1
|
Negahban Z, Ward V, Richelle A, McCready C, Budman H. Hybrid dynamic flux balance modeling approach for bioprocesses: an E. coli case study. Bioprocess Biosyst Eng 2025; 48:841-856. [PMID: 40133554 DOI: 10.1007/s00449-025-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
In this study, we present a hybrid dynamic flux balance analysis (DFBA) model, combined with Partial Least Squares (PLS) regression, to simulate cell culture behavior in response to variations in media composition. DFBA models typically incorporate a stoichiometric matrix representing metabolic reactions, leveraging the pseudo-stationarity assumption to reduce the number of parameters, which in turn minimizes the risk of overfitting. Here, PLS regression is employed to define kinetic rate constraints within the DFBA model, capturing the dynamic and non-linear nature of reaction rates over different culture phases. An optimization approach identifies the minimal number of kinetic constraints required, ensuring model accuracy without excessive complexity. Our hybrid model is validated through simulation case studies using an E. coli system, demonstrating its effectiveness in adjusting to changes in initial media composition. The case studies reveal that the model's accuracy improves with a more detailed stoichiometric matrix, particularly when larger networks or more varied metabolic environments are present. Additionally, the hybrid DFBA-PLS approach provides a robust and scalable modeling framework adaptable to other bioprocesses, offering insights into medium composition effects and highlighting its potential for bioprocess optimization.
Collapse
Affiliation(s)
- Zahra Negahban
- Chemical Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Valerie Ward
- Chemical Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | | | | | - Hector Budman
- Chemical Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Dodia H, Muddana C, Mishra V, Sunder AV, Wangikar PP. Process Intensification for Recombinant Protein Production in E. coli via Identification of Active Nodes in Cellular Metabolism and Dynamic Flux Balance Analysis. Biotechnol Bioeng 2025. [PMID: 40302469 DOI: 10.1002/bit.29012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Complex media supplemented with a carbon source are commonly used in bioprocesses for recombinant protein production in Escherichia coli. Optimizing these processes is challenging and requires precise understanding of cellular metabolism and nutrient requirements. Compared to a design of experiments approach that necessitates extensive experimentation, metabolic modeling using a genome scale metabolic model (GEM) offers a more predictive and systematic approach to guide process optimization by identifying specific metabolic bottlenecks. In addition, spent media analysis (SMA) can unravel the preferential utilization of different media components during the bioprocess. Here, we integrated the updated E. coli GEM with time course SMA data from a fed-batch process and performed dynamic flux balance analysis (dFBA) to identify metabolites that function as active nodes and are vital for cellular function. These are potential target supplements to boost cellular activity and in turn the recombinant protein productivity. Using an iterative approach of performing fermentation, SMA, and metabolic modeling, we intensified the bioprocess in just five experimental trials, resulting in a six-fold increase in protein productivity. Our new feeding strategy involved yeast extract with amino acid supplementation (Ser, Thr, Asp, and Glu) and increased oxygen transfer rates. This approach demonstrates significant promise for application in bioprocess intensification.
Collapse
Affiliation(s)
- Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Vivek Mishra
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| |
Collapse
|
3
|
Zhang J, Fang H, Du G, Zhang D. Metabolic Regulation and Engineering Strategies of Carbon and Nitrogen Metabolism in Escherichia coli. ACS Synth Biol 2025. [PMID: 40243912 DOI: 10.1021/acssynbio.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The intricacies of carbon and nitrogen metabolism in Escherichia coli indeed present both challenges and opportunities for metabolic engineering aimed at optimizing microbial production processes. Carbon is the primary energy source and building block for biomolecules at the cellular level, while nitrogen is vital for synthesizing amino acids, nucleotides, and other nitrogen-containing compounds. This review provides a comprehensive summary of the metabolic regulation of central metabolism and outlines engineering strategies for carbon and nitrogen metabolism in E. coli. This perspective enhances our understanding of the molecular mechanisms involved and enables the development of rational metabolic engineering strategies. One key aspect of metabolic engineering consists of understanding the regulatory networks that govern these processes. Both carbon and nitrogen metabolisms are tightly regulated to ensure cellular homeostasis. By elucidating the interconnected nature of carbon and nitrogen metabolism, this review serves not just to better inform the academic community but also to stimulate advancements in biotechnological applications. Metabolic engineering in E. coli, targeting these complex networks, holds immense promise for the sustainable production of chemicals, biofuels, and pharmaceuticals.
Collapse
Affiliation(s)
- Jijiao Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
4
|
Aminian-Dehkordi J, Dickson A, Valiei A, Mofrad MRK. MetaBiome: a multiscale model integrating agent-based and metabolic networks to reveal spatial regulation in gut mucosal microbial communities. mSystems 2025:e0165224. [PMID: 40183581 DOI: 10.1128/msystems.01652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Mucosal microbial communities (MMCs) are complex ecosystems near the mucosal layers of the gut essential for maintaining health and modulating disease states. Despite advances in high-throughput omics technologies, current methodologies struggle to capture the dynamic metabolic interactions and spatiotemporal variations within MMCs. In this work, we present MetaBiome, a multiscale model integrating agent-based modeling (ABM), finite volume methods, and constraint-based models to explore the metabolic interactions within these communities. Integrating ABM allows for the detailed representation of individual microbial agents each governed by rules that dictate cell growth, division, and interactions with their surroundings. Through a layered approach-encompassing microenvironmental conditions, agent information, and metabolic pathways-we simulated different communities to showcase the potential of the model. Using our in-silico platform, we explored the dynamics and spatiotemporal patterns of MMCs in the proximal small intestine and the cecum, simulating the physiological conditions of the two gut regions. Our findings revealed how specific microbes adapt their metabolic processes based on substrate availability and local environmental conditions, shedding light on spatial metabolite regulation and informing targeted therapies for localized gut diseases. MetaBiome provides a detailed representation of microbial agents and their interactions, surpassing the limitations of traditional grid-based systems. This work marks a significant advancement in microbial ecology, as it offers new insights into predicting and analyzing microbial communities.IMPORTANCEOur study presents a novel multiscale model that combines agent-based modeling, finite volume methods, and genome-scale metabolic models to simulate the complex dynamics of mucosal microbial communities in the gut. This integrated approach allows us to capture spatial and temporal variations in microbial interactions and metabolism that are difficult to study experimentally. Key findings from our model include the following: (i) prediction of metabolic cross-feeding and spatial organization in multi-species communities, (ii) insights into how oxygen gradients and nutrient availability shape community composition in different gut regions, and (iii) identification of spatiallyregulated metabolic pathways and enzymes in E. coli. We believe this work represents a significant advance in computational modeling of microbial communities and provides new insights into the spatial regulation of gut microbiome metabolism. The multiscale modeling approach we have developed could be broadly applicable for studying other complex microbial ecosystems.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
5
|
Lázaro J, Joven T, Széliová D, Zanghellini J, Júlvez J. Multi-scale design and optimization of antibody production via flexible nets. Comput Struct Biotechnol J 2025; 27:1498-1510. [PMID: 40265159 PMCID: PMC12013398 DOI: 10.1016/j.csbj.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Antibodies are therapeutic proteins with many applications in medicine, such as treating viral infections, different types of cancer, and common diseases such as psoriasis and multiple sclerosis. Chinese Hamster Ovary (CHO) cells are the most widely used cells for antibody production due to their well-established use and favorable features. However, the current design of antibody production systems often relies on a "trial and error" approach to manipulate CHO cells. This approach is time-consuming and costly, and can lead to suboptimal process performance. The use of mathematical models has the potential to greatly accelerate and improve the design and optimization of antibody production. Starting from a systematic and formal approach, the aim is to achieve an automatic design of the whole process that allows optimal productivity to be reached. To this end, we develop mathematical models and methods for the design and optimization of antibody manufacturing systems. The mathematical models are based on Flexible Nets (FNs), a modeling formalism that accommodates uncertain parameters and nonlinear dynamics. FNs enable the development of comprehensive models that encompass both the metabolic network of CHO cells and the dynamics of the bioreactor in which the cells are cultured. Thus, by integrating macroscopic variables (e.g. dilution rate, substrate concentration, cell density, etc.) with microscopic variables (such as intracellular metabolic fluxes), our model represents a multi-scale system and facilitates global optimization.
Collapse
Affiliation(s)
- Jorge Lázaro
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - Teresa Joven
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - Diana Széliová
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Jorge Júlvez
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Aucello R, Pernice S, Tortarolo D, Calogero RA, Herrera-Rincon C, Ronchi G, Geuna S, Cordero F, Lió P, Beccuti M. UnifiedGreatMod: a new holistic modelling paradigm for studying biological systems on a complete and harmonious scale. Bioinformatics 2025; 41:btaf103. [PMID: 40073274 PMCID: PMC11932724 DOI: 10.1093/bioinformatics/btaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025] Open
Abstract
MOTIVATION Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognizable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, e.g. to the cancer evolution study. RESULTS To address this aspect, we propose a new modelling paradigm, UnifiedGreatMod, which allows modellers to integrate fine-grained and coarse-grained biological information into a unique model. It enables functional studies by combining the analysis of the system's multi-level stable states with its fluctuating conditions. This approach helps to investigate the functional relationships and dependencies among biological entities. This is achieved, thanks to the hybridization of two analysis approaches that capture a system's different granularity levels. The proposed paradigm was then implemented into the open-source, general modelling framework GreatMod, in which a graphical meta-formalism is exploited to simplify the model creation phase and R languages to define user-defined analysis workflows. The proposal's effectiveness was demonstrated by mechanistically simulating the metabolic output of Escherichia coli under environmental nutrient perturbations and integrating a gene expression dataset. Additionally, the UnifiedGreatMod was used to examine the responses of luminal epithelial cells to Clostridium difficile infection. AVAILABILITY AND IMPLEMENTATION GreatMod https://qbioturin.github.io/epimod/, epimod_FBAfunctions https://github.com/qBioTurin/epimod_FBAfunctions, first case study E. coli https://github.com/qBioTurin/Ec_coli_modelling, second case study C. difficile https://github.com/qBioTurin/EpiCell_CDifficile.
Collapse
Affiliation(s)
- Riccardo Aucello
- Department of Computer Science, University of Turin, Via Pessinetto 12, Torino, 10149, Italy
| | - Simone Pernice
- Department of Computer Science, University of Turin, Via Pessinetto 12, Torino, 10149, Italy
| | - Dora Tortarolo
- Department of Computer Science, University of Turin, Via Pessinetto 12, Torino, 10149, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Celia Herrera-Rincon
- Biomathematics Unit, Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid 28040, Spain
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10143, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10143, Italy
| | - Francesca Cordero
- Department of Computer Science, University of Turin, Via Pessinetto 12, Torino, 10149, Italy
| | - Pietro Lió
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, United Kingdom
| | - Marco Beccuti
- Department of Computer Science, University of Turin, Via Pessinetto 12, Torino, 10149, Italy
| |
Collapse
|
7
|
Song HS, Ahamed F, Lee JY, Henry CS, Edirisinghe JN, Nelson WC, Chen X, Moulton JD, Scheibe TD. Coupling flux balance analysis with reactive transport modeling through machine learning for rapid and stable simulation of microbial metabolic switching. Sci Rep 2025; 15:6042. [PMID: 39972043 PMCID: PMC11840022 DOI: 10.1038/s41598-025-89997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Integrating genome-scale metabolic networks with reactive transport models (RTMs) provides a detailed description of the dynamic changes in microbial growth and metabolism. Despite promising demonstrations in the past, computational inefficiency has been pointed out as a critical issue to overcome because it requires repeated application of linear programming (LP) to obtain flux balance analysis (FBA) solutions in every time step and spatial grid. To address this challenge, we propose a new simulation method where we train and validate artificial neural networks (ANNs) using randomly sampled FBA solutions and incorporate the resulting surrogate FBA model (represented as algebraic equations) into RTMs as source/sink terms. We demonstrate the efficiency of our method via a case study of Shewanella oneidensis MR-1. During aerobic growth on lactate, S. oneidensis produces metabolic byproducts (such as pyruvate and acetate), which are subsequently consumed as alternative carbon sources when the preferred nutrients are depleted. To effectively simulate these complex dynamics, we used a cybernetic approach that models metabolic switches as the outcome of dynamic competition among multiple growth options. In both zero-dimensional batch and one-dimensional column configurations, the ANN-based surrogate models achieved substantial reduction of computational time by several orders of magnitude compared to the original LP-based FBA models. Moreover, the ANN models produced robust solutions without any special measures to prevent numerical instability. These developments significantly promote our ability to utilize genome-scale networks in complex, multi-physics, and multi-dimensional ecosystem modeling.
Collapse
Affiliation(s)
- Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska- Lincoln, Lincoln, NE, USA.
| | - Firnaaz Ahamed
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Engineering, Faculty of Innovation and Technology, Taylor's University, Subang Jaya, Malaysia
| | - Joon-Yong Lee
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- PrognomiQ Inc., San Mateo, CA, USA
| | - Christopher S Henry
- Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL, USA
| | - Janaka N Edirisinghe
- Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL, USA
| | - William C Nelson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xingyuan Chen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - J David Moulton
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Timothy D Scheibe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
8
|
Ceballos Rodriguez-Conde F, Zhu S, Dikicioglu D. Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches. Crit Rev Biotechnol 2025:1-19. [PMID: 39972973 DOI: 10.1080/07388551.2025.2455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 02/21/2025]
Abstract
Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.
Collapse
Affiliation(s)
| | - Sophie Zhu
- Department of Biochemical Engineering, University College London, London, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
9
|
Moimenta AR, Troitiño-Jordedo D, Henriques D, Contreras-Ruíz A, Minebois R, Morard M, Barrio E, Querol A, Balsa-Canto E. An integrated multiphase dynamic genome-scale model explains batch fermentations led by species of the Saccharomyces genus. mSystems 2025; 10:e0161524. [PMID: 39840996 PMCID: PMC11838008 DOI: 10.1128/msystems.01615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways. However, explaining secondary metabolism remains a challenge. A multiphase and multi-objective dFBA scheme (MPMO model) has been proposed for this purpose. However, its formulation is discontinuous, changing from phase to phase; its accuracy in predicting intracellular fluxes is hampered by the lack of a mechanistic link between phases; and its simulation requires considerable computational effort. To address these limitations, we combine a novel model with a genome-scale model to predict the distribution of intracellular fluxes throughout batch fermentation. This integrated multiphase continuous model (IMC) has a unique formulation over time, and it incorporates empirical regulatory descriptions to automatically identify phase transitions and incorporates the hypotheses that yeasts might vary their cellular objective over time to adapt to the changing environment. We validated the predictive capacity of the IMC model by comparing its predictions with intracellular metabolomics data for Saccharomyces uvarum during batch fermentation. The model aligns well with the data, confirming its predictive capabilities. Notably, the IMC model accurately predicts trehalose accumulation, which was enforced in the MPMO model. We further demonstrate the generalizability of the IMC model, explaining the dynamics of primary and secondary metabolism of three Saccharomyces species. The model provides biological insights consistent with the literature and metabolomics data, establishing it as a valuable tool for exploring the dynamics of novel fermentation processes.IMPORTANCEThis work presents an integrated multiphase continuous dynamic genome-scale model (IMC model) for batch fermentation, a crucial process widely used in industry to produce biofuels, enzymes, pharmaceuticals, and food products or ingredients. The IMC model integrates a continuous kinetic model with a genome-scale model to address the critical limitations of existing dynamic flux balance analysis schemes, such as the difficulty of explaining secondary metabolism, the lack of mechanistic links between growth phases, or the high computational demands. The model also introduces the hypothesis that cells adapt the FBA objective over time. The IMC improves the accuracy of intracellular flux predictions and simplifies the implementation process with a unique dFBA formulation over time. Its ability to predict both primary and secondary metabolism dynamics in different Saccharomyces species underscores its versatility and robustness. Furthermore, its alignment with empirical metabolomics data validates its predictive power, offering valuable insights into metabolic processes during batch fermentation. These advances pave the way for optimizing fermentation processes, potentially leading to more efficient production of target compounds and novel biotechnological applications.
Collapse
Grants
- PID2021-126380OB-C31, PID2021-126380OB-C32, PID2021-126380OB-C33 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- IN607B 2023/04 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Ministry of Culture, Education and University Planning, Government of Galicia)
- CEX2021-001189-S Ministerio de Ciencia e Innovación (MCIN)
- Ministerio de Ciencia, Innovación y Universidades
(MCIU)
- Consellería de Cultura, Educación e
Ordenación Universitaria, Xunta de Galicia (Ministry of
Culture, Education and University Planning, Government of
Galicia)
- Ministerio de Ciencia e Innovación
(MCIN)
Collapse
Affiliation(s)
- Artai R. Moimenta
- Biosystems and
Bioprocess Engineering, IIM-CSIC,
Vigo, Spain
- Applied Mathematics
II, University of Vigo, Vigo,
Spain
| | - Diego Troitiño-Jordedo
- Biosystems and
Bioprocess Engineering, IIM-CSIC,
Vigo, Spain
- Applied Mathematics,
University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - David Henriques
- Biosystems and
Bioprocess Engineering, IIM-CSIC,
Vigo, Spain
| | - Alba Contreras-Ruíz
- Yeastomics Laboratory,
Food Biotechnology Department,
IATA-CSIC, Paterna,
Spain
| | - Romain Minebois
- Yeastomics Laboratory,
Food Biotechnology Department,
IATA-CSIC, Paterna,
Spain
| | - Miguel Morard
- Yeastomics Laboratory,
Food Biotechnology Department,
IATA-CSIC, Paterna,
Spain
| | - Eladio Barrio
- Yeastomics Laboratory,
Food Biotechnology Department,
IATA-CSIC, Paterna,
Spain
| | - Amparo Querol
- Yeastomics Laboratory,
Food Biotechnology Department,
IATA-CSIC, Paterna,
Spain
| | - Eva Balsa-Canto
- Biosystems and
Bioprocess Engineering, IIM-CSIC,
Vigo, Spain
| |
Collapse
|
10
|
Rao X, Liu W. A Guide to Metabolic Network Modeling for Plant Biology. PLANTS (BASEL, SWITZERLAND) 2025; 14:484. [PMID: 39943046 PMCID: PMC11820892 DOI: 10.3390/plants14030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Plants produce a diverse array of compounds that play crucial roles in growth, in development, and in responses to abiotic and biotic stresses. Understanding the fluxes within metabolic pathways is essential for guiding strategies aimed at directing metabolism for crop improvement and the plant natural product industry. Over the past decade, metabolic network modeling has emerged as a predominant tool for the integration, quantification, and prediction of the spatial and temporal distribution of metabolic flows. In this review, we present the primary methods for constructing mathematical models of metabolic systems and highlight recent achievements in plant metabolism using metabolic modeling. Furthermore, we discuss current challenges in applying network flux analysis in plants and explore the potential use of machine learning technologies in plant metabolic modeling. The practical application of mathematical modeling is expected to provide significant insights into the structure and regulation of plant metabolic networks.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| |
Collapse
|
11
|
Scott H, Segrè D. Metabolic Flux Modeling in Marine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:593-620. [PMID: 39259978 DOI: 10.1146/annurev-marine-032123-033718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ocean metabolism constitutes a complex, multiscale ensemble of biochemical reaction networks harbored within and between the boundaries of a myriad of organisms. Gaining a quantitative understanding of how these networks operate requires mathematical tools capable of solving in silico the resource allocation problem each cell faces in real life. Toward this goal, stoichiometric modeling of metabolism, such as flux balance analysis, has emerged as a powerful computational tool for unraveling the intricacies of metabolic processes in microbes, microbial communities, and multicellular organisms. Here, we provide an overview of this approach and its applications, future prospects, and practical considerations in the context of marine sciences. We explore how flux balance analysis has been employed to study marine organisms, help elucidate nutrient cycling, and predict metabolic capabilities within diverse marine environments, and highlight future prospects for this field in advancing our knowledge of marine ecosystems and their sustainability.
Collapse
Affiliation(s)
- Helen Scott
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| | - Daniel Segrè
- Department of Biology, Department of Physics, and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| |
Collapse
|
12
|
Wu S, Qu Z, Chen D, Wu H, Caiyin Q, Qiao J. Deciphering and designing microbial communities by genome-scale metabolic modelling. Comput Struct Biotechnol J 2024; 23:1990-2000. [PMID: 38765607 PMCID: PMC11098673 DOI: 10.1016/j.csbj.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Microbial communities are shaped by the complex interactions among organisms and the environment. Genome-scale metabolic models (GEMs) can provide deeper insights into the complexity and ecological properties of various microbial communities, revealing their intricate interactions. Many researchers have modified GEMs for the microbial communities based on specific needs. Thus, GEMs need to be comprehensively summarized to better understand the trends in their development. In this review, we summarized the key developments in deciphering and designing microbial communities using different GEMs. A timeline of selected highlights in GEMs indicated that this area is evolving from the single-strain level to the microbial community level. Then, we outlined a framework for constructing GEMs of microbial communities. We also summarized the models and resources of static and dynamic community-level GEMs. We focused on the role of external environmental and intracellular resources in shaping the assembly of microbial communities. Finally, we discussed the key challenges and future directions of GEMs, focusing on the integration of GEMs with quorum sensing mechanisms, microbial ecology interactions, machine learning algorithms, and automatic modeling, all of which contribute to consortia-based applications in different fields.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Zheping Qu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Sen P. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories. Biotechnol Genet Eng Rev 2024; 40:3682-3715. [PMID: 36476223 DOI: 10.1080/02648725.2022.2152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Metabolic engineering principles have long been applied to explore the metabolic networks of complex microbial cell factories under a variety of environmental constraints for effective deployment of the microorganisms in the optimal production of biochemicals like biofuels, polymers, amino acids, recombinant proteins. One of the methodologies used for analyzing microbial metabolic networks is the Flux Balance Analysis (FBA), which employs applications of optimization techniques for forecasting biomass growth and metabolic flux distribution of industrially important products under specified environmental conditions. The in silico flux simulations are instrumental for designing the production-specific microbial cell factories. However, FBA has some inherent limitations. The present review emphasizes how the incorporation of additional kinetic, thermodynamic, expression and regulatory constraints and integration of omics data into the classical FBA platform improve the prediction accuracy of FBA. A programmed comparison of the simulated data with the experimental observations is presented for supporting the claim. The review further accounts for the successful implementation of classical FBA in biotechnological applications and identifies areas in which classical FBA fails to make correct predictions. The analysis of the predictive capabilities of the different FBA strategies presented here is expected to help researchers in finding new avenues in engineering highly efficient microbial metabolic pathways and identify the key metabolic bottlenecks during the process. Based on the appropriate metabolic network design, fermentation engineers will be able to effectively design the bioreactors and optimize large-scale biochemical production through suitable pathway modifications.
Collapse
Affiliation(s)
- Pramita Sen
- Department of Chemical Engineering, Heritage Institute of Technology Kolkata, Kolkata, India
| |
Collapse
|
14
|
Mahnert C, Oyarzún DA, Berrios J. Multiscale modelling of bioprocess dynamics and cellular growth. Microb Cell Fact 2024; 23:315. [PMID: 39578826 PMCID: PMC11585165 DOI: 10.1186/s12934-024-02581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Fermentation processes are essential for the production of small molecules, heterologous proteins and other commercially important products. Traditional bioprocess optimisation relies on phenomenological models that focus on macroscale variables like biomass growth and protein yield. However, these models often fail to consider the crucial link between macroscale dynamics and the intracellular activities that drive metabolism and proteins synthesis. RESULTS We introduce a multiscale model that not only captures batch bioreactor dynamics but also incorporates a coarse-grained approach to key intracellular processes such as gene expression, ribosome allocation and growth. Our model accurately fits biomass and substrate data across various Escherichia coli strains, effectively predicts acetate dynamics and evaluates the expression of heterologous proteins. By integrating construct-specific parameters like promoter strength and ribosomal binding sites, our model reveals several key interdependencies between gene expression parameters and outputs such as protein yield and acetate secretion. CONCLUSIONS This study presents a computational model that, with proper parameterisation, allows for the in silico analysis of genetic constructs. The focus is on combinations of ribosomal binding site (RBS) strength and promoters, assessing their impact on production. In this way, the ability to predict bioreactor dynamics from these genetic constructs can pave the way for more efficient design and optimisation of microbial fermentation processes, enhancing the production of valuable bioproducts.
Collapse
Affiliation(s)
- Camilo Mahnert
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, 10 Crichton St, Newington, Edinburgh, EH8 9AB, Scotland, UK
- School of Biological Science, University of Edinburgh, Street, Edinburgh, EH9 3JH, Scotland, UK
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, 2340000, Chile.
| |
Collapse
|
15
|
Agmon E. Foundations of a Compositional Systems Biology. ARXIV 2024:arXiv:2408.00942v2. [PMID: 39130201 PMCID: PMC11312625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes to enable integrative multiscale simulations. Whereas traditional models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect these models, asking critical questions about the space between models: What variables should a submodel expose through its interface? How do coupled models connect and translate across scales? How do domain-specific models connect across biological and physical disciplines to drive the synthesis of new knowledge? This approach requires robust software to integrate diverse datasets and submodels, providing researchers with tools to flexibly recombine, iteratively refine, and collaboratively expand their models. This article offers a comprehensive framework to support this vision, including: a conceptual and graphical framework to define interfaces and composition patterns; standardized schemas that facilitate modular data and model assembly; biological templates that integrate detailed submodels that connect molecular processes to the emergence of the cellular interface; and user-friendly software interfaces that empower research communities to construct and improve multiscale models of cellular systems. By addressing these needs, compositional systems biology will foster a unified and scalable approach to understanding complex cellular systems.
Collapse
|
16
|
Páez-Watson T, Hernández Medina R, Vellekoop L, van Loosdrecht MCM, Wahl SA. Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments. BIOINFORMATICS ADVANCES 2024; 4:vbae174. [PMID: 39600381 PMCID: PMC11593493 DOI: 10.1093/bioadv/vbae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Summary We present py_cFBA, a Python-based toolbox for conditional flux balance analysis (cFBA). Our toolbox allows for an easy implementation of cFBA models using a well-documented and modular approach and supports the generation of Systems Biology Markup Language models. The toolbox is designed to be user-friendly, versatile, and freely available to non-commercial users, serving as a valuable resource for researchers predicting metabolic behaviour with resource allocation in dynamic-cyclic environments. Availability and implementation Extensive documentation, installation steps, tutorials, and examples are available at https://tp-watson-python-cfba.readthedocs.io/en/. The py_cFBA python package is available at https://pypi.org/project/py-cfba/.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | | | - Loek Vellekoop
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | | | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
- Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91052, Germany
| |
Collapse
|
17
|
Lu A, Dukovski I, Segrè D. Dynamic metabolic modeling of ATP allocation during viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623198. [PMID: 39605584 PMCID: PMC11601281 DOI: 10.1101/2024.11.12.623198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Viral pathogens, like SARS-CoV-2, hijack the host's macromolecular production machinery, imposing an energetic burden that is distributed across cellular metabolism. To explore the dynamic metabolic tension between the host's survival and viral replication, we developed a computational framework that uses genome-scale models to perform dynamic Flux Balance Analysis of human cell metabolism during virus infections. Relative to previous models, our framework addresses the physiology of viral infections of non-proliferating host cells through two new features. First, by incorporating the lipid content of SARS-CoV-2 biomass, we discovered activation of previously overlooked pathways giving rise to new predictions of possible drug targets. Furthermore, we introduce a dynamic model that simulates the partitioning of resources between the virus and the host cell, capturing the extent to which the competition depletes the human cells from essential ATP. By incorporating viral dynamics into our COMETS framework for spatio-temporal modeling of metabolism, we provide a mechanistic, dynamic and generalizable starting point for bridging systems biology modeling with viral pathogenesis. This framework could be extended to broadly incorporate phage dynamics in microbial systems and ecosystems.
Collapse
Affiliation(s)
- Alvin Lu
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ilija Dukovski
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, N. Macedonia
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
19
|
Iyengar G, Perry M. Game-Theoretic Flux Balance Analysis Model for Predicting Stable Community Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2394-2405. [PMID: 39331552 DOI: 10.1109/tcbb.2024.3470592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Models for microbial interactions attempt to understand and predict the steady state network of inter-species relationships in a community, e.g. competition for shared metabolites, and cooperation through cross-feeding. Flux balance analysis (FBA) is an approach that was introduced to model the interaction of a particular microbial species with its environment. This approach has been extended to analyzing interactions in a community of microbes; however, these approaches have two important drawbacks: first, one has to numerically solve a differential equation to identify the steady state, and second, there are no methods available to analyze the stability of the steady state. We propose a game theory based community FBA model wherein species compete to maximize their individual growth rate, and the state of the community is given by the resulting Nash equilibrium. We develop a computationally efficient method for directly computing the steady state biomasses and fluxes without solving a differential equation. We also develop a method to determine the stability of a steady state to perturbations in the biomasses and to invasion by new species. We report the results of applying our proposed framework to a small community of four E. coli mutants that compete for externally supplied glucose, as well as cooperate since the mutants are auxotrophic for metabolites exported by other mutants, and a more realistic model for a gut microbiome consisting of nine species.
Collapse
|
20
|
Ravindran S, Hajinajaf N, Kundu P, Comes J, Nielsen DR, Varman AM, Ghosh A. Genome-Scale Metabolic Model Reconstruction and Investigation into the Fluxome of the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. ACS Synth Biol 2024; 13:3281-3294. [PMID: 39295585 DOI: 10.1021/acssynbio.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ability to convert atmospheric CO2 and light into biomass and value-added chemicals makes cyanobacteria a promising resource microbial host for biotechnological applications. A newly discovered fastest-growing cyanobacterial strain, Synechococcus sp. PCC 11901, has been reported to have the highest biomass accumulation rate, making it a preferred target host for producing renewable fuels, value-added biochemicals, and natural products. System-level knowledge of an organism is imperative to understand the metabolic potential of the strain, which can be attained by developing genome-scale metabolic models (GEMs). We present the first genome-scale metabolic model of Synechococcus sp. PCC 11901 (iRS840), which contains 840 genes, 1001 reactions, and 944 metabolites. The model has been optimized and validated under different trophic modes, i.e., autotrophic and mixotrophic, by conducting an in vivo growth experiment. The robustness of the metabolic network was evaluated by changing the biomass coefficient of the model, which showed a higher sensitivity toward pigments under the photoautotrophic condition, whereas under the heterotrophic condition, amino acids were found to be more influential. Furthermore, it was discovered that PCC 11901 synthesizes succinyl-CoA via succinic semialdehyde due to its imperfect TCA cycle. Subsequent flux balance analysis (FBA) revealed a quantum yield of 0.16 in silico, which is higher compared to that of PCC 6803. Under mixotrophic conditions (with glycerol and carbon dioxide), the flux through the Calvin cycle increased compared to autotrophic conditions. This model will be useful for gaining insights into the metabolic potential of PCC 11901 and developing effective metabolic engineering strategies for product development.
Collapse
Affiliation(s)
- Somdutt Ravindran
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Nima Hajinajaf
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jackson Comes
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
- School of Energy Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
21
|
Karabekmez ME. Insights into yeast response to chemotherapeutic agent through time series genome-scale metabolic models. Biotechnol Bioeng 2024; 121:3351-3359. [PMID: 39199017 DOI: 10.1002/bit.28833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Organism-specific genome-scale metabolic models (GSMMs) can unveil molecular mechanisms within cells and are commonly used in diverse applications, from synthetic biology, biotechnology, and systems biology to metabolic engineering. There are limited studies incorporating time-series transcriptomics in GSMM simulations. Yeast is an easy-to-manipulate model organism for tumor research. Here, a novel approach (TS-GSMM) was proposed to integrate time-series transcriptomics with GSMMs to narrow down the feasible solution space of all possible flux distributions and attain time-series flux samples. The flux samples were clustered using machine learning techniques, and the clusters' functional analysis was performed using reaction set enrichment analysis. A time series transcriptomics response of Yeast cells to a chemotherapeutic reagent-doxorubicin-was mapped onto a Yeast GSMM. Eleven flux clusters were obtained with our approach, and pathway dynamics were displayed. Induction of fluxes related to bicarbonate formation and transport, ergosterol and spermidine transport, and ATP production were captured. Integrating time-series transcriptomics data with GSMMs is a promising approach to reveal pathway dynamics without any kinetic modeling and detects pathways that cannot be identified through transcriptomics-only analysis. The codes are available at https://github.com/karabekmez/TS-GSMM.
Collapse
|
22
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
23
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
24
|
Han Y, Styczynski MP. Assessing structural uncertainty of biochemical regulatory networks in metabolic pathways under varying data quality. NPJ Syst Biol Appl 2024; 10:94. [PMID: 39174554 PMCID: PMC11341918 DOI: 10.1038/s41540-024-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Ordinary differential equation (ODE) models are powerful tools for studying the dynamics of metabolic pathways. However, key challenges lie in constructing ODE models for metabolic pathways, specifically in our limited knowledge about which metabolite levels control which reaction rates. Identification of these regulatory networks is further complicated by the limited availability of relevant data. Here, we assess the conditions under which it is feasible to accurately identify regulatory networks in metabolic pathways by computationally fitting candidate network models with biochemical systems theory (BST) kinetics to data of varying quality. We use network motifs commonly found in metabolic pathways as a simplified testbed. Key features correlated with the level of difficulty in identifying the correct regulatory network were identified, highlighting the impact of sampling rate, data noise, and data incompleteness on structural uncertainty. We found that for a simple branched network motif with an equal number of metabolites and fluxes, identification of the correct regulatory network can be largely achieved and is robust to missing one of the metabolite profiles. However, with a bi-substrate bi-product reaction or more fluxes than metabolites in the network motif, the identification becomes more challenging. Stronger regulatory interactions and higher metabolite concentrations were found to be correlated with less structural uncertainty. These results could aid efforts to predict whether the true metabolic regulatory network can be computationally identified for a given stoichiometric network topology and dataset quality, thus helping to identify optimal measures to mitigate such identifiability issues in kinetic model development.
Collapse
Affiliation(s)
- Yue Han
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332-0100, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
25
|
Sampara P, Lawson CE, Scarborough MJ, Ziels RM. Advancing environmental biotechnology with microbial community modeling rooted in functional 'omics. Curr Opin Biotechnol 2024; 88:103165. [PMID: 39033648 DOI: 10.1016/j.copbio.2024.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Emerging biotechnologies that solve pressing environmental and climate emergencies will require harnessing the vast functional diversity of the underlying microbiomes driving such engineered processes. Modeling is a critical aspect of process engineering that informs system design as well as aids diagnostic optimization of performance. 'Conventional' bioprocess models assume homogenous biomass within functional guilds and thus fail to predict emergent properties of diverse microbial physiologies, such as product specificity and community interactions. Yet, recent advances in functional 'omics-based approaches can provide a 'lens' through which we can probe and measure in situ ecophysiologies of environmental microbiomes. Here, we overview microbial community modeling approaches that incorporate functional 'omics data, which we posit can advance our ability to design and control new environmental biotechnologies going forward.
Collapse
Affiliation(s)
- Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Cole J. Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations. NPJ Syst Biol Appl 2024; 10:78. [PMID: 39030258 PMCID: PMC11271576 DOI: 10.1038/s41540-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.
Collapse
|
27
|
Tarzi C, Zampieri G, Sullivan N, Angione C. Emerging methods for genome-scale metabolic modeling of microbial communities. Trends Endocrinol Metab 2024; 35:533-548. [PMID: 38575441 DOI: 10.1016/j.tem.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.
Collapse
Affiliation(s)
- Chaimaa Tarzi
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK
| | - Guido Zampieri
- Department of Biology, University of Padova, Padova, 35122, Veneto, Italy
| | - Neil Sullivan
- Complement Genomics Ltd, Station Rd, Lanchester, Durham, DH7 0EX, County Durham, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; Centre for Digital Innovation, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, North Yorkshire, UK.
| |
Collapse
|
28
|
Badr K, He QP, Wang J. Probing interspecies metabolic interactions within a synthetic binary microbiome using genome-scale modeling. MICROBIOME RESEARCH REPORTS 2024; 3:31. [PMID: 39421256 PMCID: PMC11480724 DOI: 10.20517/mrr.2023.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024]
Abstract
Aim: Metabolic interactions within a microbial community play a key role in determining the structure, function, and composition of the community. However, due to the complexity and intractability of natural microbiomes, limited knowledge is available on interspecies interactions within a community. In this work, using a binary synthetic microbiome, a methanotroph-photoautotroph (M-P) coculture, as the model system, we examined different genome-scale metabolic modeling (GEM) approaches to gain a better understanding of the metabolic interactions within the coculture, how they contribute to the enhanced growth observed in the coculture, and how they evolve over time. Methods: Using batch growth data of the model M-P coculture, we compared three GEM approaches for microbial communities. Two of the methods are existing approaches: SteadyCom, a steady state GEM, and dynamic flux balance analysis (DFBA) Lab, a dynamic GEM. We also proposed an improved dynamic GEM approach, DynamiCom, for the M-P coculture. Results: SteadyCom can predict the metabolic interactions within the coculture but not their dynamic evolutions; DFBA Lab can predict the dynamics of the coculture but cannot identify interspecies interactions. DynamiCom was able to identify the cross-fed metabolite within the coculture, as well as predict the evolution of the interspecies interactions over time. Conclusion: A new dynamic GEM approach, DynamiCom, was developed for a model M-P coculture. Constrained by the predictions from a validated kinetic model, DynamiCom consistently predicted the top metabolites being exchanged in the M-P coculture, as well as the establishment of the mutualistic N-exchange between the methanotroph and cyanobacteria. The interspecies interactions and their dynamic evolution predicted by DynamiCom are supported by ample evidence in the literature on methanotroph, cyanobacteria, and other cyanobacteria-heterotroph cocultures.
Collapse
Affiliation(s)
| | | | - Jin Wang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
29
|
Sattayawat P, Inwongwan S, Noirungsee N, Li J, Guo J, Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? INSECTS 2024; 15:369. [PMID: 38786925 PMCID: PMC11121833 DOI: 10.3390/insects15050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Lecomte M, Cao W, Aubert J, Sherman DJ, Falentin H, Frioux C, Labarthe S. Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling. Metab Eng 2024; 83:24-38. [PMID: 38460783 DOI: 10.1016/j.ymben.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Cheese taste and flavour properties result from complex metabolic processes occurring in microbial communities. A deeper understanding of such mechanisms makes it possible to improve both industrial production processes and end-product quality through the design of microbial consortia. In this work, we caracterise the metabolism of a three-species community consisting of Lactococcus lactis, Lactobacillus plantarum and Propionibacterium freudenreichii during a seven-week cheese production process. Using genome-scale metabolic models and omics data integration, we modeled and calibrated individual dynamics using monoculture experiments, and coupled these models to capture the metabolism of the community. This model accurately predicts the dynamics of the community, enlightening the contribution of each microbial species to organoleptic compound production. Further metabolic exploration revealed additional possible interactions between the bacterial species. This work provides a methodological framework for the prediction of community-wide metabolism and highlights the added value of dynamic metabolic modeling for the comprehension of fermented food processes.
Collapse
Affiliation(s)
- Maxime Lecomte
- Univ. Rennes, INRAE, STLO, F-35042, Rennes, France; Inria, Univ. Bordeaux, INRAE, F-33400, Talence, France
| | - Wenfan Cao
- Univ. Rennes, INRAE, STLO, F-35042, Rennes, France
| | - Julie Aubert
- Univ. Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | | | | | | | - Simon Labarthe
- Inria, Univ. Bordeaux, INRAE, F-33400, Talence, France; Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| |
Collapse
|
31
|
Gong Z, Chen J, Jiao X, Gong H, Pan D, Liu L, Zhang Y, Tan T. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects. Biotechnol Adv 2024; 72:108319. [PMID: 38280495 DOI: 10.1016/j.biotechadv.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.
Collapse
Affiliation(s)
- Zhijin Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayao Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Jiao
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Danzi Pan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingli Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
32
|
Taylor JA, Rapaport A, Dochain D. Convex Representation of Metabolic Networks with Michaelis-Menten Kinetics. Bull Math Biol 2024; 86:65. [PMID: 38671332 PMCID: PMC11052807 DOI: 10.1007/s11538-024-01293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Polyhedral models of metabolic networks are computationally tractable and can predict some cellular functions. A longstanding challenge is incorporating metabolites without losing tractability. In this paper, we do so using a new second-order cone representation of the Michaelis-Menten kinetics. The resulting model consists of linear stoichiometric constraints alongside second-order cone constraints that couple the reaction fluxes to metabolite concentrations. We formulate several new problems around this model: conic flux balance analysis, which augments flux balance analysis with metabolite concentrations; dynamic conic flux balance analysis; and finding minimal cut sets of networks with both reactions and metabolites. Solving these problems yields information about both fluxes and metabolite concentrations. They are second-order cone or mixed-integer second-order cone programs, which, while not as tractable as their linear counterparts, can nonetheless be solved at practical scales using existing software.
Collapse
Affiliation(s)
- Josh A Taylor
- Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Alain Rapaport
- MISTEA, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Denis Dochain
- Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Dodia H, Mishra V, Nakrani P, Muddana C, Kedia A, Rana S, Sahasrabuddhe D, Wangikar PP. Dynamic flux balance analysis of high cell density fed-batch culture of Escherichia coli BL21 (DE3) with mass spectrometry-based spent media analysis. Biotechnol Bioeng 2024; 121:1394-1406. [PMID: 38214104 DOI: 10.1002/bit.28654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Dynamic flux balance analysis (FBA) allows estimation of intracellular reaction rates using organism-specific genome-scale metabolic models (GSMM) and by assuming instantaneous pseudo-steady states for processes that are inherently dynamic. This technique is well-suited for industrial bioprocesses employing complex media characterized by a hierarchy of substrate uptake and product secretion. However, knowledge of exchange rates of many components of the media would be required to obtain meaningful results. Here, we performed spent media analysis using mass spectrometry coupled with liquid and gas chromatography for a fed-batch, high-cell density cultivation of Escherichia coli BL21(DE3) expressing a recombinant protein. Time course measurements thus obtained for 246 metabolites were converted to instantaneous exchange rates. These were then used as constraints for dynamic FBA using a previously reported GSMM, thus providing insights into how the flux map evolves through the process. Changes in tri-carboxylic acid cycle fluxes correlated with the increased demand for energy during recombinant protein production. The results show how amino acids act as hubs for the synthesis of other cellular metabolites. Our results provide a deeper understanding of an industrial bioprocess and will have implications in further optimizing the process.
Collapse
Affiliation(s)
- Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vivek Mishra
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | | | | | - Anant Kedia
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Sneha Rana
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| |
Collapse
|
34
|
Kuper TJ, Islam MM, Peirce-Cottler SM, Papin JA, Ford RM. Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment. PLoS Comput Biol 2024; 20:e1012031. [PMID: 38669236 PMCID: PMC11051585 DOI: 10.1371/journal.pcbi.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
Collapse
Affiliation(s)
- Tracy J. Kuper
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce-Cottler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roseanne M Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
35
|
Versluis DM, Schoemaker R, Looijesteijn E, Geurts JM, Merks RM. 2'-Fucosyllactose helps butyrate producers outgrow competitors in infant gut microbiota simulations. iScience 2024; 27:109085. [PMID: 38380251 PMCID: PMC10877688 DOI: 10.1016/j.isci.2024.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2'-fucosyllactose (2'-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2'-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2'-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites.
Collapse
Affiliation(s)
- David M. Versluis
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
| | | | | | | | - Roeland M.H. Merks
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
- Leiden University, Mathematical Institute, 2300 RA Leiden, the Netherlands
| |
Collapse
|
36
|
Dukovski I, Golden L, Zhang J, Osborne M, Segrè D, Korolev KS. Biophysical metabolic modeling of complex bacterial colony morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584915. [PMID: 39502364 PMCID: PMC11537321 DOI: 10.1101/2024.03.13.584915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion, and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for Computation of Microbial Ecosystems in Time and Space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along "metabolic rings" that are reminiscent of coffee-stain rings, but have a completely different origin. Our approach is a key step towards predictive microbial ecosystems modeling.
Collapse
Affiliation(s)
- Ilija Dukovski
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, N. Macedonia
| | - Lauren Golden
- Broad Institute, Cambridge, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Jing Zhang
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
| | - Melisa Osborne
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Lead contact
| | - Kirill S. Korolev
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
37
|
Ferreira MADM, Silveira WBD, Nikoloski Z. Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes. Biotechnol Bioeng 2024; 121:915-930. [PMID: 38178617 DOI: 10.1002/bit.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
Collapse
Affiliation(s)
| | | | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
38
|
Gopalakrishnan S, Johnson W, Valderrama-Gomez MA, Icten E, Tat J, Ingram M, Fung Shek C, Chan PK, Schlegel F, Rolandi P, Kontoravdi C, Lewis NE. COSMIC-dFBA: A novel multi-scale hybrid framework for bioprocess modeling. Metab Eng 2024; 82:183-192. [PMID: 38387677 DOI: 10.1016/j.ymben.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the predictive capability of mechanistic models for process design and optimization. Here, we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only metabolite concentrations from spent media, although constraining the metabolic model with other omics data can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to model the dynamic conditions in a bioreactor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, UK
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA.
| |
Collapse
|
39
|
Yuan H, Bai Y, Li X, Fu X. Cross-regulation between proteome reallocation and metabolic flux redistribution governs bacterial growth transition kinetics. Metab Eng 2024; 82:60-68. [PMID: 38309620 DOI: 10.1016/j.ymben.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Bacteria need to adjust their metabolism and protein synthesis simultaneously to adapt to changing nutrient conditions. It's still a grand challenge to predict how cells coordinate such adaptation due to the cross-regulation between the metabolic fluxes and the protein synthesis. Here we developed a dynamic Constrained Allocation Flux Balance Analysis method (dCAFBA), which integrates flux-controlled proteome allocation and protein limited flux balance analysis. This framework can predict the redistribution dynamics of metabolic fluxes without requiring detailed enzyme parameters. We reveal that during nutrient up-shifts, the calculated metabolic fluxes change in agreement with experimental measurements of enzyme protein dynamics. During nutrient down-shifts, we uncover a switch of metabolic bottleneck from carbon uptake proteins to metabolic enzymes, which disrupts the coordination between metabolic flux and their enzyme abundance. Our method provides a quantitative framework to investigate cellular metabolism under varying environments and reveals insights into bacterial adaptation strategies.
Collapse
Affiliation(s)
- Huili Yuan
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yang Bai
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xuefei Li
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Qian J, Ye C. Development and applications of genome-scale metabolic network models. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:1-26. [PMID: 38637105 DOI: 10.1016/bs.aambs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The genome-scale metabolic network model is an effective tool for characterizing the gene-protein-response relationship in the entire metabolic pathway of an organism. By combining various algorithms, the genome-scale metabolic network model can effectively simulate the influence of a specific environment on the physiological state of cells, optimize the culture conditions of strains, and predict the targets of genetic modification to achieve targeted modification of strains. In this review, we summarize the whole process of model building, sort out the various tools that may be involved in the model building process, and explain the role of various algorithms in model analysis. In addition, we also summarized the application of GSMM in network characteristics, cell phenotypes, metabolic engineering, etc. Finally, we discuss the current challenges facing GSMM.
Collapse
Affiliation(s)
- Jinyi Qian
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, PR China
| | - Chao Ye
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China.
| |
Collapse
|
41
|
Liang Y, Luo H, Lin Y, Gao F. Recent advances in the characterization of essential genes and development of a database of essential genes. IMETA 2024; 3:e157. [PMID: 38868518 PMCID: PMC10989110 DOI: 10.1002/imt2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/14/2024]
Abstract
Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.
Collapse
Affiliation(s)
| | - Hao Luo
- Department of PhysicsTianjin UniversityTianjinChina
| | - Yan Lin
- Department of PhysicsTianjin UniversityTianjinChina
| | - Feng Gao
- Department of PhysicsTianjin UniversityTianjinChina
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
| |
Collapse
|
42
|
Joseph C, Zafeiropoulos H, Bernaerts K, Faust K. Predicting microbial interactions with approaches based on flux balance analysis: an evaluation. BMC Bioinformatics 2024; 25:36. [PMID: 38262921 PMCID: PMC10804772 DOI: 10.1186/s12859-024-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Given a genome-scale metabolic model (GEM) of a microorganism and criteria for optimization, flux balance analysis (FBA) predicts the optimal growth rate and its corresponding flux distribution for a specific medium. FBA has been extended to microbial consortia and thus can be used to predict interactions by comparing in-silico growth rates for co- and monocultures. Although FBA-based methods for microbial interaction prediction are becoming popular, a systematic evaluation of their accuracy has not yet been performed. RESULTS Here, we evaluate the accuracy of FBA-based predictions of human and mouse gut bacterial interactions using growth data from the literature. For this, we collected 26 GEMs from the semi-curated AGORA database as well as four previously published curated GEMs. We tested the accuracy of three tools (COMETS, Microbiome Modeling Toolbox and MICOM) by comparing growth rates predicted in mono- and co-culture to growth rates extracted from the literature and also investigated the impact of different tool settings and media. We found that except for curated GEMs, predicted growth rates and their ratios (i.e. interaction strengths) do not correlate with growth rates and interaction strengths obtained from in vitro data. CONCLUSIONS Prediction of growth rates with FBA using semi-curated GEMs is currently not sufficiently accurate to predict interaction strengths reliably.
Collapse
Affiliation(s)
- Clémence Joseph
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium
| | - Haris Zafeiropoulos
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, 3001, Leuven, Belgium
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
43
|
Han S, Kim D, Kim Y, Yoon SH. Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 2024; 25:63. [PMID: 38229031 DOI: 10.1186/s12864-023-09940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.
Collapse
Affiliation(s)
- Sol Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
44
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
45
|
Ghadermazi P, Chan SHJ. Microbial interactions from a new perspective: reinforcement learning reveals new insights into microbiome evolution. Bioinformatics 2024; 40:btae003. [PMID: 38212999 PMCID: PMC10799744 DOI: 10.1093/bioinformatics/btae003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
MOTIVATION Microbes are essential part of all ecosystems, influencing material flow and shaping their surroundings. Metabolic modeling has been a useful tool and provided tremendous insights into microbial community metabolism. However, current methods based on flux balance analysis (FBA) usually fail to predict metabolic and regulatory strategies that lead to long-term survival and stability especially in heterogenous communities. RESULTS Here, we introduce a novel reinforcement learning algorithm, Self-Playing Microbes in Dynamic FBA, which treats microbial metabolism as a decision-making process, allowing individual microbial agents to evolve by learning and adapting metabolic strategies for enhanced long-term fitness. This algorithm predicts what microbial flux regulation policies will stabilize in the dynamic ecosystem of interest in the presence of other microbes with minimal reliance on predefined strategies. Throughout this article, we present several scenarios wherein our algorithm outperforms existing methods in reproducing outcomes, and we explore the biological significance of these predictions. AVAILABILITY AND IMPLEMENTATION The source code for this article is available at: https://github.com/chan-csu/SPAM-DFBA.
Collapse
Affiliation(s)
- Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80521, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80521, United States
| |
Collapse
|
46
|
Cerk K, Ugalde‐Salas P, Nedjad CG, Lecomte M, Muller C, Sherman DJ, Hildebrand F, Labarthe S, Frioux C. Community-scale models of microbiomes: Articulating metabolic modelling and metagenome sequencing. Microb Biotechnol 2024; 17:e14396. [PMID: 38243750 PMCID: PMC10832553 DOI: 10.1111/1751-7915.14396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genome-scale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third-generation sequencing, and we discuss the opportunities of long-read sequencing, strain-level characterisation and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.
Collapse
Affiliation(s)
- Klara Cerk
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Chabname Ghassemi Nedjad
- Inria, University of Bordeaux, INRAETalenceFrance
- University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Maxime Lecomte
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE STLO¸University of RennesRennesFrance
| | | | | | - Falk Hildebrand
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Simon Labarthe
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE, University of Bordeaux, BIOGECO, UMR 1202CestasFrance
| | | |
Collapse
|
47
|
Pan DT, Wang P, Wang XL, Sun YQ, Xiu ZL. Dynamic flux balance analysis of 1,3-propanediol production by clostridium butyricum fermentation. Biotechnol Prog 2024; 40:e3411. [PMID: 37985220 DOI: 10.1002/btpr.3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.
Collapse
Affiliation(s)
- Duo-Tao Pan
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, PR China
| | - Pan Wang
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, PR China
| | - Xiao-Li Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Ya-Qin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, PR China
| |
Collapse
|
48
|
Muñoz-Tamayo R, Davoudkhani M, Fakih I, Robles-Rodriguez CE, Rubino F, Creevey CJ, Forano E. Review: Towards the next-generation models of the rumen microbiome for enhancing predictive power and guiding sustainable production strategies. Animal 2023; 17 Suppl 5:100984. [PMID: 37821326 DOI: 10.1016/j.animal.2023.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation-based approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, the integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this paper, we aim to discuss the potential use of two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis approaches. We will discuss how these methods can be used to produce the next-generation models of the rumen microbiome.
Collapse
Affiliation(s)
- R Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France.
| | - M Davoudkhani
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - I Fakih
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | | | - F Rubino
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Northern Ireland, UK
| | - C J Creevey
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Northern Ireland, UK
| | - E Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| |
Collapse
|
49
|
Kaizu K, Takahashi K. Technologies for whole-cell modeling: Genome-wide reconstruction of a cell in silico. Dev Growth Differ 2023; 65:554-564. [PMID: 37856476 PMCID: PMC11520977 DOI: 10.1111/dgd.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
With advances in high-throughput, large-scale in vivo measurement and genome modification techniques at the single-nucleotide level, there is an increasing demand for the development of new technologies for the flexible design and control of cellular systems. Computer-aided design is a powerful tool to design new cells. Whole-cell modeling aims to integrate various cellular subsystems, determine their interactions and cooperative mechanisms, and predict comprehensive cellular behaviors by computational simulations on a genome-wide scale. It has been applied to prokaryotes, yeasts, and higher eukaryotic cells, and utilized in a wide range of applications, including production of valuable substances, drug discovery, and controlled differentiation. Whole-cell modeling, consisting of several thousand elements with diverse scales and properties, requires innovative model construction, simulation, and analysis techniques. Furthermore, whole-cell modeling has been extended to multiple scales, including high-resolution modeling at the single-nucleotide and single-amino acid levels and multicellular modeling of tissues and organs. This review presents an overview of the current state of whole-cell modeling, discusses the novel computational and experimental technologies driving it, and introduces further developments toward multihierarchical modeling on a whole-genome scale.
Collapse
|
50
|
Gotsmy M, Strobl F, Weiß F, Gruber P, Kraus B, Mairhofer J, Zanghellini J. Sulfate limitation increases specific plasmid DNA yield and productivity in E. coli fed-batch processes. Microb Cell Fact 2023; 22:242. [PMID: 38017439 PMCID: PMC10685491 DOI: 10.1186/s12934-023-02248-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.
Collapse
Affiliation(s)
- Mathias Gotsmy
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria
- Doctorate School of Chemistry, University of Vienna, Vienna, 1090, Austria
| | | | | | - Petra Gruber
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | - Barbara Kraus
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, 2304, Austria
| | | | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|