1
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
2
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
3
|
Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT. PIP 2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife 2018; 7:38689. [PMID: 30084828 PMCID: PMC6117155 DOI: 10.7554/elife.38689] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
We recently reported that the inward-rectifier Kir2.1 channel in brain capillary endothelial cells (cECs) plays a major role in neurovascular coupling (NVC) by mediating a neuronal activity-dependent, propagating vasodilatory (hyperpolarizing) signal. We further demonstrated that Kir2.1 activity is suppressed by depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2). Whether cECs express depolarizing channels that intersect with Kir2.1-mediated signaling remains unknown. Here, we report that Ca2+/Na+-permeable TRPV4 (transient receptor potential vanilloid 4) channels are expressed in cECs and are tonically inhibited by PIP2. We further demonstrate that depletion of PIP2 by agonists, including putative NVC mediators, that promote PIP2 hydrolysis by signaling through Gq-protein-coupled receptors (GqPCRs) caused simultaneous disinhibition of TRPV4 channels and suppression of Kir2.1 channels. These findings collectively support the concept that GqPCR activation functions as a molecular switch to favor capillary TRPV4 activity over Kir2.1 signaling, an observation with potentially profound significance for the control of cerebral blood flow. Capillaries form branching networks that surround all cells of the body. They allow oxygen and nutrient exchange between blood and tissue, but this is not their only role. Capillaries in the brain form a tight barrier that prevents components carried in the blood from easily reaching the brain compartment. They also detect the activity of neurons and trigger on-demand increases in blood flow to active regions of the brain. This role, revealed only recently, depends upon ion channels on the surface of the capillary cells. Active neurons release potassium ions, which open a type of ion channel called Kir2.1 that allows potassium inside the cell to flow out. This process is repeated in neighboring capillary cells until it reaches an upstream vessel, where it causes the vessel to relax and increase the blood flow. Kir2.1 channels sit astride the membranes of capillary cells, where they can interact with other membrane molecules. One such molecule, called PIP2, plays several roles in relaying signals from the outside to the inside of cells. It also physically interacts with channels in the membrane, including Kir2.1 channels. If PIP2 levels are low, Kir2.1 channel activity decreases. Here, Harraz et al. discovered that capillary cells contain another type of ion channel, called TRPV4, which is also regulated by PIP2. But unlike Kir2.1, its activity increases when PIP2 levels drop. Moreover, TRPV4 channels allow sodium and calcium ions to flow into the cell, which has an effect opposite to that of potassium flowing out of the cell. Capillary cells also have receptor proteins called GqPCRs that are activated by chemical signals released by active neurons in the brain. GqPCRs break down PIP2, so their activity turns Kir2.1 channels off and TRPV4 channels on. This resets the system so that it is ready to respond to new signals from active neurons. GqPCRs work as molecular switches to control the balance between Kir2.1 and TRPV4 channels and turn brain blood flow up and down. GqPCRs and ion channels that depend on PIP2 can also be found in other types of cells. These findings could reveal clues about how signals are switched on and off in different cells. Understanding the role of PIP2 in signaling could also unveil what happens when signaling go wrong.
Collapse
Affiliation(s)
- Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - David Hill-Eubanks
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States.,Institute of Cardiovascular Sciences, Manchester, United Kingdom
| |
Collapse
|
4
|
Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca 2+ explains unique gating regulation. eLife 2018; 7:36409. [PMID: 29745897 PMCID: PMC5976436 DOI: 10.7554/elife.36409] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable cation channel required for immune cell activation, insulin secretion, and body heat control. TRPM2 is activated by cytosolic Ca2+, phosphatidyl-inositol-4,5-bisphosphate and ADP ribose. Here, we present the ~3 Å resolution electron cryo-microscopic structure of TRPM2 from Nematostella vectensis, 63% similar in sequence to human TRPM2, in the Ca2+-bound closed state. Compared to other TRPM channels, TRPM2 exhibits unique structural features that correlate with its function. The pore is larger and more negatively charged, consistent with its high Ca2+ selectivity and larger conductance. The intracellular Ca2+ binding sites are connected to the pore and cytosol, explaining the unusual dependence of TRPM2 activity on intra- and extracellular Ca2+. In addition, the absence of a post-filter motif is likely the cause of the rapid inactivation of human TRPM2. Together, our cryo-EM and electrophysiology studies provide a molecular understanding of the unique gating mechanism of TRPM2.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Balázs Tóth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Andras Szollosi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Jue Chen
- Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
6
|
TREK-King the Blood–Brain-Barrier. J Neuroimmune Pharmacol 2014; 9:293-301. [DOI: 10.1007/s11481-014-9530-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
7
|
Abstract
TRPM4 is a Ca(2+)-activated nonselective cation channel. The channel is activated by an increase of intracellular Ca(2+) and is regulated by several factors including temperature and Pi(4,5)P2. TRPM4 allows Na(+) entry into the cell upon activation, but is completely impermeable to Ca(2+). Unlike TRPM5, its closest relative in the transient receptor potential family, TRPM4 proteins are widely expressed in the body. Currents with properties that are reminiscent of TRPM4 have been described in a variety of tissues since the advent of the patch clamp technology, but their physiological role is only beginning to be clarified with the increasing characterization of knockout mouse models for TRPM4. Furthermore, mutations in the TRPM4 gene have been associated with cardiac conduction disorders in human patients. This review aims to overview the currently available data on the functional properties of TRPM4 and the current understanding of its physiological role in healthy and diseased tissue.
Collapse
Affiliation(s)
- Ilka Mathar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Herestraat 49, bus 802, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Abriel H, Syam N, Sottas V, Amarouch MY, Rougier JS. TRPM4 channels in the cardiovascular system: Physiology, pathophysiology, and pharmacology. Biochem Pharmacol 2012; 84:873-81. [DOI: 10.1016/j.bcp.2012.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 12/11/2022]
|
9
|
The Ca2+-Activated Monovalent Cation-Selective Channels TRPM4 and TRPM5. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Becerra A, Echeverría C, Varela D, Sarmiento D, Armisén R, Nuñez-Villena F, Montecinos M, Simon F. Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 2011; 91:677-84. [PMID: 21565835 DOI: 10.1093/cvr/cvr135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS Endothelial dysfunction is decisive in the progression of cardiovascular diseases. Lipopolysaccharide (LPS)-induced reactive oxygen species (ROS)-mediated endothelial cell death is a main feature observed in inflammation secondary to endotoxaemia, emerging as a leading cause of death among critically ill patients in intensive care units. However, the molecular mechanism underlying LPS-induced endothelial cell death is not well understood. Transient receptor protein melastatin 4 (TRPM4) is an ion channel associated with cell death that is expressed in endothelium and modulated by ROS. Here, we investigate the role of TRPM4 in LPS-induced endothelial cell death, testing whether suppression of the expression of TRPM4 confers endothelial cell resistance to LPS challenge. METHODS AND RESULTS Using primary cultures of human umbilical vein endothelial cells (HUVEC), we demonstrate that TRPM4 is critically involved in LPS-induced endothelial cell death. HUVEC exposed to LPS results in Na(+)-dependent cell death. Pharmacological inhibition of TRPM4 with 9-phenanthrol or glibenclamide protects endothelium against LPS exposure for 48 h. Furthermore, TRPM4-like currents increase in cells pre-treated with LPS and inhibited with glibenclamide. Of note, suppression of TRPM4 expression by siRNA or suppression of its activity in a dominant negative mutant is effective in decreasing LPS-induced endothelial cell death when cells are exposed to LPS for 24-30 h. CONCLUSION TRPM4 is critically involved in LPS-induced endothelial cell death. These results demonstrate that either pharmacological inhibition of TRPM4, suppression of TRPM4 expression, or inhibition of TRPM4 activity are able to protect endothelium against LPS injury. These results are useful in sepsis drug design and development of new strategies for sepsis therapy.
Collapse
Affiliation(s)
- Alvaro Becerra
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Av. Republica 217, 8370146 Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guinamard R, Sallé L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:147-71. [PMID: 21290294 DOI: 10.1007/978-94-007-0265-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca(2+)-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca(2+) is a major regulator of their activity since both channels are activated by a rise in internal Ca(2+). Thus TRPM4 and TRPM5 are responsible for most of the Ca(2+)-activated non-selective cationic currents (NSC(Ca)) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Cœur et Ischémie, EA 3212, Université de Caen, Sciences D, F-14032, Caen Cedex, France,
| | | | | |
Collapse
|
12
|
Guinamard R, Demion M, Launay P. Physiological roles of the TRPM4 channel extracted from background currents. Physiology (Bethesda) 2010; 25:155-64. [PMID: 20551229 DOI: 10.1152/physiol.00004.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calcium-activated nonselective cationic currents have been known for 30 years, but their physiological implications have remained unresolved until the recent cloning of the TRPM4 ion channel. Since then, TRPM4 has been identified as a key modulator of numerous calcium-dependent mechanisms such as the immune response, insulin secretion, cerebral artery constriction, respiratory rhythm, and cardiac conduction.
Collapse
|
13
|
Tóth B, Csanády L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 2010; 285:30091-102. [PMID: 20650899 DOI: 10.1074/jbc.m109.066464] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel involved in physiological and pathophysiological processes linked to oxidative stress. TRPM2 channels are co-activated by intracellular Ca(2+) and ADP-ribose (ADPR) but also modulated in intact cells by several additional factors. Superfusion of TRPM2-expressing cells with H(2)O(2) or intracellular dialysis of cyclic ADPR (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP) activates, whereas dialysis of AMP inhibits, TRPM2 whole-cell currents. Additionally, H(2)O(2), cADPR, and NAADP enhance ADPR sensitivity of TRPM2 currents in intact cells. Because in whole-cell recordings the entire cellular machinery for nucleotide and Ca(2+) homeostasis is intact, modulators might affect TRPM2 activity either directly, by binding to TRPM2, or indirectly, by altering the local concentrations of the primary ligands ADPR and Ca(2+). To identify direct modulators of TRPM2, we have studied the effects of H(2)O(2), AMP, cADPR, NAADP, and nicotinic acid adenine dinucleotide in inside-out patches from Xenopus oocytes expressing human TRPM2, by directly exposing the cytosolic faces of the patches to these compounds. H(2)O(2) (1 mM) and enzymatically purified cADPR (10 μM) failed to activate, whereas AMP (200 μM) failed to inhibit TRPM2 currents. NAADP was a partial agonist (maximal efficacy, ∼50%), and nicotinic acid adenine dinucleotide was a full agonist, but both had very low affinities (K(0.5) = 104 and 35 μM). H(2)O(2), cADPR, and NAADP did not enhance activation by ADPR. Considering intracellular concentrations of these compounds, none of them are likely to directly affect the TRPM2 channel protein in a physiological context.
Collapse
Affiliation(s)
- Balázs Tóth
- Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary
| | | |
Collapse
|
14
|
Cloning and characterization of rat transient receptor potential-melastatin 4 (TRPM4). Biochem Biophys Res Commun 2009; 391:806-11. [PMID: 19945433 DOI: 10.1016/j.bbrc.2009.11.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/21/2022]
Abstract
Transient receptor potential-melastatin 4 (TRPM4) is a Ca(2+)-activated, but Ca(2+)-impermeable, cation channel. Increasing [Ca(2+)](i) induce current activation and reduction through TRPM4 channels. Several TRPM4 isoforms are expressed in mice and humans, but rat TRPM4 (rTRPM4) has not been previously identified. Here, we identified, cloned, and characterized two rTRPM4 isoforms, rTRPM4a and rTRPM4b, using 5'-RACE-PCR. rTRPM4b channel activity increased with [Ca(2+)](i) in a dose-dependent manner. However, the rTRPM4b Ca(2+)-dependent activity at negative potentials differed from that of human TRPM4b (hTRPM4b), even though both represent full-length proteins. Additionally, rTRPM4b showed a slightly different single-channel current amplitude and open time distribution than hTRPM4b. However, rTRPM4a, which lacks the N-terminal region of rTRPM4b, and hTRPM4a had no similar functional channel activities. Furthermore, we characterized splicing regions, tissue distribution, and cellular localization of these isoforms. Unlike rTRPM4a, rTRPM4b was localized to the membrane at high levels, suggesting that rTRPM4b is the functionally active channel.
Collapse
|
15
|
Gardam KE, Magoski NS. Regulation of cation channel voltage and Ca2+ dependence by multiple modulators. J Neurophysiol 2009; 102:259-71. [PMID: 19386758 DOI: 10.1152/jn.00065.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channel regulation is key to controlling neuronal excitability. However, the extent that modulators and gating factors interact to regulate channels is less clear. For Aplysia, a nonselective cation channel plays an essential role in reproduction by driving an afterdischarge in the bag cell neurons to elicit egg-laying hormone secretion. We examined the regulation of cation channel voltage and Ca2+ dependence by protein kinase C (PKC) and inositol trisphosphate (IP3)-two prominent afterdischarge signals. In excised, inside-out patches, the channel remained open longer and reopened more often with depolarization from -90 to +30 mV. As previously reported, PKC could closely associate with the channel and increase activity at -60 mV. We now show that, following the effects of PKC, voltage dependence was shifted to the left (essentially enhanced), particularly at more negative voltages. Conversely, the voltage dependence of channels lacking PKC was shifted to the right (essentially suppressed). Predictably, activity was increased at all Ca2+ concentrations following the effects of PKC; nevertheless, Ca2+ dependence was actually shifted to the right. Moreover, whereas IP3 did not alter activity at -60 mV, it drastically shifted Ca2+ dependence to the right-an outcome largely reversed by PKC. With respect to the afterdischarge, these data suggest PKC initially upregulates the channel by direct gating and shifting voltage dependence to the left. Subsequently, PKC and IP3 attenuate the channel by suppressing Ca2+ dependence. This ensures hormone delivery by allowing afterdischarge initiation and maintenance but also prevents interminable bursting. Similar regulatory interactions may be used by other neurons to achieve diverse outputs.
Collapse
Affiliation(s)
- Kate E Gardam
- Queen's University, Department of Physiology, 4th Floor, Botterell Hall, 18 Stuart St., Kingston, ON K7L 3N6, Canada
| | | |
Collapse
|
16
|
Millar ID, Wang S, Brown PD, Barrand MA, Hladky SB. Kv1 and Kir2 potassium channels are expressed in rat brain endothelial cells. Pflugers Arch 2007; 456:379-91. [DOI: 10.1007/s00424-007-0377-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022]
|
17
|
Silva HS, Kapela A, Tsoukias NM. A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol 2007; 293:C277-93. [PMID: 17459942 DOI: 10.1152/ajpcell.00542.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells (ECs) modulate smooth muscle cell (SMC) contractility, assisting in vascular tone regulation. Cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential ( Vm) play important roles in this process by controlling EC-dependent vasoactive signals and intercellular communication. The present mathematical model integrates plasmalemma electrophysiology and Ca2+ dynamics to investigate EC responses to different stimuli and the controversial relationship between [Ca2+]i and Vm. The model contains descriptions for the intracellular balance of major ionic species and the release of Ca2+ from intracellular stores. It also expands previous formulations by including more detailed transmembrane current descriptions. The model reproduces Vm responses to volume-regulated anion channel (VRAC) blockers and extracellular K+ concentration ([K+]o) challenges, predicting 1) that Vm changes upon VRAC blockade are [K+]o dependent and 2) a biphasic response of Vm to increasing [K+]o. Simulations of agonist-induced Ca2+ mobilization replicate experiments under control and Vm hyperpolarization blockade conditions. They show that peak [Ca2+]i is governed by store Ca2+ release while Ca2+ influx (and consequently Vm) impacts more the resting and plateau [Ca2+]i. The Vm sensitivity of rest and plateau [Ca2+]i is dictated by a [Ca2+]i “buffering” system capable of masking the Vm-dependent transmembrane Ca2+ influx. The model predicts plasma membrane Ca2+-ATPase and Ca2+ permeability as main players in this process. The heterogeneous Vm impact on [Ca2+]i may elucidate conflicting reports on how Vm influences EC Ca2+. The present study forms the basis for the development of multicellular EC-SMC models that can assist in understanding vascular autoregulation in health and disease.
Collapse
Affiliation(s)
- Haroldo S Silva
- Dept. of Biomedical Engineering, Florida International University, 10555 W. Flagler St., TEC 2674, Miami, FL 33174, USA
| | | | | |
Collapse
|
18
|
Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta Mol Basis Dis 2007; 1772:947-57. [PMID: 17446049 PMCID: PMC1986778 DOI: 10.1016/j.bbadis.2007.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 02/02/2023]
Abstract
Several pathways to neural cell death are involved in ischemic stroke, and all require monovalent or divalent cation influx, implicating non-selective cation (NC) channels. NC channels are also likely to be involved in the dysfunction of vascular endothelial cells that leads to formation of edema following cerebral ischemia. Two newly described NC channels have emerged as potential participants in ischemic stroke, the acid sensing ion channel (ASIC), and the sulfonylurea receptor-1 (SUR1)-regulated NC(Ca-ATP) channel. Non-specific blockers of NC channels, including pinokalant (LOE 908 MS) and rimonabant (SR141716A), have beneficial effects in rodent models of ischemic stroke. Evidence is accumulating that NC channels formed by members of the transient receptor potential (TRP) family are also up-regulated in ischemic stroke and may play a direct role in calcium-mediated neuronal death. The nascent field of NC channels, including TRP channels, in ischemic stroke is poised to provide novel mechanistic insights and therapeutic strategies for this often devastating human condition.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
19
|
Abstract
In the current review we will summarise data from the recent literature describing molecular and functional properties of TRPM4. Together with TRPM5, these channels are up till now the only molecular candidates for a class of non-selective, Ca(2+)-impermeable cation channels which are activated by elevated Ca2+ levels in the cytosol. Apart from intracellular Ca2+, TRPM4 activation is also dependent on membrane potential. Additionally, channel activity is modulated by ATP, phosphatidylinositol bisphosphate (PiP2), protein kinase C (PKC) phosphorylation and heat. The molecular determinants for channel activation, permeation and modulation are increasingly being clarified, and will be discussed here in detail. The physiological role of Ca(2+)-activated non-selective cation channels is unclear, especially in the absence of gene-specific knock-out mice, but evidence indicates a role as a regulator of membrane potential, and thus the driving force for Ca2+ entry from the extracellular medium.
Collapse
Affiliation(s)
- R Vennekens
- Laboratory of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium.
| | | |
Collapse
|
20
|
Lupinsky DA, Magoski NS. Ca2+-dependent regulation of a non-selective cation channel from Aplysia bag cell neurones. J Physiol 2006; 575:491-506. [PMID: 16763004 PMCID: PMC1819442 DOI: 10.1113/jphysiol.2006.105833] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-activated, non-selective cation channels feature prominently in the regulation of neuronal excitability, yet the mechanism of their Ca2+ activation is poorly defined. In the bag cell neurones of Aplysia californica, opening of a voltage-gated, non-selective cation channel initiates a long-lasting afterdischarge that induces egg-laying behaviour. The present study used single-channel recording to investigate Ca2+ activation in this cation channel. Perfusion of Ca2+ onto the cytoplasmic face of channels in excised, inside-out patches yielded a Ca2+ activation EC50 of 10 microm with a Hill coefficient of 0.66. Increasing Ca2+ from 100 nm to 10 microm caused an apparent hyperpolarizing shift in the open probability (Po) versus voltage curve. Beyond 10 microm Ca2+, additional changes in voltage dependence were not evident. Perfusion of Ba2+ onto the cytoplasmic face did not alter Po; moreover, in outside-out recordings, Po was decreased by replacing external Ca2+ with Ba2+ as a charge carrier, suggesting Ca2+ influx through the channel may provide positive feedback. The lack of Ba2+ sensitivity implicated calmodulin in Ca2+ activation. Consistent with this, the application to the cytoplasmic face of calmodulin antagonists, calmidazolium and calmodulin-binding domain, reduced Po, whereas exogenous calmodulin increased Po. Overall, the data indicated that the cation channel is activated by Ca2+ through closely associated calmodulin. Bag cell neurone intracellular Ca2+ rises markedly at the onset of the afterdischarge, which would enhance channel opening and promote bursting to elicit reproduction. Cation channels are essential to nervous system function in many organisms, and closely associated calmodulin may represent a widespread mechanism for their Ca2+ sensitivity.
Collapse
Affiliation(s)
- Derek A Lupinsky
- Department of Physiology, Queen's University, 4th Floor, Botterell Hall, 18 Stuart Street, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
21
|
Csanády L. Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios. Biophys J 2006; 90:3523-45. [PMID: 16461404 PMCID: PMC1440734 DOI: 10.1529/biophysj.105.075135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 01/12/2006] [Indexed: 11/18/2022] Open
Abstract
The distributions of log-likelihood ratios (DeltaLL) obtained from fitting ion-channel dwell-time distributions with nested pairs of gating models (Xi, full model; Xi(R), submodel) were studied both theoretically and using simulated data. When Xi is true, DeltaLL is asymptotically normally distributed with predictable mean and variance that increase linearly with data length (n). When Xi(R) is true and corresponds to a distinct point in full parameter space, DeltaLL is Gamma-distributed (2DeltaLL is chi-square). However, when data generated by an l-component multiexponential distribution are fitted by l+1 components, Xi(R) corresponds to an infinite set of points in parameter space. The distribution of DeltaLL is a mixture of two components, one identically zero, the other approximated by a Gamma-distribution. This empirical distribution of DeltaLL, assuming Xi(R), allows construction of a valid log-likelihood ratio test. The log-likelihood ratio test, the Akaike information criterion, and the Schwarz criterion all produce asymmetrical Type I and II errors and inefficiently recognize Xi, when true, from short datasets. A new decision strategy, which considers both the parameter estimates and DeltaLL, yields more symmetrical errors and a larger discrimination power for small n. These observations are explained by the distributions of DeltaLL when Xi or Xi(R) is true.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, and Neurochemical Group of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
22
|
Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 2005; 37:267-78. [PMID: 15670874 DOI: 10.1016/j.ceca.2004.11.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 10/29/2004] [Accepted: 11/03/2004] [Indexed: 11/26/2022]
Abstract
Non-selective cation (NSC) channels activated by intracellular Ca2+ ([Ca2+]i) play an important role in Ca2+ signaling and membrane excitability in many cell types. TRPM4 and TRPM5, two Ca2+-activated cation channels of the TRP superfamily, are potential molecular correlates of NSC channels. We compared the functional properties of mouse TRPM4 and TRPM5 heterologously expressed in HEK 293 cells. Dialyzing cells with different Ca2+ concentrations revealed a difference in Ca2+ sensitivity between TRPM4 and TRPM5, with EC50 values of 20.2+/-4.0 microM and 0.70+/-0.1 microM, respectively. Similarly, TRPM5 activated at lower Ca2+ concentration than TRPM4 when [Ca2+]i was raised by UV uncaging of the Ca2+-cage DMNP-EDTA. Current amplitudes of TRPM4 and TRPM5 were not correlated to the rate of changes in [Ca2+]i. The Ca2+ sensitivity of both channels was strongly reduced in inside-out patches, resulting in approximately 10-30 times higher EC50 values than under whole-cell conditions. Currents through TRPM4 and TRPM5 deactivated at negative and activated at positive potentials with similar kinetics. Both channels were equally sensitive to block by intracellular spermine. TRPM4 displayed a 10-fold higher affinity for block by flufenamic acid. Importantly, ATP4- blocked TRPM4 with high affinity (IC50 of 0.8+/-0.1 microM), whereas TRPM5 is insensitive to ATP4- at concentrations up to 1 mM.
Collapse
Affiliation(s)
- Nina D Ullrich
- Laboratorium voor Fysiologie, Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Csanády L, Adam-Vizi V. Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate. ACTA ACUST UNITED AC 2005; 123:743-57. [PMID: 15173222 PMCID: PMC2234573 DOI: 10.1085/jgp.200309008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation by cytosolic nucleotides of Ca2+- and ATP-sensitive nonselective cation channels (CA-NSCs) in rat brain capillary endothelial cells was studied in excised inside-out patches. Open probability (Po) was suppressed by cytosolic nucleotides with apparent KI values of 17, 9, and 2 μM for ATP, ADP, and AMP, as a consequence of high-affinity inhibition of channel opening rate and low-affinity stimulation of closing rate. Cytosolic [Ca2+] and voltage affected inhibition of Po, but not of opening rate, by ATP, suggesting that the conformation of the nucleotide binding site is influenced only by the state of the channel gate, not by that of the Ca2+ and voltage sensors. ATP inhibition was unaltered by channel rundown. Nucleotide structure affected inhibitory potency that was little sensitive to base substitutions, but was greatly diminished by 3′-5′ cyclization, removal of all phosphates, or complete omission of the base. In contrast, decavanadate potently (K1/2 = 90 nM) and robustly stimulated Po, and functionally competed with inhibitory nucleotides. From kinetic analyses we conclude that (a) ATP, ADP, and AMP bind to a common site; (b) inhibition by nucleotides occurs through simple reversible binding, as a consequence of tighter binding to the closed-channel relative to the open-channel conformation; (c) the conformation of the nucleotide binding site is not directly modulated by Ca2+ and voltage; (d) the differences in inhibitory potency of ATP, ADP, and AMP reflect their different affinities for the closed channel; and (e) though decavanadate is the only example found to date of a compound that stimulates Po with high affinity even in the presence of millimolar nucleotides, apparently by competing for the nucleotide binding site, a comparable mechanism might allow CA-NSC channels to open in living cells despite physiological levels of nucleotides. Decavanadate now provides a valuable tool for studying native CA-NSC channels and for screening cloned channels.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, and Neurochemical Group of the Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
24
|
Nilius B, Prenen J, Janssens A, Voets T, Droogmans G. Decavanadate modulates gating of TRPM4 cation channels. J Physiol 2004; 560:753-65. [PMID: 15331675 PMCID: PMC1665285 DOI: 10.1113/jphysiol.2004.070839] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have tested the effects of decavanadate (DV), a compound known to interfere with ATP binding in ATP-dependent transport proteins, on TRPM4, a Ca(2+)-activated, voltage-dependent monovalent cation channel, whose activity is potently blocked by intracellular ATP(4-). Application of micromolar Ca(2+) concentrations to the cytoplasmic side of inside-out patches led to immediate current activation followed by rapid current decay, which can be explained by an at least 30-fold decreased apparent affinity for Ca(2+). Subsequent application of DV (10 microm) strongly affected the voltage-dependent gating of the channel, resulting in large sustained currents over the voltage range between -180 and +140 mV. The effect of DV was half-maximal at a concentration of 1.9 microm. The Ca(2+)- and voltage-dependent gating of the channel was well described by a sequential kinetic scheme in which Ca(2+) binding precedes voltage-dependent gating. The effects of DV could be explained by an action on the voltage-dependent closing step. Surprisingly, DV did not antagonize the effect of ATP(4-) on TRPM4, but caused a nearly 10-fold increase in the sensitivity of the ATP(4-) block. TRPM5, which is the most homologous channel to TRPM4, was not modulated by DV. The effect of DV was lost in a TRPM4 chimera in which the C-terminus was substituted with that of TRPM5. Deletion of a cluster in the C-terminus of TRPM4 containing positively charged amino acid residues with a high homology to part of the decavanadate binding site in SERCA pumps, completely abolished the DV effect but also accelerated desensitization. Deletion of a similar site in the N-terminus had no effects on DV responses. These results indicate that the C-terminus of TRPM4 is critically involved in mediating the DV effects. In conclusion, decavanadate modulates TRPM4, but not TRPM5, by inhibiting voltage-dependent closure of the channel.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|