1
|
Quantitative Co-Localization and Pattern Analysis of Endo-Lysosomal Cargo in Subcellular Image Cytometry and Validation on Synthetic Image Sets. Methods Mol Biol 2017; 1594:93-128. [PMID: 28456978 DOI: 10.1007/978-1-4939-6934-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Late endosomes and lysosomes (LE/LYSs) play a central role in trafficking of endocytic cargo, secretion of exosomes, and hydrolysis of ingested proteins and lipids. Failure in such processes can lead to lysosomal storage disorders in which a particular metabolite accumulates within LE/LYSs. Analysis of endocytic trafficking relies heavily on quantitative fluorescence microscopy, but evaluation of the huge image data sets is challenging and demands computer-assisted statistical tools. Here, we describe how to use SpatTrack ( www.sdu.dk/bmb/spattrack ), an imaging toolbox, which we developed for quantification of the distribution and dynamics of endo-lysosomal cargo from fluorescence images of living cells. First, we explain how to analyze experimental images of endocytic processes in Niemann Pick C2 disease fibroblasts using SpatTrack. We demonstrate how to quantify the location of the sterol-binding protein NPC2 in LE/LYSs relative to cholesterol -rich lysosomal storage organelles (LSOs) stained with filipin. Second, we show how to simulate realistic vesicle patterns in the cell geometry using Markov Chain Monte Carlo and suitable inter-vesicle and cell-vesicle interaction potentials. Finally, we use such synthetic vesicle patterns as "ground truth" for validation of two-channel analysis tools in SpatTrack, revealing their high reliability. An improved version of SpatTrack for microscopy-based quantification of cargo transport through the endo-lysosomal system accompanies this protocol.
Collapse
|
2
|
Moolman MC, Kerssemakers JWJ, Dekker NH. Quantitative Analysis of Intracellular Fluorescent Foci in Live Bacteria. Biophys J 2016; 109:883-91. [PMID: 26331246 DOI: 10.1016/j.bpj.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Fluorescence microscopy has revolutionized in vivo cellular biology. Through the specific labeling of a protein of interest with a fluorescent protein, one is able to study movement and colocalization, and even count individual proteins in a live cell. Different algorithms exist to quantify the total intensity and position of a fluorescent focus. Although these algorithms have been rigorously studied for in vitro conditions, which are greatly different than the in-homogenous and variable cellular environments, their exact limits and applicability in the context of a live cell have not been thoroughly and systematically evaluated. In this study, we quantitatively characterize the influence of different background subtraction algorithms on several focus analysis algorithms. We use, to our knowledge, a novel approach to assess the sensitivity of the focus analysis algorithms to background removal, in which simulated and experimental data are combined to maintain full control over the sensitivity of a focus within a realistic background of cellular fluorescence. We demonstrate that the choice of algorithm and the corresponding error are dependent on both the brightness of the focus, and the cellular context. Expectedly, focus intensity estimation and localization accuracy suffer in all algorithms at low focus to background ratios, with the bacteroidal background subtraction in combination with the median excess algorithm, and the region of interest background subtraction in combination with a two-dimensional Gaussian fit algorithm, performing the best. We furthermore show that the choice of background subtraction algorithm is dependent on the expression level of the protein under investigation, and that the localization error is dependent on the distance of a focus from the bacterial edge and pole. Our results establish a set of guidelines for what signals can be analyzed to give a targeted spatial and intensity accuracy within a bacterial cell.
Collapse
Affiliation(s)
- M Charl Moolman
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D. SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells. Traffic 2014; 15:1406-29. [DOI: 10.1111/tra.12228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Frederik W. Lund
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
- Department of Biochemistry; Weill Medical College of Cornell University; York Ave. 1300 10065 NY USA
| | - Maria Louise V. Jensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Gitte K. Nielsen
- Department of Biomedicine; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
4
|
Llorente-Garcia I, Lenn T, Erhardt H, Harriman OL, Liu LN, Robson A, Chiu SW, Matthews S, Willis NJ, Bray CD, Lee SH, Shin JY, Bustamante C, Liphardt J, Friedrich T, Mullineaux CW, Leake MC. Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:811-24. [DOI: 10.1016/j.bbabio.2014.01.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 02/04/2023]
|
5
|
Liu J, Yang X, Wang K, Wang Q, Liu W, Wang D. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes. NANOSCALE 2013; 5:11257-11264. [PMID: 24089289 DOI: 10.1039/c3nr03291d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.
Collapse
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Jabeen A, Miranda-Sayago JM, Obara B, Spencer PS, Dealtry GB, Hayrabedyan S, Shaikly V, Laissue PP, Fernández N. Quantified colocalization reveals heterotypic histocompatibility class I antigen associations on trophoblast cell membranes: relevance for human pregnancy. Biol Reprod 2013; 89:94. [PMID: 24006284 DOI: 10.1095/biolreprod.113.111963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human placental syncytiotrophoblasts lack expression of most types of human leukocyte antigen (HLA) class I and class II molecules; this is thought to contribute to a successful pregnancy. However, the HLA class Ib antigens HLA-G, -E, and -F and the HLA class Ia antigen HLA-C are selectively expressed on extravillous trophoblast cells, and they are thought to play a major role in controlling feto-maternal tolerance. We have hypothesized that selective expression, coupled with the preferential physical association of pairs of HLA molecules, contribute to the function of HLA at the feto-maternal interface and the maternal recognition of the fetus. We have developed a unique analytical model that allows detection and quantification of the heterotypic physical associations of HLA class I molecules expressed on the membrane of human trophoblast choriocarcinoma cells, ACH-3P and JEG-3. Automated image analysis was used to estimate the degree of overlap of HLA molecules labeled with different fluorochromes. This approach yields an accurate measurement of the degree of colocalization. In both JEG-3 and ACH-3P cells, HLA-C, -E, and -G were detected on the cell membrane, while the expression of HLA-F was restricted to the cytoplasm. Progesterone treatment alone induced a significant increase in the expression level of the HLA-G/HLA-E association, suggesting that this heterotypic association is modulated by this hormone. Our data shows that the cell-surface HLA class I molecules HLA-G, -E, and -C colocalize with each other and have the potential to form preferential heterotypic associations.
Collapse
Affiliation(s)
- Asma Jabeen
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Deschout H, Martens T, Vercauteren D, Remaut K, Demeester J, De Smedt SC, Neyts K, Braeckmans K. Correlation of dual colour single particle trajectories for improved detection and analysis of interactions in living cells. Int J Mol Sci 2013; 14:16485-514. [PMID: 23965965 PMCID: PMC3759922 DOI: 10.3390/ijms140816485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 11/16/2022] Open
Abstract
Interactions between objects inside living cells are often investigated by looking for colocalization between fluorescence microscopy images that are recorded in separate colours corresponding to the fluorescent label of each object. The fundamental limitation of this approach in the case of dynamic objects is that coincidental colocalization cannot be distinguished from true interaction. Instead, correlation between motion trajectories obtained by dual colour single particle tracking provides a much stronger indication of interaction. However, frequently occurring phenomena in living cells, such as immobile phases or transient interactions, can limit the correlation to small parts of the trajectories. The method presented here, developed for the detection of interaction, is based on the correlation inside a window that is scanned along the trajectories, covering different subsets of the positions. This scanning window method was validated by simulations and, as an experimental proof of concept, it was applied to the investigation of the intracellular trafficking of polymeric gene complexes by endosomes in living retinal pigment epithelium cells, which is of interest to ocular gene therapy.
Collapse
Affiliation(s)
- Hendrik Deschout
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Thomas Martens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Dries Vercauteren
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
| | - Kristiaan Neyts
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
- Liquid Crystals and Photonics Group, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; E-Mail:
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium; E-Mails: (H.D.); (T.M.); (D.V.); (K.R.); (J.D.); (S.C.D.S.)
- Center for Nano- and Biophotonics, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|
8
|
Dupont A, Stirnnagel K, Lindemann D, Lamb D. Tracking image correlation: combining single-particle tracking and image correlation. Biophys J 2013; 104:2373-82. [PMID: 23746509 PMCID: PMC3672895 DOI: 10.1016/j.bpj.2013.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 11/28/2022] Open
Abstract
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle's position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments.
Collapse
Affiliation(s)
- A. Dupont
- Department of Chemistry, Center for NanoScience and Center for Integrated Protein Science Munich, Ludwig Maximilians Universität, Munich, Germany
| | - K. Stirnnagel
- Institute of Virology, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden-Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - D. Lindemann
- Institute of Virology, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden-Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - D.C. Lamb
- Department of Chemistry, Center for NanoScience and Center for Integrated Protein Science Munich, Ludwig Maximilians Universität, Munich, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
9
|
Obara B, Jabeen A, Fernandez N, Laissue PP. A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles. Histochem Cell Biol 2013; 139:391-402. [PMID: 23381680 DOI: 10.1007/s00418-012-1068-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Colocalisation, the overlap of subcellular structures labelled with different colours, is a key step to characterise cellular phenotypes. We have developed a novel bioimage informatics approach for quantifying colocalisation of round, blob-like structures in two-colour, highly resolved, three-dimensional fluorescence microscopy datasets. First, the algorithm identifies isotropic fluorescent particles, of relative brightness compared to their immediate neighbourhood, in three dimensions and for each colour. The centroids of these spots are then determined, and each object in one location of a colour image is checked for a corresponding object in the other colour image. Three-dimensional distance maps between the centroids of differently coloured spots then display where and how closely they colocalise, while histograms allow to analyse all colocalisation distances. We use the method to reveal sparse colocalisation of different human leukocyte antigen receptors in choriocarcinoma cells. It can also be applied to other isotropic subcellular structures such as vesicles, aggresomes and chloroplasts. The simple, robust and fast approach yields superresolved, object-based colocalisation maps and provides a first indication of protein-protein interactions of fluorescent, isotropic particles.
Collapse
Affiliation(s)
- Boguslaw Obara
- School of Engineering and Computing Sciences, University of Durham, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
10
|
Karakikes I, Morrison IEG, O'Toole P, Metodieva G, Navarrete CV, Gomez J, Miranda-Sayago JM, Cherry RJ, Metodiev M, Fernandez N. Interaction of HLA-DR and CD74 at the cell surface of antigen-presenting cells by single particle image analysis. FASEB J 2012; 26:4886-96. [PMID: 22889831 DOI: 10.1096/fj.12-211466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major histocompatibility complex (MHC) class II-associated antigen presentation involves an array of interacting molecules. CD74, the cell surface isoform of the MHC class II-associated invariant chain, is one such molecule; its role remains poorly defined. To address this, we have employed a high-resolution single-particle imaging method for quantifying the colocalization of CD74 with human leukocyte antigen (HLA)-DR molecules on human fibroblast cells known for their capacity to function as antigen-presenting cells. We have also examined whether the colocalization induces internalization of HLA-DR using HA(307-319), a "universal" peptide that binds specifically to the peptide-binding groove of all HLA-DR molecules, irrespective of their alleles. We have determined that 25 ± 1.3% of CD74 and 17 ± 0.3% of HLA-DR are colocalized, and the association of CD74 with HLA-DR and the internalization of HLA-DR are both inhibited by HA(307-319). A similar inhibition of HLA-DR internalization was observed in freshly isolated monocyte-derived dendritic cells. A key role of CD74 is to translocate HLA-DR molecules to early endosomes for reloading with peptides prior to recycling to the cell surface. We conclude that CD74 regulates the balance of peptide-occupied and peptide-free forms of MHC class II at the cell surface.
Collapse
Affiliation(s)
- Ioannis Karakikes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Motion analysis of live objects by super-resolution fluorescence microscopy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2011; 2012:859398. [PMID: 22162725 PMCID: PMC3227432 DOI: 10.1155/2012/859398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm, microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples are also introduced. The review is useful to people in the related field for easy referral of the state of the art.
Collapse
|
12
|
Shaikly V, Shakhawat A, Withey A, Morrison I, Taranissi M, Dealtry GB, Jabeen A, Cherry R, Fernández N. Cell bio-imaging reveals co-expression of HLA-G and HLA-E in human preimplantation embryos. Reprod Biomed Online 2010; 20:223-33. [PMID: 20113960 DOI: 10.1016/j.rbmo.2009.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/06/2009] [Accepted: 10/29/2009] [Indexed: 01/07/2023]
Abstract
The non-classical major histocompatibility complex (MHC) class Ib antigens, termed HLA-G and HLA-E, have been associated with fetal maternal tolerance. The role of HLA-G in the preimplantation embryo remains unclear although immunoprotection, adhesion and cell signalling mechanisms have been suggested. Unlike HLA-G, HLA-E protein expression has not been previously studied in preimplantation embryos. Embryos and model trophoblast cell lines JEG-3 and BeWo were labelled with the HLA-G- and HLA-E-specific monoclonal antibodies MEMG9 and MEME07. Flow cytometry, confocal microscopy and single particle fluorescence imaging techniques were employed to investigate the spatial and temporal expression of these receptors. Lipid raft analysis and adhesion assays were performed to investigate the role of these receptors in cell membrane domains and in promoting adhesion by cell-to-cell contact. HLA-E and HLA-G were co-localized in the trophectoderm of day 6 blastocysts. Analysis on trophoblast cell lines revealed that 37% of HLA-G and 41% of HLA-E receptors were co-localized as tetramers or higher order homodimer clusters. HLA-G receptors did not appear to play a role in either cell adhesion or immunoreceptor signalling via lipid raft platforms on the cell membrane. A possible role of HLA-G and HLA-E in implantation via immunoregulation or modulation of uterine maternal leukocytes is discussed.
Collapse
Affiliation(s)
- Valerie Shaikly
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO43SQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Measuring Colocalization by Dual Color Single Molecule Imaging. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-381266-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Shaikly VR, Morrison IEG, Taranissi M, Noble CV, Withey AD, Cherry RJ, Blois SM, Fernández N. Analysis of HLA-G in Maternal Plasma, Follicular Fluid, and Preimplantation Embryos Reveal an Asymmetric Pattern of Expression. THE JOURNAL OF IMMUNOLOGY 2008; 180:4330-7. [DOI: 10.4049/jimmunol.180.6.4330] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
|
16
|
Comeau JWD, Costantino S, Wiseman PW. A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 2006; 91:4611-22. [PMID: 17012312 PMCID: PMC1779921 DOI: 10.1529/biophysj.106.089441] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 09/01/2006] [Indexed: 11/18/2022] Open
Abstract
Biomolecular interactions are fundamental to the vast majority of cellular processes, and identification of the major interacting components is usually the first step toward an understanding of the mechanisms that govern various cell functions. Thus, statistical image analyses that can be performed on fluorescence microscopy images of fixed or live cells have been routinely applied for biophysical and cell biological studies. These approaches measure the fraction of interacting particles by analyzing dual color fluorescence images for colocalized pixels. Colocalization algorithms have proven to be effective, although the dynamic range and accuracy of these measurements has never been well established. Spatial image cross-correlation spectroscopy (ICCS), which cross-correlates spatial intensity fluctuations recorded in images from two detection channels simultaneously, has also recently been shown to be an effective measure of colocalization as well. Through simulations, imaging of fluorescent antibodies adsorbed on glass and cell measurements, we show that ICCS performs much better than standard colocalization algorithms at moderate to high densities of particles, which are often encountered in cellular systems. Furthermore, it was found that the density ratio between the two labeled species of interest plays a major role in the accuracy of the colocalization analysis. By applying a direct and systematic comparison between the standard, fluorescence microscopy colocalization algorithm and spatial ICCS, we show regimes where each approach is applicable, and more importantly, where they fail to yield accurate results.
Collapse
|
17
|
Zambricki E, Shigeoka A, Kishimoto H, Sprent J, Burakoff S, Carpenter C, Milford E, McKay D. Signaling T-cell survival and death by IL-2 and IL-15. Am J Transplant 2005; 5:2623-31. [PMID: 16212621 DOI: 10.1111/j.1600-6143.2005.01075.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin 2 (IL-2) and interleukin 15 (IL-15) bind to common T-cell surface receptors comprised of unique alpha (IL-2R alpha or IL-15R alpha) and shared beta/gamma chain subunits. Ligation of this receptor by IL-2 can lead to apoptosis whereas IL-15 ligation favors cell survival. Our study examined intra-cellular signaling events associated with IL-2- and IL-15-induced apoptosis and survival in human T cells. We found IL-2 and IL-15 could both induce apoptosis and survival; the outcome depended on cytokine concentration. No qualitative differences in Jak/Stat, Ras/MAPK or PI3K/AKT signaling were seen over a wide range of IL-2 and IL-15 concentrations. These findings suggest that, like T-cell receptor signaling, IL-2R beta/gamma chain signaling is regulated, or "tuned," by the concentration of cytokine.
Collapse
Affiliation(s)
- Elizabeth Zambricki
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Meier SM, Huebner H, Buchholz R. Single-cell-bioreactors as end of miniaturization approaches in biotechnology: progresses with characterised bioreactors and a glance into the future. Bioprocess Biosyst Eng 2005; 28:95-107. [PMID: 16096764 DOI: 10.1007/s00449-005-0003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 05/06/2005] [Indexed: 11/26/2022]
Abstract
Incidents with single cells and their genesis have not been the major focus of science up to now. This fact is supported by the difficulties one faces when wanting to monitor and cultivate small populations of cells in a defined compartment under controlled conditions, in vitro. Several approaches of up- and down-scaling have often led to poorly understood results which might be better elucidated by understanding the cellular genesis as a function of its microenvironment. This review of the approaches of scale-up and scale-down processes illustrates technical possibilities and shows up their limitations with regard to obtainable data for the characterisation of cellular genesis and impact of the cellular microenvironment. For example, stem cell research advances underline the lack of information about the impact of the microenvironment on cellular development. Finally, a proposal of future research efforts is given on how to overcome this lack of data via a novel bioreactor setup.
Collapse
Affiliation(s)
- Stephan Michael Meier
- Institute of Bioprocess Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | |
Collapse
|
19
|
Abstract
Current models for cellular plasma membranes focus on spatial heterogeneity and how this heterogeneity relates to cell function. In particular, putative lipid raft membrane domains have been postulated to exist based in large part on the results that a significant fraction of the membrane is detergent insoluble and that molecules facilitating key membrane processes like signal transduction are often found in the detergent-resistant membrane fraction. Yet, the in vivo existence of lipid rafts remains extremely controversial because, despite being sought for more than a decade, evidence for their presence in intact cell membranes is inconclusive. In this review, a variety of experimental techniques that have been or might be used to look for lipid microdomains in intact cell membranes are described. Experimental results are highlighted and the strengths and limitations of different techniques for microdomain identification and characterization are assessed.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
20
|
Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS, Kusumi A. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 2004; 88:2126-36. [PMID: 15596511 PMCID: PMC1305264 DOI: 10.1529/biophysj.104.048967] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction, binding, and colocalization of two or more molecules in living cells are essential aspects of many biological molecular processes, and single-molecule technologies for investigating these processes in live cells, if successfully developed, would become very powerful tools. Here, we developed simultaneous, dual-color, single fluorescent molecule colocalization imaging, to quantitatively detect the colocalization of two species of individual molecules. We first established a method for spatially correcting the two full images synchronously obtained in two different colors, and then for overlaying them with an accuracy of 13 nm. By further assessing the precision of the position determination, and the signal/noise and signal/background ratios, we found that two single molecules in dual color can be colocalized to within 64-100 nm (68-90% detectability) in the membrane of cells for GFP and Alexa633. The detectability of true colocalization at the molecular level and the erroneous inclusion of incidental approaches of two molecules as colocalization have to be compromised at different levels in each experiment, depending on its purpose. This technique was successfully demonstrated in living cells in culture, monitoring colocalization of single molecules of E-cadherin fused with GFP diffusing in the plasma membrane with single molecules of Alexa633 conjugated to anti-E-cadherin Fab externally added to the culture medium. This work established a benchmark for monitoring the colocalization of two single molecules, which can be applied to wide ranges of studies for molecular interactions, both at the levels of single molecules and collections of molecules.
Collapse
Affiliation(s)
- Ikuko Koyama-Honda
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization (ERATO/SORST), Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Lommerse PHM, Spaink HP, Schmidt T. In vivo plasma membrane organization: results of biophysical approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:119-31. [PMID: 15328044 DOI: 10.1016/j.bbamem.2004.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/29/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
In the last two decades, various biophysical techniques have been used to investigate the organization of the plasma membrane in live cells. This review describes some of the most important experimental findings and summarizes the characteristics and limitations of a few frequently used biophysical techniques. In addition, the current knowledge about three membrane organizational elements: the membrane-associated cytoskeleton, caveolae and lipid microdomains, is described in detail. Unresolved issues, experimental contradictions and future directions to integrate the variety of experimental data into a revised model of the plasma membrane of eukaryotic cells are discussed in the last section.
Collapse
Affiliation(s)
- P H M Lommerse
- Department of Biophysics, Leiden University, Niels Bohrweg 2, 2333 CA, The Netherlands
| | | | | |
Collapse
|