1
|
Ma Y, Han L, Hou S, Gui L, Yuan Z, Sun S, Yang C, Wang Z, Yang B. Potential mechanism of dietary palm kernel meal effect on muscle tenderness in Tibetan sheep revealed by proteomics and phosphorylated proteomics. Food Chem 2025; 478:143668. [PMID: 40068263 DOI: 10.1016/j.foodchem.2025.143668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
The labe free proteomics technology and 4D labe free phosphorylation proteomics technology was used to systematically analyse the protein expression regulatory mechanisms of muscle tenderness. 59 differentially expressed proteins were screened by proteomic data analysis. Phosphorylated proteomic analysis showed 681 modified peptide levels were changed, of which 235 modified peptide levels corresponded to 132 proteins up-regulated and 446 modified peptide levels corresponded to 253 proteins down-regulated. Then, the two-omics analysis further predicted that the regulatory mechanism of tenderness was mainly based on glycolysis, regulating mitochondrial autophagy, apoptosis, AMPK and HIF-1 signaling pathway to regulate muscle tenderness, which was specifically manifested in the modulation of Ca2+ release to promote the degradation of myofibrillar fibrillar proteins by the relevant proteins, shortening of post-slaughter muscle glycolysis and reducing the degree of muscle glycolysis. Which was verified by WB, P53, ENO5, ALDOA, ENDOG and PINK1 were identified as potential factors for tenderness regulation.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China.
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Chao Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People's Republic of China
| |
Collapse
|
2
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas ML, Bithell A. Mathematical Modeling of PI3K/Akt Pathway in Microglia. Neural Comput 2024; 36:645-676. [PMID: 38457763 DOI: 10.1162/neco_a_01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 03/10/2024]
Abstract
The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, U.K.
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, U.K.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, U.K.
| |
Collapse
|
3
|
Zhang X, Ma Q, Jia L, He H, Zhang T, Jia W, Zhu L, Qi W, Wang N. Effects of in vitro fermentation of Atractylodes chinensis (DC.) Koidz. polysaccharide on fecal microbiota and metabolites in patients with type 2 diabetes mellitus. Int J Biol Macromol 2023; 253:126860. [PMID: 37716665 DOI: 10.1016/j.ijbiomac.2023.126860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Atractylodes chinensis (DC.) Koidz. polysaccharide (AKP) has been shown to have hypoglycemic activity. In this study, the effects of AKP on fecal microbiota and metabolites in healthy subjects and patients with type 2 diabetes mellitus (T2DM) were investigated using an in vitro simulated digestive fermentation model. AKP were isolated and purified from Atractylodes chinensis (DC.) Koidz. Its main component AKP1 (AKP-0 M, about 78 % of AKP) has an average molecular weight of 3.25 kDa with monosaccharide composition of rhamnose, arabinose, and galactosamine in a molar ratio of 1: 1.25: 2.88. Notably, AKP fermentation might improve the intestinal microbiota of T2DM patients by the enrichment of some specific bacteria rather than the increase of microbial diversity. The addition of AKP specifically enriched Bifidobacteriaceae and weakened the proportion of Escherichia-Shigella. Moreover, AKP also increased the levels of short-chain fatty acids without affecting total gut gas production, suggesting that AKP could have beneficial effects while avoiding flatulence. Metabolomic analysis revealed that ARP fermentation caused changes in some metabolites, which were mainly related to energy metabolism and amino acid metabolism. Importantly, ARP fermentation significantly increased the level of myo-inositol, an insulin sensitizer. In addition, a significant correlation was observed between specific microbiota and differential metabolites. This study has laid a theoretical foundation for AKP application in functional foods.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lina Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liying Zhu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| |
Collapse
|
4
|
Alsamghan AS, Alwabli AS, Abadi M, Alsaleem SA, Anbari DM, Alomari AS, Alzahrani O, Alam Q, Tarique M. From sequence analysis of DPP-4 to molecular docking based searching of its inhibitors. Bioinformation 2020; 16:444-451. [PMID: 32884207 PMCID: PMC7452749 DOI: 10.6026/97320630016444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
Literature data suggests that Dipeptidyl peptidase-4 (DPP-4) is a potential target for type 2 Diabetes Mellitus. Therefore, it is of interest to identify new DPP-4 inhibitors using molecular docking analysis. We document compounds such as STOCK1N-98884, STOCK1N-98881, and STOCK1N-98866 with optimal binding features with DPP-4 from the ligand database at https://www.ibscreen.com/ for further consideration.
Collapse
Affiliation(s)
- Awad Saeed Alsamghan
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, KSA-61421
| | - Afaf S Alwabli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, KSA-61421
| | - Safar A Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, KSA-61421
| | - Dalia Mohammed Anbari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Amani Saleh Alomari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
- Genome and Biotechnology Unit, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
5
|
Li J, Zhao M, Jiang X, Liu T, Wang M, Zhao C. Synergistic therapeutic effects of Duzhong Jiangya Tablets and amlodipine besylate combination in spontaneously hypertensive rats using 1 H-NMR- and MS-based metabolomics. Biomed Chromatogr 2019; 34:e4741. [PMID: 31743479 DOI: 10.1002/bmc.4741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023]
Abstract
Duzhong Jiangya Tablet (DJT) composed of Eucommia ulmoides Oliv. and several other traditional Chinese medicines is a Chinese herbal compound, which is clinically used to treat hypertension. The aim of this study was to evaluate the antihypertensive effect of DJT and amlodipine besylate (AB) on the synergistic treatment of spontaneously hypertensive rats (SHRs), and to explore its antihypertensive mechanism. The synergistic therapeutic effect of DJT in combination with AB on SHR was studied using two metabolomics methods based on mass spectrum (MS) and nuclear magnetic resonance. Metabolomics analysis of plasma, urine, liver, and kidney and the combination of orthogonal partial least squares discriminant analysis was performed to expose potential biomarkers. Then, the overall metabolic characteristics and related abnormal metabolic pathways in hypertensive rats were constructed. Blood pressure measurements showed that DJT combined with AB has better effects in treating hypertension than it being alone. A total of 30 biomarkers were identified, indicating that hypertension disrupted the balance of multiple metabolic pathways in the body, and that combined administration restored metabolite levels better than their administration alone. The changes of biomarkers revealed the synergistic therapeutic mechanism of DJT combined with AB, which provided a reference for the combination of Chinese and Western medicines.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Xue Jiang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Tingting Liu
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Mahajan G, Nadkarni S. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines. J Physiol 2019; 597:3473-3502. [PMID: 31099020 PMCID: PMC6636706 DOI: 10.1113/jp277726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Key points Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Abstract Long‐term plasticity mediated by NMDA receptors supports input‐specific, Hebbian forms of learning at excitatory CA3–CA1 connections in the hippocampus. There exists an additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales to ensure that plasticity occurs in a constrained manner. Here, we investigated the role of calcium (Ca2+) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity at individual CA1 synapses. Our study was spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over‐represented in larger spines that are likely to have undergone activity‐dependent strengthening, and (2) evidence suggesting that ER motility at synapses can be rapid, and accompany activity‐regulated spine remodelling. We constructed a physiologically realistic computational model of an ER‐bearing CA1 spine, and examined how IP3‐sensitive Ca2+ stores affect spine Ca2+ dynamics during activity patterns mimicking the induction of long‐term potentiation and long‐term depression (LTD). Our results suggest that the presence of ER modulates NMDA receptor‐dependent plasticity in a graded manner that selectively enhances LTD induction. We propose that ER may locally tune Ca2+‐based plasticity, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our study provides a biophysically accurate description of postsynaptic Ca2+ regulation, and suggests that ER in the spine may promote the re‐use of hippocampal synapses with saturated strengths. Calcium (Ca2+) entry mediated by NMDA receptors is considered central to the induction of activity‐dependent synaptic plasticity in hippocampal area CA1; this description does not, however, take into account the potential contribution of endoplasmic reticulum (ER) Ca2+ stores. The ER has a heterogeneous distribution in CA1 dendritic spines, and may introduce localized functional differences in Ca2+ signalling between synapses, as suggested by experiments on metabotropic receptor‐dependent long‐term depression. A physiologically detailed computational model of Ca2+ dynamics at a CA3–CA1 excitatory synapse characterizes the contribution of spine ER via metabotropic signalling during plasticity induction protocols. ER Ca2+ release via IP3 receptors modulates NMDA receptor‐dependent plasticity in a graded manner, to selectively promote synaptic depression with relatively diminished effect on LTP induction; this may temper further strengthening at the stronger synapses which are preferentially associated with ER‐containing spines. Acquisition of spine ER may thus represent a local, biophysically plausible ‘metaplastic switch’ at potentiated CA1 synapses, contributing to the plasticity–stability balance in neural circuits.
Collapse
Affiliation(s)
- Gaurang Mahajan
- Indian Institute of Science Education and Research, Pune, 411 008, India
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune, 411 008, India
| |
Collapse
|
7
|
Ma K, Cheng Z, Sun L, Li H. Identification of potential therapeutic targets for gliomas by bioinformatics analysis. Oncol Lett 2017; 14:5203-5210. [PMID: 29113156 PMCID: PMC5652254 DOI: 10.3892/ol.2017.6850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2017] [Indexed: 01/16/2023] Open
Abstract
Gliomas are primary tumors that originate in the brain or spinal cord and develop from supportive glial cells. The present study aimed to identify potential candidate molecular markers for the treatment of gliomas, and to explore the underlying mechanisms of this disease. The gene expression profile data GSE50021, which consisted of 10 specimens of normal brain tissues and 35 specimens of glioma tissues, was downloaded from Gene Expression Omnibus (GEO). The methylation microarray data GSE50022, consisting of 28 glioma specimens, was also downloaded from GEO. Differentially expressed genes (DEGs) between patients with glioma and normal individuals were identified, and key methylation sites were screened. Transcriptional regulatory networks were constructed, and target genes were selected. Survival analysis of key methylation sites and risk analysis of sub-pathways were performed, from which key genes and pathways were selected. A total of 79 DEGs and 179 key methylation sites were identified, of which 20 target genes and 36 transcription factors were included in the transcriptional regulatory network. Glutamate metabotropic receptor 2 (GRM2) was regulated by 8 transcription factors. Inositol-trisphosphate 3-kinase A (ITPKA) was a significantly enriched DEG, associated with the inositol phosphate metabolism pathway, Survival analysis revealed that the survival time of patients with lower methylation levels in cg00157228 was longer than patients with higher methylation levels. ITPKA was the closest located gene to cg00157228. In conclusion, GRM2 and enriched ITPKA, associated with the inositol phosphate metabolism pathway, may be key mechanisms in the development and progression of gliomas. Furthermore, the present study provided evidence for an additional mechanism of methylation-induced gliomas, in which methylation results in the dysregulation of specific transcripts. The results of the present study may provide a research direction for studying the mechanisms underlying the development and progression of gliomas.
Collapse
Affiliation(s)
- Ke Ma
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihua Cheng
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Sun
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haibo Li
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Blackburn GM, Cherfils J, Moss GP, Richards NGJ, Waltho JP, Williams NH, Wittinghofer A. How to name atoms in phosphates, polyphosphates, their derivatives and mimics, and transition state analogues for enzyme-catalysed phosphoryl transfer reactions (IUPAC Recommendations 2016). PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-0202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProcedures are proposed for the naming of individual atoms, P, O, F, N, and S in phosphate esters, amidates, thiophosphates, polyphosphates, their mimics, and analogues of transition states for enzyme-catalyzed phosphoryl transfer reactions. Their purpose is to enable scientists in very different fields, e.g. biochemistry, biophysics, chemistry, computational chemistry, crystallography, and molecular biology, to share standard protocols for the labelling of individual atoms in complex molecules. This will facilitate clear and unambiguous descriptions of structural results, as well as scientific intercommunication concerning them. At the present time, perusal of the Protein Data Bank (PDB) and other sources shows that there is a limited degree of commonality in nomenclature, but a large measure of irregularity in more complex structures. The recommendations described here adhere to established practice as closely as possible, in particular to IUPAC and IUBMB recommendations and to “best practice” in the PDB, especially to its atom labelling of amino acids, and particularly to Cahn-Ingold-Prelog rules for stereochemical nomenclature. They are designed to work in complex enzyme sites for binding phosphates but also to have utility for non-enzymatic systems. Above all, the recommendations are designed to be easy to comprehend and user-friendly.
Collapse
Affiliation(s)
- G. Michael Blackburn
- 1Department of Molecular Biology, Krebs Institute, University of Sheffield, S10 2TN, UK
| | - Jacqueline Cherfils
- 2Laboratoire de Biologie et Pharmacologie Appliquée, CNRS – École Normale Supérieure Paris-Saclay, Cachan, France. http://orcid.org/0000-0002-8966-3067
| | - Gerard P. Moss
- 3Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, UK
| | - Nigel G. J. Richards
- 4Department of Chemistry, Indiana University Purdue University Indianapolis, IL 46202, USA; and School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | - Alfred Wittinghofer
- 7Group for Structural Biology, Max-Planck-Institut für Molekulare Physiologie, 44227 Dortmund, Deutschland
| |
Collapse
|
9
|
Anderson WD, Makadia HK, Vadigepalli R. Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes. J Comput Neurosci 2016; 40:65-82. [PMID: 26621106 PMCID: PMC4867553 DOI: 10.1007/s10827-015-0584-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023]
Abstract
Recent single cell studies show extensive molecular variability underlying cellular responses. We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. Our results revealed distinct response patterns associated with low versus high receptor levels. Neurons with low receptor levels showed increased excitability and neurons with high receptor levels showed reduced excitability. These response patterns were separated by a narrow receptor level range forming a separatrix. The position of this separatrix was dependent on the expression levels of multiple ion channels. To assess the relative contributions of receptor and ion channel levels to the response profiles, we categorized the responses into six phenotypes based on response kinetics and magnitude. We applied several multivariate statistical approaches and found that receptor and channel expression levels influence the neuromodulation response phenotype through a complex though systematic mapping. Our analyses extended our understanding of how cellular responses to neuromodulation vary as a function of molecular expression. Our study showed that receptor expression and biophysical state interact with distinct relative contributions to neuronal excitability.
Collapse
Affiliation(s)
- Warren D Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Hirenkumar K Makadia
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Multiscale model of dynamic neuromodulation integrating neuropeptide-induced signaling pathway activity with membrane electrophysiology. Biophys J 2015; 108:211-23. [PMID: 25564868 DOI: 10.1016/j.bpj.2014.11.1851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023] Open
Abstract
We developed a multiscale model to bridge neuropeptide receptor-activated signaling pathway activity with membrane electrophysiology. Typically, the neuromodulation of biochemical signaling and biophysics have been investigated separately in modeling studies. We studied the effects of Angiotensin II (AngII) on neuronal excitability changes mediated by signaling dynamics and downstream phosphorylation of ion channels. Experiments have shown that AngII binding to the AngII receptor type-1 elicits baseline-dependent regulation of cytosolic Ca(2+) signaling. Our model simulations revealed a baseline Ca(2+)-dependent response to AngII receptor type-1 activation by AngII. Consistent with experimental observations, AngII evoked a rise in Ca(2+) when starting at a low baseline Ca(2+) level, and a decrease in Ca(2+) when starting at a higher baseline. Our analysis predicted that the kinetics of Ca(2+) transport into the endoplasmic reticulum play a critical role in shaping the Ca(2+) response. The Ca(2+) baseline also influenced the AngII-induced excitability changes such that lower Ca(2+) levels were associated with a larger firing rate increase. We examined the relative contributions of signaling kinases protein kinase C and Ca(2+)/Calmodulin-dependent protein kinase II to AngII-mediated excitability changes by simulating activity blockade individually and in combination. We found that protein kinase C selectively controlled firing rate adaptation whereas Ca(2+)/Calmodulin-dependent protein kinase II induced a delayed effect on the firing rate increase. We tested whether signaling kinetics were necessary for the dynamic effects of AngII on excitability by simulating three scenarios of AngII-mediated KDR channel phosphorylation: (1), an increased steady state; (2), a step-change increase; and (3), dynamic modulation. Our results revealed that the kinetics emerging from neuromodulatory activation of the signaling network were required to account for the dynamical changes in excitability. In summary, our integrated multiscale model provides, to our knowledge, a new approach for quantitative investigation of neuromodulatory effects on signaling and electrophysiology.
Collapse
|
11
|
Immobilized IL-8 Triggers Phagocytosis and Dynamic Changes in Membrane Microtopology in Human Neutrophils. Ann Biomed Eng 2015; 43:2207-19. [PMID: 25582838 DOI: 10.1007/s10439-014-1242-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
Abstract
The interaction of leukocytes with surface bound ligands can be limited by the location of the molecules relative to the surface topology of the cell. In this report, we examine the dynamic response of neutrophils to IL-8-fractalkine chimera immobilized on bead surfaces, taking into account changes in receptor occupancy resulting from changes in surface topography. As a readout for receptor signaling, we observe the dynamics of calcium release in neutrophils following contact with the IL-8 coated surface. After a delay that depended on the initial area of contact and the surface density of IL-8, the cell began to phagocytose the IL-8 coated bead. This appeared to be a pre-requisite for release of calcium, which typically followed shortly after the initiation of phagocytosis. In separate experiments, effective kinetic coefficients for the formation of bonds between immobilized IL-8 and receptors on the cell surface were determined. Using these coefficients, we were able to estimate the number of bound receptors in the nascent contact zone. Kinetic modeling of the signaling response predicted that cell spreading and a concomitant increase in the density of occupied receptors would be required for the experimentally observed calcium dynamics. Postulating that there is an increase in receptor occupancy resulting from smoothing of the cell surface as it is stretched over the bead enabled us to obtain model predictions consistent with experimental observations. This study reveals the likely importance of membrane microtopology as a rate-limiting property and potential means of regulation of cell responses stimulated by two-dimensional surface interactions.
Collapse
|
12
|
Misuno K, Tran SD, Khalili S, Huang J, Liu Y, Hu S. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup. PLoS One 2014; 9:e87158. [PMID: 24489858 PMCID: PMC3906116 DOI: 10.1371/journal.pone.0087158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023] Open
Abstract
Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
Collapse
Affiliation(s)
- Kaori Misuno
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon D. Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- * E-mail: (SH); (SH)
| | - Saeed Khalili
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Junwei Huang
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Younan Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Shen Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SH); (SH)
| |
Collapse
|
13
|
Turovsky EA, Turovskaya MV, Dolgacheva LP, Zinchenko VP, Dynnik VV. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+→NO→cGMP→cADP-ribose→Ca2+ positive feedback loop--modulatory effects of norepinephrine and atrial natriuretic peptide. PLoS One 2013; 8:e63483. [PMID: 23696827 PMCID: PMC3656004 DOI: 10.1371/journal.pone.0063483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/03/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigated possible mechanisms of autoregulation of Ca(2+) signalling pathways in adipocytes responsible for Ca(2+) and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). METHODS Fluorescent microscopy was used to detect changes in Ca(2+) and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+)-channels in Ca(2+) signalling pathways. RESULTS ACh activating M3-muscarinic receptors and Gβγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+) and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+) oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca(2+)→NO→cGMP→cADPR→Ca(2+), which determines periodic or steady operation of a short PFL based on Ca(2+)-induced Ca(2+) release via RyR by generating cADPR, a coagonist of Ca(2+) at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+)-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+)-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. CONCLUSIONS This study presents a kinetic model of Ca(2+)-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya V. Turovskaya
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ludmila P. Dolgacheva
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P. Zinchenko
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V. Dynnik
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Department of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- * E-mail:
| |
Collapse
|
14
|
Comparison of models for IP3 receptor kinetics using stochastic simulations. PLoS One 2013; 8:e59618. [PMID: 23630568 PMCID: PMC3629942 DOI: 10.1371/journal.pone.0059618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/15/2013] [Indexed: 12/07/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous intracellular calcium (Ca2+) channel which has a major role in controlling Ca2+ levels in neurons. A variety of computational models have been developed to describe the kinetic function of IP3R under different conditions. In the field of computational neuroscience, it is of great interest to apply the existing models of IP3R when modeling local Ca2+ transients in dendrites or overall Ca2+ dynamics in large neuronal models. The goal of this study was to evaluate existing IP3R models, based on electrophysiological data. This was done in order to be able to suggest suitable models for neuronal modeling. Altogether four models (Othmer and Tang, 1993; Dawson etal., 2003; Fraiman and Dawson, 2004; Doi etal., 2005) were selected for a more detailed comparison. The selection was based on the computational efficiency of the models and the type of experimental data that was used in developing the model. The kinetics of all four models were simulated by stochastic means, using the simulation software STEPS, which implements the Gillespie stochastic simulation algorithm. The results show major differences in the statistical properties of model functionality. Of the four compared models, the one by Fraiman and Dawson (2004) proved most satisfactory in producing the specific features of experimental findings reported in literature. To our knowledge, the present study is the first detailed evaluation of IP3R models using stochastic simulation methods, thus providing an important setting for constructing a new, realistic model of IP3R channel kinetics for compartmental modeling of neuronal functions. We conclude that the kinetics of IP3R with different concentrations of Ca2+ and IP3 should be more carefully addressed when new models for IP3R are developed.
Collapse
|
15
|
De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 2012; 6:98. [PMID: 23267326 PMCID: PMC3528083 DOI: 10.3389/fncom.2012.00098] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023] Open
Abstract
The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function.
Collapse
Affiliation(s)
- Maurizio De Pittà
- School of Physics and Astronomy, Tel Aviv University Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR, Maurya MR. Bioinformatics and systems biology of the lipidome. Chem Rev 2011; 111:6452-90. [PMID: 21939287 PMCID: PMC3383319 DOI: 10.1021/cr200295k] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Subramaniam
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Departments of Chemistry and Biochemistry, and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Eoin Fahy
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Manish Sud
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Robert W. Byrnes
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Dawn Cotter
- San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Ashok Reddy Dinasarapu
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Mano Ram Maurya
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
17
|
Choi T, Maurya MR, Tartakovsky DM, Subramaniam S. Stochastic hybrid modeling of intracellular calcium dynamics. J Chem Phys 2011; 133:165101. [PMID: 21033822 DOI: 10.1063/1.3496996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deterministic models of biochemical processes at the subcellular level might become inadequate when a cascade of chemical reactions is induced by a few molecules. Inherent randomness of such phenomena calls for the use of stochastic simulations. However, being computationally intensive, such simulations become infeasible for large and complex reaction networks. To improve their computational efficiency in handling these networks, we present a hybrid approach, in which slow reactions and fluxes are handled through exact stochastic simulation and their fast counterparts are treated partially deterministically through chemical Langevin equation. The classification of reactions as fast or slow is accompanied by the assumption that in the time-scale of fast reactions, slow reactions do not occur and hence do not affect the probability of the state. Our new approach also handles reactions with complex rate expressions such as Michaelis-Menten kinetics. Fluxes which cannot be modeled explicitly through reactions, such as flux of Ca(2+) from endoplasmic reticulum to the cytosol through inositol 1,4,5-trisphosphate receptor channels, are handled deterministically. The proposed hybrid algorithm is used to model the regulation of the dynamics of cytosolic calcium ions in mouse macrophage RAW 264.7 cells. At relatively large number of molecules, the response characteristics obtained with the stochastic and deterministic simulations coincide, which validates our approach in the limit of large numbers. At low doses, the response characteristics of some key chemical species, such as levels of cytosolic calcium, predicted with stochastic simulations, differ quantitatively from their deterministic counterparts. These observations are ubiquitous throughout dose response, sensitivity, and gene-knockdown response analyses. While the relative differences between the peak-heights of the cytosolic [Ca(2+)] time-courses obtained from stochastic (mean of 16 realizations) and deterministic simulations are merely 1%-4% for most perturbations, it is specially sensitive to levels of G(βγ) (relative difference as large as 90% at very low G(βγ)).
Collapse
Affiliation(s)
- TaiJung Choi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
18
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
Endoh T, Shintani R, Mie M, Kobatake E, Ohtsuki T, Sisido M. Detection of bioactive small molecules by fluorescent resonance energy transfer (FRET) in RNA-protein conjugates. Bioconjug Chem 2010; 20:2242-6. [PMID: 19928953 DOI: 10.1021/bc9002184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bioactive small molecules such as metabolites and drugs play important roles in regulating biological functions. A technique for visualizing such small molecules is very useful to understand their molecular mechanisms. In this study, an RNA-protein conjugate, which consists of an RRE-RNA sensor protein (EYFP-Rev-ECFP) and an altered RRE-RNA, was constructed to detect bioactive small molecules by fluorescent resonance energy transfer (FRET). We designed a theophylline-aptamer-inserted RRE-RNA (Theo-RRE) to detect theophylline as a model target molecule. Theo-RRE formed an RNA-protein conjugate with EYFP-Rev-ECFP in the presence of theophylline. As a result, theophylline was specifically detected down to 10 microM by the FRET increase in distinction from theophylline analogue, caffeine, in cell lysates.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Callender HL, Horn MA, DeCamp DL, Sternweis PC, Alex Brown H. Modeling species-specific diacylglycerol dynamics in the RAW 264.7 macrophage. J Theor Biol 2009; 262:679-90. [PMID: 19883664 DOI: 10.1016/j.jtbi.2009.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/19/2023]
Abstract
A mathematical model of the G protein signaling pathway in RAW 264.7 macrophages downstream of P2Y(6) receptors activated by the ubiquitous signaling nucleotide uridine 5'-diphosphate is developed. The model, which is based on time-course measurements of inositol trisphosphate, cytosolic calcium, and diacylglycerol, focuses particularly on differential dynamics of multiple chemical species of diacylglycerol. When using the canonical pathway representation, the model predicted that key interactions were missing from the current network structure. Indeed, the model suggested that accurate depiction of experimental observations required an additional branch to the signaling pathway. An intracellular pool of diacylglycerol is immediately phosphorylated upon stimulation of an extracellular receptor for uridine 5'-diphosphate and subsequently used to aid replenishment of phosphatidylinositol. As a result of sensitivity analysis of the model parameters, key predictions can be made regarding which of these parameters are the most sensitive to perturbations and are therefore most responsible for output uncertainty.
Collapse
Affiliation(s)
- Hannah L Callender
- Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, USA.
| | | | | | | | | |
Collapse
|
21
|
Song SO, Varner J. Modeling and analysis of the molecular basis of pain in sensory neurons. PLoS One 2009; 4:e6758. [PMID: 19750220 PMCID: PMC2735677 DOI: 10.1371/journal.pone.0006758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/23/2009] [Indexed: 12/04/2022] Open
Abstract
Intracellular calcium dynamics are critical to cellular functions like pain transmission. Extracellular ATP plays an important role in modulating intracellular calcium levels by interacting with the P2 family of surface receptors. In this study, we developed a mechanistic mathematical model of ATP-induced P2 mediated calcium signaling in archetype sensory neurons. The model architecture, which described 90 species connected by 162 interactions, was formulated by aggregating disparate molecular modules from literature. Unlike previous models, only mass action kinetics were used to describe the rate of molecular interactions. Thus, the majority of the 252 unknown model parameters were either association, dissociation or catalytic rate constants. Model parameters were estimated from nine independent data sets taken from multiple laboratories. The training data consisted of both dynamic and steady-state measurements. However, because of the complexity of the calcium network, we were unable to estimate unique model parameters. Instead, we estimated a family or ensemble of probable parameter sets using a multi-objective thermal ensemble method. Each member of the ensemble met an error criterion and was located along or near the optimal trade-off surface between the individual training data sets. The model quantitatively reproduced experimental measurements from dorsal root ganglion neurons as a function of extracellular ATP forcing. Hypothesized architecture linking phosphoinositide regulation with P2X receptor activity explained the inhibition of P2X-mediated current flow by activated metabotropic P2Y receptors. Sensitivity analysis using individual and the whole system outputs suggested which molecular subsystems were most important following P2 activation. Taken together, modeling and analysis of ATP-induced P2 mediated calcium signaling generated qualitative insight into the critical interactions controlling ATP induced calcium dynamics. Understanding these critical interactions may prove useful for the design of the next generation of molecular pain management strategies.
Collapse
Affiliation(s)
- Sang Ok Song
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Shears SB. Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 2009; 76:236-52. [PMID: 19439500 PMCID: PMC2713120 DOI: 10.1124/mol.109.055897] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 05/12/2009] [Indexed: 12/18/2022] Open
Abstract
The diphosphoinositol polyphosphates ("inositol pyrophosphates") are a specialized subgroup of the inositol phosphate signaling family. This review proposes that many of the current data concerning the metabolic turnover and biological effects of the diphosphoinositol polyphosphates are linked by a common theme: these polyphosphates act as metabolic messengers. This review will also discuss the latest proposals concerning possible molecular mechanisms of action of this intriguing class of molecules.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositide Signaling Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J Biol Phys 2009; 35:383-411. [PMID: 19669422 DOI: 10.1007/s10867-009-9155-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022] Open
Abstract
Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participate in cognitive functions and information processing and are involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer-the modulation of intracellular calcium (Ca(2+)) dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca(2+) dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP(3)). Starting from the well-known two-variable (intracellular Ca(2+) and inactive IP(3) receptors) Li-Rinzel model for calcium-induced calcium release, we incorporate the regulation of IP(3) production and phosphorylation. Doing so, we extend it to a three-variable model (which we refer to as the ChI model) that could account for Ca(2+) oscillations with endogenous IP(3) metabolism. This ChI model is then further extended into the G-ChI model to include regulation of IP(3) production by external glutamate signals. Compared with previous similar models, our three-variable models include a more realistic description of IP(3) production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP(3) and Ca(2+) pathways endow the system with self-consistent oscillatory properties and favor mixed frequency-amplitude encoding modes over pure amplitude-modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications for the role of astrocytes in the synaptic transfer of information.
Collapse
|
24
|
|
25
|
De Pittà M, Volman V, Levine H, Ben-Jacob E. Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn Process 2008; 10 Suppl 1:S55-70. [DOI: 10.1007/s10339-008-0242-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 10/26/2008] [Accepted: 10/31/2008] [Indexed: 11/24/2022]
|
26
|
Subramanian K, Raghavan S, Rajan Bhat A, Das S, Bajpai Dikshit J, Kumar R, Narasimha MK, Nalini R, Radhakrishnan R, Raghunathan S. A systems biology based integrative framework to enhance the predictivity ofin vitromethods for drug-induced liver injury. Expert Opin Drug Saf 2008; 7:647-62. [DOI: 10.1517/14740330802501211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Flaherty P, Radhakrishnan ML, Dinh T, Rebres RA, Roach TI, Jordan MI, Arkin AP. A dual receptor crosstalk model of G-protein-coupled signal transduction. PLoS Comput Biol 2008; 4:e1000185. [PMID: 18818727 PMCID: PMC2528964 DOI: 10.1371/journal.pcbi.1000185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/14/2008] [Indexed: 01/02/2023] Open
Abstract
Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Galphai-coupled C5a receptor and the Galphaq-coupled UDP receptor signaling systems that results in synergistic calcium release.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cell Line
- Complement C5a/metabolism
- Computational Biology
- Feedback, Physiological
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Ligands
- Macrophages/metabolism
- Mice
- Models, Biological
- RNA Interference
- Receptor Cross-Talk/physiology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/physiology
- Uridine Diphosphate/metabolism
Collapse
Affiliation(s)
- Patrick Flaherty
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, United States of America
| | - Mala L. Radhakrishnan
- Computer Science and Artificial Intelligence Laboratory, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tuan Dinh
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Robert A. Rebres
- Alliance for Cellular Signaling, Northern California Institute for Research and Education and the University of California, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Tamara I. Roach
- Alliance for Cellular Signaling, Northern California Institute for Research and Education and the University of California, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Michael I. Jordan
- Department of Statistics and Computer Science Division, University of California Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kang M, Othmer HG. The variety of cytosolic calcium responses and possible roles of PLC and PKC. Phys Biol 2007; 4:325-43. [DOI: 10.1088/1478-3975/4/4/009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Ono T, Hishigaki H. Prediction of GPCR-G protein coupling specificity using features of sequences and biological functions. GENOMICS PROTEOMICS & BIOINFORMATICS 2007; 4:238-44. [PMID: 17531799 PMCID: PMC5054072 DOI: 10.1016/s1672-0229(07)60004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Understanding the coupling specificity between G protein-coupled receptors (GPCRs) and specific classes of G proteins is important for further elucidation of receptor functions within a cell. Increasing information on GPCR sequences and the G protein family would facilitate prediction of the coupling properties of GPCRs. In this study, we describe a novel approach for predicting the coupling specificity between GPCRs and G proteins. This method uses not only GPCR sequences but also the functional knowledge generated by natural language processing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm. Furthermore, rules related to GPCR-G protein coupling are generated. The combination of sequence analysis and text mining improves the prediction accuracy for GPCR-G protein coupling specificity, and also provides clues for understanding GPCR signaling.
Collapse
Affiliation(s)
- Toshihide Ono
- Laboratory of Bioinformatics, Otsuka Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima 771-0192, Japan.
| | | |
Collapse
|
30
|
Maurya MR, Subramaniam S. A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophys J 2007; 93:709-28. [PMID: 17483174 PMCID: PMC1913151 DOI: 10.1529/biophysj.106.097469] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca(2+)) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-beta (PLC-beta) activation, inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca(2+) concentration for various doses of C5a under different initial conditions. The optimized parameters for IP(3)R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations.
Collapse
Affiliation(s)
- Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, California 92093-0412, USA
| | | |
Collapse
|
31
|
Maurya MR, Subramaniam S. A kinetic model for calcium dynamics in RAW 264.7 cells: 2. Knockdown response and long-term response. Biophys J 2007; 93:729-40. [PMID: 17483189 PMCID: PMC1913159 DOI: 10.1529/biophysj.106.097501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This article addresses how quantitative models such as the one proposed in the companion article can be used to study cellular network perturbations such as knockdowns and pharmacological perturbations in a predictive manner. Using the kinetic model for cytosolic calcium dynamics in RAW 264.7 cells developed in the companion article, the calcium response to complement 5a (C5a) for the knockdown of seven proteins (C5a receptor; G-beta-2; G-alpha,i-2,3; regulator of G-protein signaling-10; G-protein coupled receptor kinase-2; phospholipase C beta-3; arrestin) is predicted and validated against the data from the Alliance for Cellular Signaling. The knockdown responses provide insights into how altered expressions of important proteins in disease states result in intermediate measurable phenotypes. Long-term response and long-term dose response have also been predicted, providing insights into how the receptor desensitization, internalization, and recycle result in tolerance. Sensitivity analysis of long-term response shows that the mechanisms and parameters in the receptor recycle path are important for long-term calcium dynamics.
Collapse
Affiliation(s)
- Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
32
|
Efficient classification of complete parameter regions based on semidefinite programming. BMC Bioinformatics 2007; 8:12. [PMID: 17224043 PMCID: PMC1800867 DOI: 10.1186/1471-2105-8-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/15/2007] [Indexed: 11/18/2022] Open
Abstract
Background Current approaches to parameter estimation are often inappropriate or inconvenient for the modelling of complex biological systems. For systems described by nonlinear equations, the conventional approach is to first numerically integrate the model, and then, in a second a posteriori step, check for consistency with experimental constraints. Hence, only single parameter sets can be considered at a time. Consequently, it is impossible to conclude that the "best" solution was identified or that no good solution exists, because parameter spaces typically cannot be explored in a reasonable amount of time. Results We introduce a novel approach based on semidefinite programming to directly identify consistent steady state concentrations for systems consisting of mass action kinetics, i.e., polynomial equations and inequality constraints. The duality properties of semidefinite programming allow to rigorously certify infeasibility for whole regions of parameter space, thus enabling the simultaneous multi-dimensional analysis of entire parameter sets. Conclusion Our algorithm reduces the computational effort of parameter estimation by several orders of magnitude, as illustrated through conceptual sample problems. Of particular relevance for systems biology, the approach can discriminate between structurally different candidate models by proving inconsistency with the available data.
Collapse
|
33
|
Abstract
Dynamic modeling and simulation of signal transduction pathways is an important topic in systems biology and is obtaining growing attention from researchers with experimental or theoretical background. Here we review attempts to analyze and model specific signaling systems. We review the structure of recurrent building blocks of signaling pathways and their integration into more comprehensive models, which enables the understanding of complex cellular processes. The variety of mechanisms found and modeling techniques used are illustrated with models of different signaling pathways. Focusing on the close interplay between experimental investigation of pathways and the mathematical representations of cellular dynamics, we discuss challenges and perspectives that emerge in studies of signaling systems.
Collapse
Affiliation(s)
- Edda Klipp
- Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | | |
Collapse
|
34
|
Maurya M, Bornheimer S, Venkatasubramanian V, Subramaniam S. Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module. ACTA ACUST UNITED AC 2006; 152:229-42. [PMID: 16986265 PMCID: PMC3417759 DOI: 10.1049/ip-syb:20050014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical systems embed complex networks and hence development and analysis of their detailed models pose a challenge for computation. Coarse-grained biochemical models, called reduced-order models (ROMs), consisting of essential biochemical mechanisms are more useful for computational analysis and for studying important features of a biochemical network. The authors present a novel method to model-reduction by identifying potentially important parameters using multidimensional sensitivity analysis. A ROM is generated for the GTPase-cycle module of m1 muscarinic acetylcholine receptor, Gq, and regulator of G-protein signalling 4 (a GTPase-activating protein or GAP) starting from a detailed model of 48 reactions. The resulting ROM has only 17 reactions. The ROM suggested that complexes of G-protein coupled receptor (GPCR) and GAP--which were proposed in the detailed model as a hypothesis--are required to fit the experimental data. Models previously published in the literature are also simulated and compared with the ROM. Through this comparison, a minimal ROM, that also requires complexes of GPCR and GAP, with just 15 parameters is generated. The proposed reduced-order modelling methodology is scalable to larger networks and provides a general framework for the reduction of models of biochemical systems.
Collapse
Affiliation(s)
- M.R. Maurya
- San Diego Supercomputer Center, 9500 Gilman Drive MC 0505, La Jolla, CA 92093, USA
| | - S.J. Bornheimer
- Departments of Chemistry and Biochemistry and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA
| | - V. Venkatasubramanian
- Laboratory for Intelligent Process Systems, School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - S. Subramaniam
- San Diego Supercomputer Center, 9500 Gilman Drive MC 0505, La Jolla, CA 92093, USA, the Departments of Chemistry and Biochemistry and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA and the Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Roose T, Chapman SJ, Maini PK. A mathematical model for simultaneous spatio-temporal dynamics of calcium and inositol 1,4,5-trisphosphate in Madin-Darby canine kidney epithelial cells. Bull Math Biol 2006; 68:2027-51. [PMID: 16868851 DOI: 10.1007/s11538-006-9064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 11/30/2005] [Indexed: 11/30/2022]
Abstract
The landmark paper by Hirose et al. (Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., Iino, M., Science 284:1527-1530, 1999) presented experimental investigations to show that not only can calcium upregulate IP(3), but that it can also have an inhibitory effect on IP(3). In this paper, we present a preliminary model, which is consistent with these experiments. This model includes positive and negative feedback between calcium and IP(3) and is able to reproduce more precisely the data presented in Hirose et al. (Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., Iino, M., Science 284:1527-1530, 1999). In the second part of the paper, the intracellular and intercellular calcium movement in Madin-Darby canine kidney epithelial cells is investigated. With the aid of the model we are able to identify the aspects of IP(3) and calcium signalling, which should be studied further experimentally before refining the model.
Collapse
Affiliation(s)
- T Roose
- Centre for Industrial and Applied Mathematics, Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford, OX1 3LB, UK.
| | | | | |
Collapse
|
36
|
Kowalewski JM, Uhlén P, Kitano H, Brismar H. Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. Math Biosci 2006; 204:232-49. [PMID: 16620876 DOI: 10.1016/j.mbs.2006.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/02/2006] [Indexed: 11/28/2022]
Abstract
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.
Collapse
Affiliation(s)
- Jacob M Kowalewski
- Cell Physics, Royal Institute of Technology, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Lambot N, Nathalie L, Lebrun P, Philippe L, Delporte C, Christine D, De Vriese C, Carine DV, Delogne-Desnoeck J, Josiane DD, Vanbellinghen AM, Anne Marie V, Graff G, Guy G, Meuris S, Sylvain M. Effect of IPs, cAMP, and cGMP on the hPL and hCG secretion from human term placenta. Mol Cell Endocrinol 2005; 243:80-5. [PMID: 16226369 DOI: 10.1016/j.mce.2005.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
The acute control of human placental lactogen (hPL) and chorionic gonadotrophin (hCG) secretion by the placenta remains elusive. The in vitro release of both hormones can be stimulated by calcium inflow and by albumin. To investigate the placental secretory response to putative ligand(s) present in the maternal circulation, we evaluated the coupling of the hPL and hCG releases from term placenta with intracellular signaling pathways. Addition of NaF, forskolin or sodium nitroprusside, activators of the inositol phosphates (IPs), cAMP and cGMP pathways, significantly increased their respective messengers in villous explants but failed to affect the hPL and hCG releases from syncytiotrophoblast. By contrast, albumin did not modify the IPs, cAMP and cGMP villous content but significantly stimulated the placental hormonal release. These data suggest that the hPL and hCG secretion is not regulated through the IPs, cAMP and cGMP signaling pathways.
Collapse
Affiliation(s)
- Nathalie Lambot
- Laboratory of Experimental Hormonology, Université Libre de Bruxelles, 808 Lennik Road, Campus Erasme, CP 626, Brussels 1070, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pesesse X, Leyman A, Luyten T, Missiaen L, Erneux C. Hyperosmotic stress stimulates inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate formation independently of bis-diphosphoinositol tetrakisphosphate modulation. Biochem Biophys Res Commun 2005; 336:157-62. [PMID: 16139247 DOI: 10.1016/j.bbrc.2005.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Hyperosmotic stress induces water diffusion out of the cell, resulting in cell shrinkage, and leading to DNA damage, cell cycle arrest, and cytoskeletal reorganization. A previous report showed that low concentrations of sorbitol (200mM) could increase up to 25-fold the concentration of InsP(8) in animal cells. Here, we investigate the effect of sorbitol (200mM) on the inositol 1,4,5-trisphosphate (InsP(3)) and inositol 1,3,4,5-tetrakisphosphate (InsP(4)) pathway. A 3- to 4-fold increase in InsP(3) and InsP(4) levels after sorbitol challenge was observed. It was prevented by the phospholipase C inhibitor U-73122 but was insensitive to the MAP kinase inhibitor U0126. We also observed an increase in the free intracellular [Ca(2+)] and the occurrence of Ca(2+) oscillations in response to sorbitol. A hyperosmotic stress could therefore affect the levels of both hyperphosphorylated inositol phosphates and InsP(3)/InsP(4)-signalling molecules.
Collapse
Affiliation(s)
- Xavier Pesesse
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
39
|
Yi YB, Wang H, Sastry AM, Lastoskie CM. Direct stochastic simulation of Ca2+ motion in Xenopus eggs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:021913. [PMID: 16196610 DOI: 10.1103/physreve.72.021913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Indexed: 05/04/2023]
Abstract
The release of important intracellular ions has been widely modeled using two approaches, namely, (1) Fickian diffusion, in which sometimes tensorial diffusion coefficients are used to fit observed temporally varying concentrations of calcium, and (2) cellular automata, which produce a set of localized finite difference equations that result in complex global behavior. Here, we take a different approach, employing some assumed, a priori, distribution of ion-binding proteins in the cell, and some assumed biochemical capture and release characteristics to explain ionic motion, and ultimately, distribution. We study several scenarios for ion distribution, based on differences in binder action and distribution. The numbers and strengths of ion binders, spatial variation in inositol 1,4,5-triphosphate concentration, together with the escalating distribution of ionic diffusion speed, are found to be key factors leading to concavity in the Ca2+ wave shape. We also offer an explanation for geometrical effects on previously observed ion diffusion speeds in the cellular cortex of the Xenopus laevis egg during fertilization, based on an angle-of-view correction.
Collapse
Affiliation(s)
- Y-B Yi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The postgenomic era is providing a wealth of information about the genes involved in many cellular processes. However, the ability to apply this information to understanding cellular signal transduction is limited by the lack of tools that quantitatively describe cellular signaling processes. The objective of the current studies is to provide a framework for modeling cellular signaling processes beginning at a plasma membrane receptor and ending with a measurable endpoint in the signaling process. Agonist-induced Ca(2+) mobilization coupled to down stream phosphorylation events was modeled using knowledge of in vitro and in vivo process parameters. The simulation process includes several modules that describe cellular processes involving receptor activation phosphoinositide metabolism, Ca(2+)-release, and activation of a calmodulin-dependent protein kinase. A Virtual Cell-based simulation was formulated using available literature data and compared to new and existing experimental results. The model provides a new approach to facilitate hypothesis-driven investigation and experimental design based upon simulation results. These investigations may be directed at the timing of multiple phosphorylation/dephosphorylation events affecting key enzymatic activities in the signaling pathway.
Collapse
Affiliation(s)
- Thomas J Lukas
- Department of Molecular Pharmacology and Drug Discovery Program, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
41
|
Coelho CMM, Tsai SM, Vitorello VA. Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (Phaseolus vulgaris). JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1-9. [PMID: 15700415 DOI: 10.1016/j.jplph.2004.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Four cultivars of Phaseolus vulgaris were grown in a greenhouse and each flower was Labeled with date of anthesis. Seeds were collected at six different stages of development and inositol phosphates (InsPs) were analyzed by ion-pair reversed-phase HPLC. Phytate accumulation was similar in all cultivars, and the specific rate of phytate synthesis (Rs) peaked at about 22 days after flowering (DAF). Variations in the concentrations of the InsP3 and InsP4 pools matched changes in Rs in cultivars Una and Aruã. These results suggest mass-action effects. Thus, the rates of conversion of InsP3 to InsP5 appeared to be at least partly dependent on substrate concentration. Proportional increases in size of all InsP pools up to 21 DAF are also consistent with Little regulation in this part of the pathway. However, this did not appear to be the case in cv. Diamante Negro or with the conversion of InsP5 to InsP6 in all cultivars, where concentrations of the InsP precursor pools peaked earlier or even dropped as Rs peaked, suggesting activation of enzyme activity. Therefore, the evidence is consistent with a control point regulating this metabolic route upstream of InsP3 and possibly in the conversion of InsP5 to InsP6.
Collapse
Affiliation(s)
- Cileide Maria Medeiros Coelho
- Laboratório de Biologia Celular e Molecular, Centro de Energia Nuclear no Agricultura, Universidade de São Paulo, Piracicaba, SP 13400-970, Brazil
| | | | | |
Collapse
|
42
|
Scheler G. Regulation of neuromodulator receptor efficacy—implications for whole-neuron and synaptic plasticity. Prog Neurobiol 2004; 72:399-415. [PMID: 15177784 DOI: 10.1016/j.pneurobio.2004.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 03/26/2004] [Indexed: 11/20/2022]
Abstract
Membrane receptors for neuromodulators (NM) are highly regulated in their distribution and efficacy-a phenomenon which influences the individual cell's response to central signals of NM release. Even though NM receptor regulation is implicated in the pharmacological action of many drugs, and is also known to be influenced by various environmental factors, its functional consequences and modes of action are not well understood. In this paper we summarize relevant experimental evidence on NM receptor regulation (specifically dopamine D1 and D2 receptors) in order to explore its significance for neural and synaptic plasticity. We identify the relevant components of NM receptor regulation (receptor phosphorylation, receptor trafficking and sensitization of second-messenger pathways) gained from studies on cultured cells. Key principles in the regulation and control of short-term plasticity (sensitization) are identified, and a model is presented which employs direct and indirect feedback regulation of receptor efficacy. We also discuss long-term plasticity which involves shifts in receptor sensitivity and loss of responsivity to NM signals. Finally, we discuss the implications of NM receptor regulation for models of brain plasticity and memorization. We emphasize that a realistic model of brain plasticity will have to go beyond Hebbian models of long-term potentiation and depression. Plasticity in the distribution and efficacy of NM receptors may provide another important source of functional plasticity with implications for learning and memory.
Collapse
Affiliation(s)
- Gabriele Scheler
- International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA.
| |
Collapse
|
43
|
Abstract
The development of biologically realistic models of signaling pathways is a demanding process, involving computational challenges as well as those arising from the complexity of detailed pathway models. We have developed the General Neural Simulation System (GENESIS) and Kinetikit (GENESIS/Kinetikit), a graphical simulation environment for modeling biochemical signaling pathways using deterministic and stochastic methods. A library of models of several common signaling pathways complements the software. This combination of numerical computation engines, graphical modeling tools, and library of models is designed to build on the cumulative development of models and techniques from many sources. The complete simulation environment and demonstration models are available from (http://stke.sciencemag.org/cgi/content/full/sigtrans;2004/219/pl4/DC1; also at http://www.ncbs.res.in/~bhalla/kkit/download.html). The associated library of signaling pathways is based on published experimental and simulation studies and is curated to ensure that the simulation outcomes match published results. Models in the library are maintained in a database (http://doqcs.ncbs.res.in). Individual pathway models can be combined to build complex signaling network simulations. The overall goal of this process is to attain sufficient biological realism in models to directly compare their outcomes with experiments and to improve our understanding of complex signaling.
Collapse
Affiliation(s)
- Sharat Jacob Vayttaden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India.
| | | |
Collapse
|
44
|
Dupont G, Koukoui O, Clair C, Erneux C, Swillens S, Combettes L. Ca2+ oscillations in hepatocytes do not require the modulation of InsP3 3-kinase activity by Ca2+. FEBS Lett 2003; 534:101-5. [PMID: 12527368 DOI: 10.1016/s0014-5793(02)03789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Receptor-mediated production of inositol 1,4,5-trisphosphate (InsP(3)) initiates Ca(2+) release and is responsible for cytosolic Ca(2+) oscillations. InsP(3) oscillations have also been observed in some cells. One of the enzymes controlling InsP(3) catabolism, the InsP(3) 3-kinase, is stimulated by Ca(2+); this regulation is presumably part of the reason for InsP(3) oscillations that have been observed in some cells. Here, we investigate the possible role of Ca(2+)-activated InsP(3) catabolism on the characteristics of the InsP(3)-induced Ca(2+) oscillations. Numerical simulations show that if it is assumed that the Ca(2+)-independent InsP(3) catabolism is predominant, Ca(2+) oscillations remain qualitatively unchanged although the relative amplitude of the oscillations in InsP(3) concentrations becomes minimal. We tested this prediction in hepatocytes by masking the Ca(2+)-dependent InsP(3) catabolism by 3-kinase through the injection of massive amounts of InsP(3) 5-phosphatase, which is not stimulated by Ca(2+). We find that in such injected hepatocytes, Ca(2+) oscillations generated by modest agonist levels are suppressed, presumably because of the decreased dose in InsP(3), but that at higher doses of agonist, oscillations reappear, with characteristics similar to those of untreated cells at low agonist doses. Altogether, these results suggest that oscillations in InsP(3) concentration due to Ca(2+)-stimulated InsP(3) catabolism do not play a major role for the oscillations in Ca(2+) concentration.
Collapse
Affiliation(s)
- G Dupont
- Université Libre de Bruxelles, Faculté des Sciences CP231, Boulevard du Triomphe, B-1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|