imaging in schizophrenia: Luxury or necessity? (Review). Exp Ther Med 2021; 22:765. [PMID: 34055064 PMCID: PMC8145262 DOI: 10.3892/etm.2021.10197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, one of the most common psychiatric disorders, with a worldwide annual incidence rate of approximately 0.3-0.7%, known to affect the population below 25 years of age, is persistent throughout lifetime and includes people from all layers of society. With recent technological progress that allows better imaging techniques, such as the ones provided by computed tomography and particularly magnetic resonance imaging (MRI), research on schizophrenia imaging has grown considerably. The purpose of this review is to establish the importance of using imaging techniques in the early detection of brain abnormalities in patients diagnosed with schizophrenia. We reviewed all articles which reported on MRI imaging in schizophrenia. In order to do this, we used the PubMed database, using as search words ‘MRI’ and ‘schizophrenia’. MRI studies of first episode patients and chronic patients, suggest reduction of the whole brain volume. Enlargement of lateral ventricles was described as positive in 15 studies out of 19 and was similar to findings in chronic patients. Moreover, for the first episode patients, all data collected point to important changes in medial temporal lobe structures, diminished hippocampal volume, the whole frontal lobe, asymmetry in prefrontal cortex, diminished volume in cingulate, corpus callosum, and cavum septum pellucidum reported abnormalities. MRI is recommended as an important tool in the follow-up process of patients with schizophrenia. Yet, it is still under debate whether the abnormalities described in this condition are able to be used as diagnostic biomarkers.
Collapse
Affiliation(s)
- Floris Petru Iliuta
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Mihnea Costin Manea
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Magdalena Budisteanu
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Laboratory of Medical Genetics, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Medical Genetics Department, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Neuroscience, Discipline of Psychiatry, Faculty of General Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mirela Manea
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| |
Collapse
|
11
|
Abstract
There is now robust evidence that the cerebellum—apart from its well-established role in motor control—is crucially involved in a wide spectrum of cognitive and affective functions. Clinical and neuropsychological studies together with evidence from anatomical studies and advanced neuroimaging have yielded significant insights into the specific features and clinical relevance of cerebellar involvement in normal cognition and mood.
Collapse
|
12
|
Belser-Ehrlich J, Lafo JA, Mangal P, Bradley M, Wicklund M, Bowers D. Neurocognitive profile of a man with Dandy-Walker malformation: Evidence of subtle cerebellar cognitive affective syndrome. Clin Neuropsychol 2020; 34:591-610. [PMID: 30821610 PMCID: PMC6717685 DOI: 10.1080/13854046.2019.1569724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Background: The Dandy-Walker Malformation (DWM) is a congenital birth malformation that is characterized by a triad of features: cerebellar dysgenesis, cystic dilation of the fourth ventricle, and an enlarged posterior fossa that displaces the dural sinuses and the tentorium. Despite this defining triad, clinical presentation can be highly heterogeneous in part due to severity of structural changes. To date, there been limited consideration of cognitive-behavioral symptoms of DWM in relation to nonmotor functions of the cerebellum, specifically cerebellar cognitive affective syndrome (CCAS).Method: In this case study, we describe the neuropsychological and behavioral profile of a 48-year-old man with DWM who was seen due to concerns, expressed solely by the patient's father, about his son's atypical housing, employment and social skills.Results: Neuropsychological test findings revealed high average intellect on standard intellectual measures (WAIS-IV), with stronger verbal (superior) than perceptual reasoning (average) skills. Across all cognitive domains, performance was generally within expectations, although bilateral fine motor skills were impaired. In contrast, he exhibited weaknesses on nontraditional neuropsychological measures assessing orbitofrontal-limbic circuitry, including reward sensitivity decision making and indices of threat-related emotional physiology.Conclusions: Through the use of traditional and nontraditional neuropsychological measures, subtle cognitive weaknesses in fronto-executive and affective regulation were illuminated and likely explain the patient's functional difficulties. Etiologically, these findings are consistent with the nonmotor functions of the cerebellum as described by CCAS.
Collapse
Affiliation(s)
| | | | - Paul Mangal
- Department of Clinical and Health Psychology, University of Florida
| | | | | | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida
- Department of Neurology, University of Florida
| |
Collapse
|
13
|
Abnormal cerebellar volume in somatic vs. non-somatic delusional disorders. CEREBELLUM & ATAXIAS 2020; 7:2. [PMID: 31993210 PMCID: PMC6971987 DOI: 10.1186/s40673-020-0111-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Background There is abundant evidence for cerebellar involvement in schizophrenia, where the cerebellum has been suggested to contribute to cognitive, affective and motor dysfunction. More recently, specific cerebellar regions have also been associated with psychotic symptoms, particularly with auditory verbal hallucinations. In contrast, little is known about cerebellar contributions to delusions, and even less is known about whether cerebellar involvement differs by delusional content. Methods Using structural magnetic resonance imaging at 1.0 T together with cerebellum-optimized segmentation techniques, we investigated gray matter volume (GMV) in 14 patients with somatic-type delusional disorder (S-DD), 18 patients with non-somatic delusional disorder (NS-DD) and 18 patients with schizophrenia (SZ) with persistent non-somatic delusions. A total of 32 healthy controls (HC) were included. Between-group comparisons were adjusted for age, gender, chlorpromazine equivalents and illness duration. Results Compared to HC, S-DD patients showed decreased GMV in left lobule VIIIa. In addition, S-DD patients showed decreased GMV in lobule V and increased GMV in bilateral lobule VIIa/crus II compared to NS-DD. Patients with SZ showed increased GMV in right lobule VI and VIIa/crus I compared to HC. Significant differences between HC and NS-DD were not found. Conclusions The data support the notion of cerebellar dysfunction in psychotic disorders. Distinct cerebellar deficits, predominantly linked to sensorimotor processing, may be detected in delusional disorders presenting with predominantly somatic content.
Collapse
|
14
|
Botzung A, Philippi N, Noblet V, Loureiro de Sousa P, Blanc F. Pay attention to the basal ganglia: a volumetric study in early dementia with Lewy bodies. Alzheimers Res Ther 2019; 11:108. [PMID: 31864422 PMCID: PMC6925479 DOI: 10.1186/s13195-019-0568-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cortical and subcortical cognitive impairments are usually found in dementia with Lewy bodies (DLB). Roughly, they comprise visuo-constructive/executive function and attention/processing speed impairments, whereas memory would remain relatively spared. In this study, we focused on the neuro-anatomical substrates of attention and processing speed, which is still poorly understood. For the purpose of the study, we examined the correlations between behavioral scores measuring the speed of processing and the degree of cerebral atrophy in patients with prodromal to moderate DLB. METHODS Ninety-three prodromal to moderate DLB patients (mean MMSE = 25.5) were selected to participate in the study as well as 28 healthy elderly subjects (mean MMSE = 28.9), matched in terms of age and educational level. The Trail Making Test A (TMTA) and the Digit Symbol Substitution Test (DSST) were used to assess attention and processing speed. Behavioral performances were compared between patients and healthy control subjects. Three-dimensional MRI images were acquired for all participants, and correlational analyses were performed in the patient group using voxel-based morphometry (VBM). RESULTS The behavioral results on both the TMTA (p = .026) and the DSST (p < .001) showed significantly impaired performances in patients in comparison with control subjects. In addition, correlational analyses using VBM revealed for the TMTA negative correlations in the caudate nucleus (left cluster peak significant at .05 FWE corrected), the putamen, the left thalamus, and the subthalamic nuclei (p < .05 FDR corrected). Some positive correlations associated with the DSST were found in the right inferior frontal gyrus, the left thalamus, and the left cerebellum (p < .001 uncorrected). CONCLUSIONS The behavioral results are in line with the literature on the DLB cognitive profile and confirm the existence of attention and processing speed impairment. Interestingly, VBM analysis revealed the involvement of the basal ganglia, in particular, the left caudate nucleus, which is part of the attention cerebral network, suggesting an important role of this structure for attentional processing speed. This also suggests the clinical implication of damage in this region relatively early in the course of the disease.
Collapse
Affiliation(s)
- Anne Botzung
- Geriatrics and Neurology Departments, Research and Resources Memory Center (CM2R), Strasbourg University Hospital, Strasbourg, France.
| | - Nathalie Philippi
- Geriatrics and Neurology Departments, Research and Resources Memory Center (CM2R), Strasbourg University Hospital, Strasbourg, France
- ICube laboratory (CNRS, UMR 7357) and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Vincent Noblet
- ICube laboratory (CNRS, UMR 7357) and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube laboratory (CNRS, UMR 7357) and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- Geriatrics and Neurology Departments, Research and Resources Memory Center (CM2R), Strasbourg University Hospital, Strasbourg, France
- ICube laboratory (CNRS, UMR 7357) and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Singh A, Trapp NT, De Corte B, Cao S, Kingyon J, Boes AD, Parker KL. Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia. THE CEREBELLUM 2019; 18:489-499. [PMID: 30825131 DOI: 10.1007/s12311-019-01013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive dysfunction is a pervasive and disabling aspect of schizophrenia without adequate treatments. A recognized correlate to cognitive dysfunction in schizophrenia is attenuated frontal theta oscillations. Neuromodulation to normalize these frontal rhythms represents a potential novel therapeutic strategy. Here, we evaluate whether noninvasive neuromodulation of the cerebellum in patients with schizophrenia can enhance frontal theta oscillations, with the future goal of targeting the cerebellum as a possible therapy for cognitive dysfunction in schizophrenia. We stimulated the midline cerebellum using transcranial pulsed current stimulation (tPCS), a noninvasive transcranial direct current that can be delivered in a frequency-specific manner. A single 20-min session of theta frequency stimulation was delivered in nine patients with schizophrenia (cathode on right shoulder). Delta frequency tPCS was also delivered as a control to evaluate for frequency-specific effects. EEG signals from midfrontal electrode Cz were analyzed before and after cerebellar tPCS while patients estimated the passage of 3- and 12-s intervals. Theta oscillations were significantly larger following theta frequency cerebellar tPCS in the midfrontal region, which was not seen with delta frequency stimulation. As previously reported, patients with schizophrenia showed a baseline reduction in accuracy estimating 3- and 12-s intervals relative to control subjects, which did not significantly improve following a single-session theta or delta frequency cerebellar tPCS. These preliminary results suggest that single-session theta frequency cerebellar tPCS may modulate task-related oscillatory activity in the frontal cortex in a frequency-specific manner. These preliminary findings warrant further investigation to evaluate whether multiple sessions delivered daily may have an impact on cognitive performance and have therapeutic implications for schizophrenia.
Collapse
Affiliation(s)
- Arun Singh
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa, 169 Newton Road, 2336 PBDB, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin De Corte
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Scarlett Cao
- University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Johnathon Kingyon
- University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Department of Pediatrics, Neurology and Psychiatry, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Krystal L Parker
- Department of Psychiatry, University of Iowa, 169 Newton Road, 2336 PBDB, Iowa City, IA, 52242, USA. .,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Matsuoka K, Morimoto T, Matsuda Y, Yasuno F, Taoka T, Miyasaka T, Yoshikawa H, Takahashi M, Kitamura S, Kichikawa K, Kishimoto T. Computer-assisted cognitive remediation therapy for patients with schizophrenia induces microstructural changes in cerebellar regions involved in cognitive functions. Psychiatry Res Neuroimaging 2019; 292:41-46. [PMID: 31521942 DOI: 10.1016/j.pscychresns.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Previous studies have reported that cognitive remediation therapy (CRT) improves cognitive deficits in patents with schizophrenia. However, few studies have focused on the underlying structural alterations in the brain following Vocational Cognitive Ability Training by the Japanese Cognitive Rehabilitation Program for Schizophrenia (VCAT-J). In this study, we analyzed changes in diffusion tensor imaging parameters in 31 patients with schizophrenia after 12 weeks of intervention consisting of standard treatment alone or standard treatment plus VCAT-J, in order to determine the effect of the latter on white matter microstructural plasticity. Cognitive function was evaluated using the Japanese version of the Brief Assessment of Cognition in Schizophrenia (BACS-J) scale. The CRT group exhibited significant improvements in verbal fluency and composite BACS-J scores, relative to the treatment-as-usual (TAU) group. In addition, the CRT group exhibited significantly increased fractional anisotropy (FA) values, along with significantly decreased radial (RD) and mean diffusivity (MD) values, in the posterior lobe of the left cerebellum. Changes in RD and MD values were negatively correlated with changes in BACS-J composite scores. These suggest that VCAT-J might mediate improvements in myelin sheath composition in the posterior lobe of the left cerebellum, which may have been associated with improvements in cognitive function.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan.
| | - Tsubasa Morimoto
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Yasuhiro Matsuda
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan; Department of Psychiatry, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, Aichi, Japan
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Soichiro Kitamura
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| |
Collapse
|
17
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
18
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
19
|
Carass A, Cuzzocreo JL, Han S, Hernandez-Castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz J, Ben Ayed I, Desrosiers C, Thyreau B, Romero JE, Coupé P, Manjón JV, Fonov VS, Collins DL, Ying SH, Onyike CU, Crocetti D, Landman BA, Mostofsky SH, Thompson PM, Prince JL. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 2018; 183:150-172. [PMID: 30099076 PMCID: PMC6271471 DOI: 10.1016/j.neuroimage.2018.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023] Open
Abstract
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Shuo Han
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 20892, USA
| | - Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose Dolz
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Ismail Ben Ayed
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Christian Desrosiers
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Benjamin Thyreau
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - José E Romero
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France; CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
| | - José V Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vladimir S Fonov
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah H Ying
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Deana Crocetti
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA; Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
20
|
Shaafi Kabiri N, Syed S, Bali T, Karlin DR, Binneman B, Tan Y, Steinman A, Cote AC, Thomas KC. Evaluation of the use of the Scale for the Assessment and Rating of Ataxia (SARA) in healthy volunteers and patients with schizophrenia. J Neurol Sci 2018; 391:40-44. [PMID: 30103968 DOI: 10.1016/j.jns.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The Scale for the Assessment and Rating of Ataxia (SARA) is a semi-quantitative assessment used to evaluate ataxia. The goal of these studies was to assess and evaluate the utility of this instrument in a Healthy Volunteer (HV) group and subjects with Schizophrenia (SCZ). METHODS Two studies were completed to collect SARA data, in a HV group and in a stable SCZ group. 177 HVs (18-65 years) and 16 SCZs (18-58 years) provided written consent and were assessed using the SARA. Of 177 HV subjects, 88 had 2 SARA assessments (within 2 days of initial visit) while all 16 SCZ had 3 SARA assessments (within 14 days of initial visit). RESULTS For the HV group, the mean score ± Std for the SARA on visit-1 was 0.39 ± 0.72, and 0.34 ± 0.64 for visit-2. The Pearson correlation coefficient between visit-1 and visit-2 was 0.7486 and an ICC of 0.743. For the SCZ group, the mean score for the SARA was 0.63 ± 0.65 on visit-1, 0.84 ± 1.19 on visit-2, and 0.84 ± 0.94 on visit-3. The Pearson correlation coefficient between visit-1 and visit-2 was 0.6545, between visit-1 and visit-3 was 0.6635 and between visit-2 and visit-3 was 0.7613 and an ICC of 0.650. There was no significant difference in baseline SARA scores between the HV and SCZ group p = .063. A statistically significant positive association between age and total SARA scores was observed in HV (r = 0.345) and SCZ (r = 0.676). CONCLUSIONS A strong association was observed in both the HV and SCZ groups in the reassessment of signs of ataxia using the SARA scale. Both groups demonstrated minimal signs of ataxia, with no statistically significant difference between the two groups in their visit-1 scores.
Collapse
Affiliation(s)
- Nina Shaafi Kabiri
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA
| | - Sana Syed
- Tufts Medical Center, Department of Neurology, USA; Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Taha Bali
- Massachusetts General Hospital, Department of Neurology, USA; Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Daniel R Karlin
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA; Tufts University School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Brendon Binneman
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Ye Tan
- Tufts University School of Medicine, Department of Psychiatry, Boston, MA, USA
| | - Alexii Steinman
- Pfizer Inc. Worldwide Research & Development, 610 Main Street, Cambridge, MA, USA
| | - Alanna C Cote
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA
| | - Kevin C Thomas
- Laboratory for Human Neurobiology, Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Unit X140, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Molinari M, Masciullo M, Bulgheroni S, D'Arrigo S, Riva D. Cognitive aspects: sequencing, behavior, and executive functions. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:167-180. [PMID: 29903438 DOI: 10.1016/b978-0-444-63956-1.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The question posed today is not whether the cerebellum plays a role in cognition, but instead, how the cerebellum contributes to cognitive processes, even in the developmental age. The central role of the cerebellum in many areas of human abilities, motor as well as cognitive, in childhood as well as in adulthood, is well established but cerebellar basic functioning is still not clear and is much debated. Of particular interest is the changing face of cerebellar influence on motor, higher cognitive, and behavioral functioning when adult and developmental lesions are compared. The idea that the cerebellum might play quite different roles during development and in adulthood has been proposed, and evidence from experimental and clinical literature has been provided, including for sequencing, behavioral aspects, and executive functions Still, more data are needed to fully understand the changes of cerebrocerebellar interactions within the segregated loops which connect cerebrum and cerebellum, not only between childhood and adulthood but also in health and disease.
Collapse
Affiliation(s)
- Marco Molinari
- Department of Neurorehabilitation, Fondazione Santa Lucia, Rome, Italy.
| | - Marcella Masciullo
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bulgheroni
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| | - Stefano D'Arrigo
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| | - Daria Riva
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
22
|
Kim T, Lee KH, Oh H, Lee TY, Cho KIK, Lee J, Kwon JS. Cerebellar Structural Abnormalities Associated With Cognitive Function in Patients With First-Episode Psychosis. Front Psychiatry 2018; 9:286. [PMID: 30018573 PMCID: PMC6038730 DOI: 10.3389/fpsyt.2018.00286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: The fundamental role of the cerebellum in higher cognitive processing has recently been highlighted. However, inconsistent findings exist in schizophrenia with respect to the exact nature of cerebellar structural abnormalities and their associations with cognitive and clinical features. Materials and Methods: We undertook a detailed investigation of cerebellar lobular volumes in 40 patients with first-episode psychosis (FEP) and 40 healthy controls (HCs) using the spatially unbiased atlas template of the cerebellum (SUIT). We examined the functional significance of cerebellar structural abnormalities in relation to cognitive and clinical outcomes in patients. Results: We found that left cerebellar lobules VI and X volumes were lower in FEP patients, compared to HCs. Smaller left lobules VI and X volumes were associated with fewer number of categories completed on the Wisconsin Card Sorting Test (WCST) in patients. In addition, smaller left lobule X volume was related to performance delay on the Trail Making Test (TMT) Part B in patients. Conclusion: Our results demonstrate that cerebellar structural abnormalities are present at the early stage of schizophrenia. We suggest functional associations of cerebellar structural changes with non-verbal executive dysfunctions in FEP.
Collapse
Affiliation(s)
- Taekwan Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hyuk Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Hyerim Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Kang Ik K Cho
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Junhee Lee
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Ashida R, Cerminara NL, Brooks J, Apps R. Principles of organization of the human cerebellum: macro- and microanatomy. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:45-58. [DOI: 10.1016/b978-0-444-63956-1.00003-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Cerebellar Contributions to Persistent Auditory Verbal Hallucinations in Patients with Schizophrenia. THE CEREBELLUM 2017; 16:964-972. [DOI: 10.1007/s12311-017-0874-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abnormal functional connectivity strength in patients with adolescent-onset schizophrenia: a resting-state fMRI study. Eur Child Adolesc Psychiatry 2017; 26:839-845. [PMID: 28185094 DOI: 10.1007/s00787-017-0958-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
Abstract
Structural and functional abnormalities were reported in the brain of patients with adolescent-onset schizophrenia (AOS). However, evidence of abnormal functional connectivity of the brain in AOS patients is limited. Thus, we analyzed the resting-state functional magnetic resonance scans of 48 drug-naive AOS patients and 31 healthy controls to determine their functional connectivity strength (FCS) and examined if FCS abnormalities were correlated with clinical characteristics. Compared with healthy controls, AOS patients showed significantly increased FCS in the left cerebellum VI and right inferior frontal gyrus/insula. A positive correlation was observed between FCS values in the right inferior frontal gyrus/insula and general psychopathology scores of positive and negative syndrome scale. Results suggest that functional connectivity pattern is disrupted in drug-naive AOS patients. The FCS values in this abnormal region have potential for evaluating the disease severity.
Collapse
|
26
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res Neuroimaging 2017; 264:46-51. [PMID: 28458083 DOI: 10.1016/j.pscychresns.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Progressive loss of gray matter has been demonstrated over the early course of schizophrenia. Identification of an association between cognition and gray matter may lead to development of early interventions directed at preserving gray matter volume and cognitive ability. The present study evaluated the association between gray matter using voxel-based morphometry (VBM) and cognitive testing in a sample of 16 patients with first-episode psychosis. A simple regression was applied to investigate the association between gray matter at baseline and 80 months and cognitive tests at baseline. Performance on the Wisconsin Card Sorting Task (WCST) at baseline was positively associated with gray matter volume in several brain regions. There was an association between decreased gray matter at baseline in the nucleus accumbens and Trails B errors. Performing worse on Trails B and making more WCST perseverative errors at baseline was associated with gray matter decline over 80 months in the right globus pallidus, left inferior parietal lobe, Brodmann's area (BA) 40, and left superior parietal lobule and BA 7 respectively. All significant findings were cluster corrected. The results support a relationship between aspects of cognitive impairment and gray matter abnormalities in first-episode psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
27
|
The Role of the Pediatric Cerebellum in Motor Functions, Cognition, and Behavior: A Clinical Perspective. Neuroimaging Clin N Am 2017; 26:317-29. [PMID: 27423796 DOI: 10.1016/j.nic.2016.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses the contribution of the pediatric cerebellum to locomotion, ocular motor control, speech articulation, cognitive function, and behavior modulation. Hypotheses on cerebellar function are discussed. Clinical features in patients with cerebellar disorders are outlined. Cerebellar abnormalities in cognitive and behavioral disorders are detailed.
Collapse
|
28
|
Alexander B, Murray AL, Loh WY, Matthews LG, Adamson C, Beare R, Chen J, Kelly CE, Rees S, Warfield SK, Anderson PJ, Doyle LW, Spittle AJ, Cheong JLY, Seal ML, Thompson DK. A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas. Neuroimage 2016; 147:841-851. [PMID: 27725314 DOI: 10.1016/j.neuroimage.2016.09.068] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/01/2022] Open
Abstract
Investigating neonatal brain structure and function can offer valuable insights into behaviour and cognition in healthy and clinical populations; both at term age, and longitudinally in comparison with later time points. Parcellated brain atlases for adult populations are readily available, however warping infant data to adult template space is not ideal due to morphological and tissue differences between these groups. Several parcellated neonatal atlases have been developed, although there remains strong demand for manually parcellated ground truth data with detailed cortical definition. Additionally, compatibility with existing adult atlases is favourable for use in longitudinal investigations. We aimed to address these needs by replicating the widely-used Desikan-Killiany (2006) adult cortical atlas in neonates. We also aimed to extend brain coverage by complementing this cortical scheme with basal ganglia, thalamus, cerebellum and other subcortical segmentations. Thus, we have manually parcellated these areas volumetrically using high-resolution neonatal T2-weighted MRI scans, and initial automated and manually edited tissue classification, providing 100 regions in all. Linear and nonlinear T2-weighted structural templates were also generated. In this paper we provide manual parcellation protocols, and present the parcellated probability maps and structural templates together as the Melbourne Children's Regional Infant Brain (M-CRIB) atlas.
Collapse
Affiliation(s)
- Bonnie Alexander
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Andrea L Murray
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Wai Yen Loh
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Lillian G Matthews
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Department of Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chris Adamson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Richard Beare
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Claire E Kelly
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Sandra Rees
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Simon K Warfield
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Alicia J Spittle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Marc L Seal
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
29
|
Womer FY, Tang Y, Harms MP, Bai C, Chang M, Jiang X, Wei S, Wang F, Barch DM. Sexual dimorphism of the cerebellar vermis in schizophrenia. Schizophr Res 2016; 176:164-170. [PMID: 27401530 DOI: 10.1016/j.schres.2016.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Converging lines of evidence implicate structural and functional abnormalities in the cerebellum in schizophrenia (SCZ). The cerebellar vermis is of particular interest given its association with clinical symptoms and cognitive deficits in SCZ and its known connections with cortical regions such as the prefrontal cortex. Prior neuroimaging studies have shown structural and functional abnormalities in the vermis in SCZ. In this study, we examined the cerebellar vermis in 50 individuals with SCZ and 54 healthy controls (HC) using a quantitative volumetric approach. All participants underwent high-resolution structural magnetic resonance imaging (MRI). The vermis was manually traced for each participant, and vermis volumes were computed using semiautomated methods. Volumes for total vermis and vermis subregions (anterior and posterior vermis) were analyzed in the SCZ and HC groups. Significant diagnosis-by-sex interaction effects were found in total vermis and vermis subregion analyses. These effects appeared to be driven by significantly decreased posterior vermis volumes in males with SCZ. Exploratory analyses did not reveal significant effects of clinical variables (FEP status, illness duration, and BPRS total score and subscores) on vermis volumes. The findings herein highlight the presence of neural sex differences in SCZ and the need for considering sex-related factors in studying the disorder.
Collapse
Affiliation(s)
- Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Chuan Bai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; The Brain Imaging Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Washington University, St. Louis, MO, USA; Department of Psychology, Washington University, St. Louis, MO, USA
| |
Collapse
|
30
|
Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study. Psychiatry Res 2016; 243:413-20. [PMID: 27450744 DOI: 10.1016/j.psychres.2016.07.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic for schizophrenia. Treatment effects of rTMS have been variable across different symptom clusters, with negative symptoms showing better response, followed by auditory hallucinations. Cerebellum, especially vermis and its abnormalities (both structural and functional) have been implicated in cognitive, affective and positive symptoms of schizophrenia. rTMS to this alternate site has been suggested as a novel target for treating patients with this disorder. Hypothesizing cerebellar vermal magnetic stimulation as an adjunct to treat schizophrenia psychopathology, we conducted a double blind randomized sham controlled rTMS study. In this study, forty patients were randomly allocated (using block randomization method) to active high frequency (theta patterned) rTMS (n=20) and sham (n=20) groups. They received 10 sessions over 2 weeks. The Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) scores were assessed at baseline, after last session and at 4 weeks (2 weeks post-rTMS). We found a significantly greater improvement in the group receiving active rTMS sessions, compared to the sham group on negative symptoms, and depressive symptoms. We conclude that cerebellar stimulation can be used as an effective adjunct to treat negative and affective symptoms.
Collapse
Affiliation(s)
- Shobit Garg
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, India
| | - Vinod Kumar Sinha
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| | - Sai Krishna Tikka
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India.
| | - Preeti Mishra
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, India
| | - Nishant Goyal
- KS Mani Center for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand 834006, India
| |
Collapse
|
31
|
Bolbecker AR, Petersen IT, Kent JS, Howell JM, O'Donnell BF, Hetrick WP. New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical Linear Modeling Approach. Front Psychiatry 2016; 7:4. [PMID: 26834653 PMCID: PMC4725217 DOI: 10.3389/fpsyt.2016.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been identified in schizophrenia. While repeated-measures analysis of variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) more reliably describes change over time by accounting for the dependence in repeated-measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N = 56 per group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a three-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Isaac T Petersen
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Josselyn M Howell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| |
Collapse
|
32
|
Faget-Agius C, Catherine FA, Boyer L, Wirsich J, Jonathan W, Ranjeva JP, Jean-Philippe R, Richieri R, Raphaelle R, Soulier E, Elisabeth S, Confort-Gouny S, Sylviane CG, Auquier P, Pascal A, Guye M, Maxime G, Lançon C, Christophe L. Neural substrate of quality of life in patients with schizophrenia: a magnetisation transfer imaging study. Sci Rep 2015; 5:17650. [PMID: 26632639 PMCID: PMC4668560 DOI: 10.1038/srep17650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the neural substrate underlying quality of life (QoL) and to demonstrate the microstructural abnormalities associated with impaired QoL in a large sample of patients with schizophrenia, using magnetisation transfer imaging. A total of 81 right-handed men with a diagnosis of schizophrenia and 25 age- and sex-similar healthy controls were included and underwent a 3T MRI with magnetization transfer ratio (MTR) to detect microstructural abnormalities. Compared with healthy controls, patients with schizophrenia had grey matter (GM) decreased MTR values in the temporal lobe (BA21, BA37 and BA38), the bilateral insula, the occipital lobe (BA17, BA18 and BA19) and the cerebellum. Patients with impaired QoL had lower GM MTR values relative to patients with preserved QoL in the bilateral temporal pole (BA38), the bilateral insula, the secondary visual cortex (BA18), the vermis and the cerebellum. Significant correlations between MTR values and QoL scores (p < 0.005) were observed in the GM of patients in the right temporal pole (BA38), the bilateral insula, the vermis and the right cerebellum. Our study shows that QoL impairment in patients with schizophrenia is related to the microstructural changes in an extensive network, suggesting that QoL is a bio-psychosocial marker.
Collapse
Affiliation(s)
| | - Faget-Agius Catherine
- Aix-Marseille University, EA 3279, Public Health: Chronic Diseases and Quality of Life, School of Medicine, 13005 Marseille, France
- Department of Psychiatry, Conception University Hospital, 13009 Marseille, France
- Department of Public Health, Timone University Hospital, Assistance Publique - Hôpitaux de Marseille, 13005 Marseille, France
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | - Laurent Boyer
- Aix-Marseille University, EA 3279, Public Health: Chronic Diseases and Quality of Life, School of Medicine, 13005 Marseille, France
- Department of Public Health, Timone University Hospital, Assistance Publique - Hôpitaux de Marseille, 13005 Marseille, France
| | | | - Wirsich Jonathan
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | | | - Ranjeva Jean-Philippe
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | | | - Richieri Raphaelle
- Aix-Marseille University, EA 3279, Public Health: Chronic Diseases and Quality of Life, School of Medicine, 13005 Marseille, France
- Department of Psychiatry, Conception University Hospital, 13009 Marseille, France
- Department of Public Health, Timone University Hospital, Assistance Publique - Hôpitaux de Marseille, 13005 Marseille, France
| | | | - Soulier Elisabeth
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | | | - Confort-Gouny Sylviane
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | | | - Auquier Pascal
- Aix-Marseille University, EA 3279, Public Health: Chronic Diseases and Quality of Life, School of Medicine, 13005 Marseille, France
- Department of Public Health, Timone University Hospital, Assistance Publique - Hôpitaux de Marseille, 13005 Marseille, France
| | | | - Guye Maxime
- Aix Marseille University, Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR CNRS 7339, Medical School of Marseille, France
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Medical Imaging Department, Timone University Hospital, AP-HM, Marseille, France
| | - Christophe Lançon
- Aix-Marseille University, EA 3279, Public Health: Chronic Diseases and Quality of Life, School of Medicine, 13005 Marseille, France
- Department of Psychiatry, Conception University Hospital, 13009 Marseille, France
- Department of Public Health, Timone University Hospital, Assistance Publique - Hôpitaux de Marseille, 13005 Marseille, France
| | | |
Collapse
|
33
|
Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 2015; 60:1-11. [PMID: 26602022 DOI: 10.1016/j.neubiorev.2015.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder.
Collapse
|
34
|
Abstract
Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.
Collapse
|
35
|
Clinical correlates of enlarged cavum septum pellucidum in schizophrenia: A revisit through computed tomography. Asian J Psychiatr 2015; 15:21-4. [PMID: 26001900 DOI: 10.1016/j.ajp.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/28/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
Abstract
Like prevalence of abnormal cavum septum pellucidum in patients of schizophrenia remains controversial, its role in clinical outcome, duration of illness and effect on treatment remains less understood as well. Our study examined clinical correlates of enlarged cavum septum pellucidum in schizophrenia. A total of 139 patients diagnosed with schizophrenia during the year 2012 and 2013 were taken for the study. We compared them in respect to the presence and absence of enlarged cavum septum pellucidum. We found 16 patients with enlarged cavum septum pellucidum and were compared with those without enlarged cavum septum pellucidum for socio-demographic and clinical variables. We also correlated these clinical variables with dimension of cavum septum pellucidum. We found statistically significant increased current age and duration of illness in patients with enlarged cavum septum pellucidum. The implications of these findings are discussed with possible confounding effect of current age on neuroimaging. No meaningful correlation was found. No difference in clinical variables was found. Retrospective design and use of computed tomography were limitation of our study.
Collapse
|
36
|
Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health 2015; 3:66. [PMID: 26000269 PMCID: PMC4419550 DOI: 10.3389/fpubh.2015.00066] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
The cerebellum has been considered for a long time to play a role solely in motor coordination. However, studies over the past two decades have shown that the cerebellum also plays a key role in many motor, cognitive, and emotional processes. In addition, studies have also shown that the cerebellum is implicated in many psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. In this review, we discuss existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will also discuss future directions for studies linking the cerebellum to psychiatric disorders.
Collapse
Affiliation(s)
- Joseph R. Phillips
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
| | - Doaa H. Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer M. Eissa
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
- Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, NSW, Australia
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA
| |
Collapse
|
37
|
Laidi C, d’Albis MA, Wessa M, Linke J, Phillips M, Delavest M, Bellivier F, Versace A, Almeida J, Sarrazin S, Poupon C, Le Dudal K, Daban C, Hamdani N, Leboyer M, Houenou J. Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatr Scand 2015; 131:223-33. [PMID: 25430729 PMCID: PMC4329064 DOI: 10.1111/acps.12363] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There is growing evidence that cerebellum plays a crucial role in cognition and emotional regulation. Cerebellum is likely to be involved in the physiopathology of both bipolar disorder and schizophrenia. The objective of our study was to compare cerebellar size between patients with bipolar disorder, patients with schizophrenia, and healthy controls in a multicenter sample. In addition, we studied the influence of psychotic features on cerebellar size in patients with bipolar disorder. METHOD One hundred and fifteen patients with bipolar I disorder, 32 patients with schizophrenia, and 52 healthy controls underwent 3 Tesla MRI. Automated segmentation of cerebellum was performed using FreeSurfer software. Volumes of cerebellar cortex and white matter were extracted. Analyses of covariance were conducted, and age, sex, and intracranial volume were considered as covariates. RESULTS Bilateral cerebellar cortical volumes were smaller in patients with schizophrenia compared with patients with bipolar I disorder and healthy controls. We found no significant difference of cerebellar volume between bipolar patients with and without psychotic features. No change was evidenced in white matter. CONCLUSION Our results suggest that reduction in cerebellar cortical volume is specific to schizophrenia. Cerebellar dysfunction in bipolar disorder, if present, appears to be more subtle than a reduction in cerebellar volume.
Collapse
Affiliation(s)
- Charles Laidi
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Faculté de médecine, Université Paris Est, Créteil, France,Fondation Fondamental, Créteil, France,UNIACT, Neurospin, I2BM, CEA Saclay, Gif sur Yvette, France
| | - Marc-Antoine d’Albis
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Faculté de médecine, Université Paris Est, Créteil, France,Fondation Fondamental, Créteil, France,UNIACT, Neurospin, I2BM, CEA Saclay, Gif sur Yvette, France
| | - Michèle Wessa
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Center For Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Julia Linke
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Center For Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mary Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marine Delavest
- Fondation Fondamental, Créteil, France,AP-HP, Groupe Saint-Louis, Lariboisière-Fernand Widal, Pôle Neurosciences, Paris, France
| | - Frank Bellivier
- Fondation Fondamental, Créteil, France,AP-HP, Groupe Saint-Louis, Lariboisière-Fernand Widal, Pôle Neurosciences, Paris, France
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jorge Almeida
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel Sarrazin
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Faculté de médecine, Université Paris Est, Créteil, France,Fondation Fondamental, Créteil, France,UNIACT, Neurospin, I2BM, CEA Saclay, Gif sur Yvette, France
| | - Cyril Poupon
- UNIRS, Neurospin, I2BM, CEA Saclay, Gif-Sur-Yvette, France
| | - Katia Le Dudal
- Centre d’Investigation Clinique 1430 et Plateforme de Ressources Biologiques, Hôpital Henri Mondor, Créteil, France
| | - Claire Daban
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - Nora Hamdani
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - Marion Leboyer
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Faculté de médecine, Université Paris Est, Créteil, France,Fondation Fondamental, Créteil, France
| | - Josselin Houenou
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil, France,INSERM, U955, IMRB, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France,UNIACT, Neurospin, I2BM, CEA Saclay, Gif sur Yvette, France,*Corresponding author: Josselin Houenou, MD, PhD, INSERM U955, Pôle de psychiatrie, Hôpitaux Universitaires Mondor, 40 rue de Mesly 94000 Créteil France, Phone: +33 1 49 81 30 51, Fax: +33 1 49 81 30 59,
| |
Collapse
|
38
|
Li ML, Xiang B, Li YF, Hu X, Wang Q, Guo WJ, Lei W, Huang CH, Zhao LS, Li N, Ren HY, Wang HY, Ma XH, Deng W, Li T. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia. Neurosci Bull 2015; 31:31-42. [PMID: 25564193 DOI: 10.1007/s12264-014-1491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.
Collapse
Affiliation(s)
- Ming-Li Li
- The Mental Health Center and the Psychiatric Laboratory, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kent JS, Bolbecker AR, O'Donnell BF, Hetrick WP. Eyeblink Conditioning in Schizophrenia: A Critical Review. Front Psychiatry 2015; 6:146. [PMID: 26733890 PMCID: PMC4683521 DOI: 10.3389/fpsyt.2015.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
There is accruing evidence of cerebellar abnormalities in schizophrenia. The theory of cognitive dysmetria considers cerebellar dysfunction a key component of schizophrenia. Delay eyeblink conditioning (EBC), a cerebellar-dependent translational probe, is a behavioral index of cerebellar integrity. The circuitry underlying EBC has been well characterized by non-human animal research, revealing the cerebellum as the essential circuitry for the associative learning instantiated by this task. However, there have been persistent inconsistencies in EBC findings in schizophrenia. This article thoroughly reviews published studies investigating EBC in schizophrenia, with an emphasis on possible effects of antipsychotic medication and stimulus and analysis parameters on reports of EBC performance in schizophrenia. Results indicate a consistent finding of impaired EBC performance in schizophrenia, as measured by decreased rates of conditioning, and that medication or study design confounds do not account for this impairment. Results are discussed within the context of theoretical and neurochemical models of schizophrenia.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| |
Collapse
|
40
|
Kim DJ, Kent JS, Bolbecker AR, Sporns O, Cheng H, Newman SD, Puce A, O’Donnell BF, Hetrick WP. Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophr Bull 2014; 40:1216-26. [PMID: 24782561 PMCID: PMC4193723 DOI: 10.1093/schbul/sbu059] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of schizophrenia have revealed cognitive and memory deficits that are accompanied by disruptions of neuronal connectivity in cortical and subcortical brain regions. More recently, alterations of topological organization of structural networks in schizophrenia are also being identified using graph theoretical analysis. However, the role of the cerebellum in this network structure remains largely unknown. In this study, global network measures obtained from diffusion tensor imaging were computed in the cerebella of 25 patients with schizophrenia and 36 healthy volunteers. While cerebellar global network characteristics were slightly altered in schizophrenia patients compared with healthy controls, the patients showed a retained small-world network organization. The modular architecture, however, was changed mainly in crus II. Furthermore, schizophrenia patients had reduced correlations between modularity and microstructural integrity, as measured by fractional anisotropy (FA) in lobules I-IV and X. Finally, FA alterations were significantly correlated with the Positive and Negative Syndrome Scale symptom scores in schizophrenia patients. Taken together, our data suggest that schizophrenia patients have altered network architecture in the cerebellum with reduced local microstructural connectivity and that cerebellar structural abnormalities are associated symptoms of the disorder.
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
41
|
Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 2014; 8:163. [PMID: 25309350 PMCID: PMC4163988 DOI: 10.3389/fnsys.2014.00163] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia.
Collapse
|
42
|
Bolbecker AR, Kent JS, Petersen IT, Klaunig MJ, Forsyth JK, Howell JM, Westfall DR, O’Donnell BF, Hetrick WP. Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives of individuals with schizophrenia. Schizophr Bull 2014; 40:1001-10. [PMID: 23962891 PMCID: PMC4133656 DOI: 10.1093/schbul/sbt112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
Collapse
Affiliation(s)
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Isaac T. Petersen
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | | | | | | | | | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
43
|
Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. Neuroimage 2014; 95:217-31. [DOI: 10.1016/j.neuroimage.2014.03.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/25/2014] [Accepted: 03/12/2014] [Indexed: 01/18/2023] Open
|
44
|
Bolbecker AR, Westfall DR, Howell JM, Lackner RJ, Carroll CA, O'Donnell BF, Hetrick WP. Increased timing variability in schizophrenia and bipolar disorder. PLoS One 2014; 9:e97964. [PMID: 24848559 PMCID: PMC4029800 DOI: 10.1371/journal.pone.0097964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/27/2014] [Indexed: 01/08/2023] Open
Abstract
Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry underlying internal timing mechanisms may contribute to severe psychiatric disorders, including psychotic and mood disorders. The degree to which alterations in temporal perceptions reflect deficits that exist across psychosis-related phenotypes and the extent to which mood symptoms contribute to these deficits is currently unknown. In addition, compared to schizophrenia, where timing deficits have been more extensively investigated, sub-second timing has been studied relatively infrequently in bipolar disorder. The present study compared sub-second duration estimates of schizophrenia (SZ), schizoaffective disorder (SA), non-psychotic bipolar disorder (BDNP), bipolar disorder with psychotic features (BDP), and healthy non-psychiatric controls (HC) on a well-established time perception task using sub-second durations. Participants included 66 SZ, 37 BDNP, 34 BDP, 31 SA, and 73 HC who participated in a temporal bisection task that required temporal judgements about auditory durations ranging from 300 to 600 milliseconds. Timing variability was significantly higher in SZ, BDP, and BDNP groups compared to healthy controls. The bisection point did not differ across groups. These findings suggest that both psychotic and mood symptoms may be associated with disruptions in internal timing mechanisms. Yet unexpected findings emerged. Specifically, the BDNP group had significantly increased variability compared to controls, but the SA group did not. In addition, these deficits appeared to exist independent of current symptom status. The absence of between group differences in bisection point suggests that increased variability in the SZ and bipolar disorder groups are due to alterations in perceptual timing in the sub-second range, possibly mediated by the cerebellum, rather than cognitive deficits.
Collapse
Affiliation(s)
- Amanda R. Bolbecker
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Daniel R. Westfall
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Josselyn M. Howell
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Ryan J. Lackner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Christine A. Carroll
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Brian F. O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - William P. Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hüttlova J, Kikinis Z, Kerkovsky M, Bouix S, Vu MA, Makris N, Shenton M, Kasparek T. Abnormalities in Myelination of the Superior Cerebellar Peduncle in Patients with Schizophrenia and Deficits in Movement Sequencing. THE CEREBELLUM 2014; 13:415-24. [DOI: 10.1007/s12311-014-0550-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Abstract
While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a "supervised learning machine" can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.
Collapse
|
47
|
Menghini D, Di Paola M, Murri R, Costanzo F, Caltagirone C, Vicari S, Petrosini L. Cerebellar vermis abnormalities and cognitive functions in individuals with Williams syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:2118-2126. [PMID: 23643765 DOI: 10.1016/j.ridd.2013.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
In Williams syndrome (WS) cerebellar measures were only indirectly related to behavioral outcomes. T1-weighted magnetic resonance images and neuropsychological data were acquired to investigate whether cerebellar vermis differences were present in 12 WS individuals compared with 13 chronological age-matched controls and whether WS cerebellar vermis measures were related to cognitive scores. In WS participants, we observed a significant increase in the volume of the posterior superior cerebellar vermis (lobules VI-VII) and an atypical ratio between width and height of the cerebellar vermis. Furthermore, we found an inverse correlation between cerebellar posterior vermis volume and scores on implicit learning, phonological fluency and the verbal short-term memory tasks. The present study supported a role for the posterior cerebellar vermis in higher cognitive processes and indicated that the cerebellar vermis abnormalities (enlargement) in WS individuals have an effect in worsening the cognitive performance in specific domains.
Collapse
Affiliation(s)
- Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Prosperini L, Petsas N, Raz E, Sbardella E, Tona F, Mancinelli CR, Pozzilli C, Pantano P. Balance deficit with opened or closed eyes reveals involvement of different structures of the central nervous system in multiple sclerosis. Mult Scler 2013; 20:81-90. [DOI: 10.1177/1352458513490546] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To evaluate whether balance deficit in patients with multiple sclerosis (MS), as assessed with eyes opened (EO) and closed (EC), is associated with damage of different structures of the central nervous system (CNS). Methods: Fifty patients with MS and 20 healthy controls (HCs) underwent static posturography to calculate the body’s center of pressure displacement (COP path) with EO and EC. They were scanned using a 3.0T magnet to obtain PD/T2 and 3D-T1-weighted images of the brain and spinal cord. We determined the mid-sagittal cerebellum area (MSCA) and upper cervical cord cross-sectional area (UCCA). We also measured the patients’ lesion volumes (T2-LVs) on the whole brain and at different infratentorial levels. Results: MS patients had wider COP paths with both EO and EC ( p < 0.001), and lower values in both MSCA ( p = 0.01) and UCCA ( p = 0.008) than HCs. The COP path with EO was associated with MSCA (Beta = − 0.58; p = 0.004) and T2-LV on middle cerebellar peduncles (Beta = 0.59; p = 0.002). The COP path with EC was associated with UCCA (Beta= − 22.74; p = 0.003) and brainstem T2-LV (Beta = 0.52; p = 0.01). Conclusions: Balance deficit in MS was related to atrophy of both the cerebellum and spinal cord, but the extent of COP path under the two different conditions (EO or EC) implied different patterns of damage in the CNS.
Collapse
Affiliation(s)
- Luca Prosperini
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Nikolaos Petsas
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Eytan Raz
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Emilia Sbardella
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Francesca Tona
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | | | - Carlo Pozzilli
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Patrizia Pantano
- Deparment of Neurology and Psychiatry, Sapienza University, Rome, Italy
| |
Collapse
|
49
|
Haghir H, Mokhber N, Azarpazhooh MR, Haghighi MB, Radmard M. A magnetic resonance imaging study of adhesio interthalamica in clinical subtypes of schizophrenia. Indian J Psychiatry 2013; 55:135-9. [PMID: 23825846 PMCID: PMC3696235 DOI: 10.4103/0019-5545.111450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
CONTEXT Previous studies have suggested subtle anatomical brain differences between patients with schizophrenia and healthy control subjects. However, the results are inconsistent and there is no study investigating the various subtypes of this mental disorder separately. AIM This study was conducted to compare the rate of absence of adhesio interthalamica (AI), a midline brain structure, between 3 subtypes of schizophrenia (paranoid, undifferentiated, and residual) and healthy control group, using magnetic resonance imaging (MRI). MATERIALS AND METHODS A total of 29 schizophrenia patients (21 men, 8 women) of three subtypes (paranoid, undifferentiated, and residual) were compared with 29 age- and gender-matched healthy controls. All subjects underwent 3-D brain MRI of full coronal series, 1.5-mm slices without interslice gaps. If the grey matter band connecting the thalami could not be identified on two or more coronal adjacent slices, the AI was considered as absent. The results were statistically analyzed. RESULTS The incidence rate of AI absence in patients with heterogenous subtypes of schizophrenia was was similar to control group, even when patients and controls of each gender were compared separately (P>0.05). In residual subtype, patients showed a significant priority in AI absence in comparison with the control group (P=0.041), which was not seen in paranoid and undifferentiated subtypes (P>0.05). CONCLUSION Residual subtype of schizophrenia is associated with higher rate of AI absence in this study. Subsequent studies are required to determine if the absence of AI is a cause of residual schizophrenia or an effect.
Collapse
Affiliation(s)
- Hossein Haghir
- Department of Anatomy and Cell Biology, Medical Genetic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
50
|
Guidetti G. The role of cognitive processes in vestibular disorders. HEARING, BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.765085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|