1
|
Wiese A, Gutsmann T, Seydel U. Review: Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharides (LPSs) play a dual role as inflammation-inducing and as membrane-forming molecules. The former role attracts significantly more attention from scientists, possibly because it is more closely related to sepsis and septic shock. This review aims to focus the reader's attention to the other role, the function of LPS as the major constituent of the outer layer of the outer membrane of Gram-negative bacteria, in particular those of enterobacterial strains. In this function, LPS is a necessary component of the cell envelope and guarantees survival of the bacterial organism. At the same time, it represents the first target for attacking molecules which may either be synthesized by the host's innate or adaptive immune system or administered to the human body. The interaction of these molecules with the outer membrane may not only directly cause the death of the bacterial organism, but may also lead to the release of LPS into the circulation. Here, we review membrane model systems and their application for the study of molecular mechanisms of interaction of peptides such as those of the human complement system, the bactericidal/permeability-increasing protein (BPI), cationic antibacterial peptide 18 kDa (CAP18) as an example of cathelicidins, defensins, and polymyxin B (PMB). Emphasis is on electrical measurements with a reconstitution system of the lipid matrix of the outer membrane which was established in the authors' laboratory as a planar asymmetric bilayer with one leaflet being composed solely of LPS and the other of the natural phospholipid mixture. The main conclusion, which can be drawn from these investigations, is that LPS and in general its negative charges are the dominant determinants for specific peptide—membrane interactions. However, the detailed mechanisms of interaction, which finally lead to bacterial killing, may involve further steps and differ for different antibacterial peptides.
Collapse
Affiliation(s)
- Andre Wiese
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Ulrich Seydel
- Division of Biophysics, Research Center Borstel, Borstel, Germany,
| |
Collapse
|
2
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
3
|
Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 2013; 182:64-70. [DOI: 10.1016/j.bpc.2013.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
4
|
Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom. FEBS Lett 2013; 588:35-40. [DOI: 10.1016/j.febslet.2013.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022]
|
5
|
Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 2008; 379:331-42. [PMID: 18440555 DOI: 10.1016/j.jmb.2008.03.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/21/2008] [Accepted: 03/21/2008] [Indexed: 11/27/2022]
Abstract
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the "membrane attack complex" (MAC). C8 contains three genetically distinct subunits (C8 alpha, C8 beta, C8 gamma) arranged as a disulfide-linked C8 alpha-gamma dimer that is noncovalently associated with C8 beta. C6, C7 C8 alpha, C8 beta, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8 gamma subunit is unrelated and belongs to the lipocalin family of proteins that display a beta-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8 alpha MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8 alpha MACPF domain disulfide-linked to C8 gamma (alphaMACPF-gamma) at 2.15 A resolution. The alphaMACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8 gamma. One is in a previously characterized 19-residue insertion (indel) in C8 alpha and fills the entrance to the putative C8 gamma ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8 gamma beta-barrel. The latter interaction induces conformational changes in alphaMACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X(6)-G-G in alphaMACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.
Collapse
Affiliation(s)
- Daniel J Slade
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
6
|
Okamoto K, Wang W, Rounds J, Chambers E, Jacobs DO. Sublytic complement attack increases intracellular sodium in rat skeletal muscle. J Surg Res 2000; 90:174-82. [PMID: 10792960 DOI: 10.1006/jsre.2000.5880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although excessive complement activation and deranged sodium homeostasis in skeletal muscle are characteristic in sepsis, their relationship has not been examined. This study was designed to determine if sublytic complement activation can directly mediate changes in myocellular sodium content. MATERIALS AND METHODS Fast-twitch extensor digitorum longus muscles were freshly isolated from infant rats. Unsensitized muscles were incubated at 30 degrees C for 60 min in the media containing 10% human or rat serum under conditions of no complement activation, activation by zymosan, inactivation by heat, C7 or C9 deficiency, selective inhibition of complement pathway, and inhibition of Na(+)-K(+) ATPase by ouabain. Intracellular sodium ([Na(+)](i)) and potassium ([K(+)](i)) contents of the muscles, myocellular ATP, and LDH release from the muscles were then determined. RESULTS Normal human serum significantly increased [Na(+)](i) and the [Na(+)](i)/[K(+)](i) ratio in the muscles as well as zymosan-activated serum. Heat inactivation, C7 deficiency, and inhibition of the alternative pathway completely abolished the cationic changes. Average LDH release was identical in all groups and less than 6%. Complement activation did not impair ouabain-sensitive Na(+)-K(+) ATPase activity in the muscles or alter myocellular ATP. Thus, the observed alterations are not likely due to dysfunction of Na(+)-K(+) pump or depletion of myocellular energy. Instead, alterations in [Na(+)](i) were dependent upon the amount of C9 added to C9-deficient serum, which suggests that the alterations are likely dependent on transmembrane pores created by membrane attack complexes (MAC). CONCLUSIONS Sublytic amounts of MAC formed as a result of complement activation can directly alter [Na(+)](i) in ex vivo skeletal muscle.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Complement C9/metabolism
- Complement Membrane Attack Complex/metabolism
- Complement Pathway, Alternative/drug effects
- Complement Pathway, Alternative/immunology
- Complement Pathway, Classical/drug effects
- Complement Pathway, Classical/immunology
- Enzyme Inhibitors/pharmacology
- L-Lactate Dehydrogenase/metabolism
- Male
- Muscle Fibers, Fast-Twitch/immunology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/immunology
- Organ Size
- Ouabain/pharmacology
- Potassium/metabolism
- Rats
- Rats, Wistar
- Sodium/metabolism
Collapse
Affiliation(s)
- K Okamoto
- Laboratories for Surgical Metabolism and Nutrition, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
7
|
Newsholme P, Ashford ML, Hales CN. Identification of a novel complement-dependent serum-elicited inward current in the Xenopus oocyte provoking Ca2+ influx and subsequent activation of Cl- channels. Biochem Pharmacol 1999; 57:491-501. [PMID: 9952312 DOI: 10.1016/s0006-2952(98)00311-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The membrane spanning complement channel is assumed to be a nonselective ion 'pore', although little evidence is available to support this hypothesis. In this paper we provide evidence that Ca2+ entry and Cl- exit occur rapidly after complement activation and precede the development of a long-lasting complement-dependent inward current. Addition of rabbit serum (a source of heterologous complement) and mouse anti-human insulin receptor antibody to a single Xenopus oocyte expressing human insulin receptor was shown to stimulate an initial hyperpolarising current followed by a sustained depolarising current. On voltage clamping the oocyte, a novel long-lasting inward current generated by serum addition was detected. Complement classical pathway-stimulated calcium influx into the oocyte was directly demonstrated using 45Ca influx measurements. In addition, we found that Ca2+ influx was required for the stimulation of the complement alternative pathway-dependent inward current. The novel conductance elicited by the classical pathway was outwardly rectifying, had a reversal potential of -35 +/- 8 mV (or -52 +/- 7 mV in the presence of chloride channel inhibitors), was inhibited by nifedipine, and was observed in the presence but not in the absence of the pore-forming complement component C9. As overactivation of complement does play a role in many inflammatory or autoimmune diseases, inhibition of early complement-mediated ion flux might restrict tissue damage and aid recovery from such diseases.
Collapse
Affiliation(s)
- P Newsholme
- Department of Biochemistry, University College Dublin, Ireland.
| | | | | |
Collapse
|
8
|
Park CC, Shin ML, Simard JM. The complement membrane attack complex and the bystander effect in cerebral vasospasm. Neurosurg Focus 1997. [DOI: 10.3171/foc.1997.3.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of complement results in formation of membrane attack complexes (MACs) that can insert themselves either into cells that initiate complement activation or into nearby (“innocent bystander”) cells. The MACs form large-conductance, nonspecific ion channels that can cause lytic or sublytic cell damage. The authors used a highly sensitive patch clamp technique to assess the contribution of the bystander effect to the pathophysiology of cerebral vasospasm. They compared the effect of complement activation by autologous aged versus fresh erythrocytes on the membrane conductance of freshly isolated rat cerebral artery smooth-muscle cells. In the presence of autologous serum, aged, but not fresh, erythrocytes caused a large increase in membrane conductance, an effect that was prevented by heat-inactivating the serum. Ethyleneglycol tetraacetic acid in the presence of Mg++ attenuated the effect, indicating that complement activation was taking place via the classic pathway. The effect was reproduced by zymosan-activated autologous serum, suggesting that such changes in conductance could result from insertion of MACs secondary to a bystander effect. Both C8- and C9-depleted heterologous sera produced minimal effects that were converted to full effect by addition of the missing complement component. Superoxide dismutase plus catalase did not attenuate the conductance changes produced by autologous serum plus aged erythrocytes. Autologous serum plus aged erythrocyte membrane ghosts that were free of lysate caused a typical increase in conductance. This study demonstrates that complement activation by aged erythrocytes can result in MAC insertion into innocent bystander smooth-muscle cell membranes and that this mechanism, heretofore undescribed, may contribute to development of vasospasm after subarachnoid hemorrhage.
Collapse
|
9
|
Park CC, Shin ML, Simard JM. The complement membrane attack complex and the bystander effect in cerebral vasospasm. J Neurosurg 1997; 87:294-300. [PMID: 9254096 DOI: 10.3171/jns.1997.87.2.0294] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of complement results in formation of membrane attack complexes (MACs) that can insert themselves either into cells that initiate complement activation or into nearby ("innocent bystander") cells. The MACs form large-conductance, nonspecific ion channels that can cause lytic or sublytic cell damage. The authors used a highly sensitive patch clamp technique to assess the contribution of the bystander effect to the pathophysiology of cerebral vasospasm. They compared the effect of complement activation by autologous aged versus fresh erythrocytes on the membrane conductance of freshly isolated rat cerebral artery smooth-muscle cells. In the presence of autologous serum aged, but not fresh, erythrocytes caused a large increase in membrane conductance, an effect that was prevented by heat-inactivating the serum. Ethyleneglycol tetraacetic acid in the presence of Mg++ attenuated the effect, indicating that complement activation was taking place via the classic pathway. The effect was reproduced by zymosan-activated autologous serum, suggesting that such changes in conductance could result from insertion of MACs secondary to a bystander effect. Both C8- and C9-depleted heterologous sera produced minimal effects that were converted to full effect by addition of the missing complement component. Superoxide dismutase plus catalase did not attenuate the conductance changes produced by autologous serum plus aged erythrocytes. Autologous serum plus aged erythrocyte membrane ghosts that were free of lysate caused a typical increase in conductance. This study demonstrates that complement activation by aged erythrocytes can result in MAC insertion into innocent bystander smooth-muscle cell membranes and that this mechanism, heretofore undescribed, may contribute to development of vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- C C Park
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
10
|
Gu X, Dankert JR. Isolation of the C9b fragment of human complement component C9 using urea in the absence of detergents. J Immunol Methods 1996; 189:37-45. [PMID: 8576578 DOI: 10.1016/0022-1759(95)00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bactericidal activity of the C5b-9 complex of complement is dependent upon the terminal complement component C9. The precursor C5b-8 complex is not harmful to bacterial cells until C9 is added to complete the C5b-9 complex. The C9 molecule can be proteolytically cleaved by thrombin to yield an intact, nicked molecule that remains fully functional when added to either bacterial cells or erythrocytes bearing pre-formed C5b-8 complexes. In investigating the membranolytic function of C9 in the C5b-9 complex, the carboxyl-terminal portion of the nicked molecule (C9b) has been shown to be membranolytic when added to erythrocytes, liposomes, or bacterial inner membranes in the absence of any other complement components. The isolation of C9b from nicked C9 has been accomplished by preparative gel electrophoresis using detergents, however the study of the activity of C9b in membrane systems may be complicated by the possible presence of residual detergent. To address this concern, we have used 4 M urea in conjunction with hydroxyapatite chromatography and a phosphate elution procedure to separate the domains of nicked C9. The isolated C9b domain, free of detergents and in the absence of any other complement components, was found to be membranolytic. C9b isolated in this manner was capable of lysing erythrocytes and inhibiting the growth of bacterial spheroplasts.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, University of Southwestern Louisiana, Lafayette 70504, USA
| | | |
Collapse
|
11
|
Marjan J, Xie Z, Devine DV. Liposome-induced activation of the classical complement pathway does not require immunoglobulin. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1192:35-44. [PMID: 8204648 DOI: 10.1016/0005-2736(94)90140-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the contribution of immunoglobulin to the liposome-induced activation of complement in human serum. Liposomes containing the negatively charged phospholipids cardiolipin, phosphatidylglycerol or phosphatidylinositol, in addition to phosphatidylcholine and cholesterol, were used to activate complement in a whole serum system. The contribution of immunoglobulin was studied by comparing normal human serum (NHS) to serum depleted of IgG and IgM (DDS). Using hemolytic assays of complement function, greater concentrations of phospholipids were required to activate complement in the absence of immunoglobulins. Activation of the classical pathway was confirmed using a C1q ELISA which showed that activation was dependent on the presence of C1q and confirmed that greater concentrations of phospholipids were required to activate complement in the absence of immunoglobulins. Complement activation was also assessed using crossed immunoelectrophoresis of C3 activation fragments. Using immunoblot analysis, iC3b was detected on the surface of liposomes exposed to NHS or DDS. These studies demonstrate that when liposomes, containing anionic phospholipids at an equivalent charge to cardiolipin 20 mol%, are exposed to immunoglobulin depleted serum they become opsonized by complement proteins.
Collapse
Affiliation(s)
- J Marjan
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
12
|
Abstract
The membrane attack complex of complement is formed by the molecular fusion of the five terminal complement proteins, C5, C6, C7, C8, and C9. While the assembly process on a target membrane and its modulation by restriction factors present on host cells is now quite well understood the molecular details of the architecture of the complex still need much further clarification. This is especially true for the interaction of the last acting protein C9, which provides the cytotoxic action of the complex, with the precursor C5b-8 complex. Because of this lack of structural details the molecular mechanisms that lead to complement-mediated cell death remain cryptic, however, it is hoped that recent advances in controlling the assembly process and in site-specific modification of the terminal complement proteins by recombinant DNA techniques should change this predicament quickly.
Collapse
Affiliation(s)
- A F Esser
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110
| |
Collapse
|
13
|
Newsholme P, Adogu AA, Soos MA, Hales CN. Complement-induced Ca2+ influx in cultured fibroblasts is decreased by the calcium-channel antagonist nifedipine or by some bivalent inorganic cations. Biochem J 1993; 295 ( Pt 3):773-9. [PMID: 8240291 PMCID: PMC1134628 DOI: 10.1042/bj2950773] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of different extracellular cations or organic Ca(2+)-channel modulators on complement-induced changes in intracellular Ca2+ and cell death have been investigated in the transfected NIH-3T3 HIR 3.5 cell line, which overexpresses the human insulin receptor. Cells were incubated with mouse anti-(human insulin receptor) monoclonal antibodies before exposure to rabbit or human serum (sources of heterologous complement). Changes in intracellular Ca2+ were complement-dependent (measured by influx of 45Ca), as was cytotoxicity (monitored by leakage of lactate dehydrogenase into the culture supernatant). Addition of a dihydropyridine Ca(2+)-channel antagonist (nifedipine) or some bivalent inorganic cations caused inhibition of 45Ca entry via a novel channel distinct from endogenous voltage-gated Ca2+ channels. Nifedipine decreased, but conversely the addition of a phenylalkylamine Ca(2+)-channel antagonist (verapamil) or the inorganic Ca2+ agonists Ba2+ and Sr+ increased, complement-induced cytotoxicity. These agents had no effect on cell viability at the studied concentrations, in the absence of complement. It is concluded that complement-induced cytotoxicity is mediated by Ca2+ influx through novel specific transmembrane channels which are sensitive to the Ca(2+)-channel antagonist nifedipine, but otherwise show little resemblance to L- or T-type voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- P Newsholme
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, U.K
| | | | | | | |
Collapse
|
14
|
Ferreira AM, Trecu T, Reisin I. Echinococcus granulosus: study of the in vitro complement activation by protoscoleces by measuring the electric potential difference across the tegumental membrane. Exp Parasitol 1992; 75:259-68. [PMID: 1426130 DOI: 10.1016/0014-4894(92)90211-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complement activation by protoscoleces of Echinococcus granulosus was studied by analyzing the damage to their tegumental membrane produced by incubation in both normal and hydatid human sera. The state of the apical tegumental membrane was evaluated by measuring the electric potential difference with microelectrodes. Protoscoleces incubated in Ringer-Hepes or in heat-decomplemented normal human serum in the presence or absence of specific antibodies did not show significant variations in the electric potential difference throughout the experiment (P > 0.4 in all cases) and their mean values were -46 +/- 3, -43 +/- 4, and -56 +/- 5 mV, respectively. In contrast the potential difference of protoscoleces incubated in 1:2 diluted normal human serum showed a significant variation (P < 0.001), reaching -10 +/- 6 mV after 30 min, and the median depolarization time was estimated to be 21 +/- 3 min. The capacity of normal human serum to depolarize the tegumental membrane of protoscoleces was abolished by treatment at 50 degrees C during 20 min or by 10-fold dilution. In addition, protoscoleces incubated in 1:10 diluted hydatid human serum plus 1:10 diluted normal human serum or Factor B-inactivated normal human serum showed a significantly faster depolarization (0.01 < P < 0.02 and P < 0.001, respectively): the potential difference reached -13 +/- 5 mV after 15 min and the median depolarization times were 9 +/- 5 and 5 +/- 3 min, respectively. Our results suggest that following the time course of the potential difference is a useful tool for studying complement activation in the host-parasite interface and they show that the tegumental membrane of protoscoleces can activate the alternative pathway of human complement.
Collapse
Affiliation(s)
- A M Ferreira
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Montevideo, Uruguay
| | | | | |
Collapse
|