1
|
Rodrigues M, Matsarskaia O, Rego P, Geraldes V, Connor LE, Oswald IDH, Sztucki M, Shalaev E. Freeze-Induced Phase Transition and Local Pressure in a Phospholipid/Water System: Novel Insights Were Obtained from a Time/Temperature Resolved Synchrotron X-ray Diffraction Study. Mol Pharm 2023; 20:5790-5799. [PMID: 37889088 PMCID: PMC10630958 DOI: 10.1021/acs.molpharmaceut.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure. DPPC can form several phases under elevated pressure, and therefore, the detection of a high-pressure DPPC phase during freezing would be indicative of a freeze-induced pressure increase. In this study, the phase behavior of DPPC/water suspensions, which also contain the ice nucleation agent silver iodide, is monitored by synchrotron small/wide-angle X-ray scattering during the freeze-thaw transition. Cooling the suspensions leads to heterogeneous ice nucleation at approximately -7 °C, followed by a phase transition of DPPC between -11 and -40 °C. In this temperature range, the initial gel phase of DPPC, Lβ', gradually converts to a second phase, tentatively identified as a high-pressure Gel III phase. The Lβ'-to-Gel III phase transition continues during an isothermal hold at -40 °C; a second (homogeneous) ice nucleation event of water confined in the interlamellar space is detected by differential scanning calorimetry (DSC) at the same temperature. The extent of the phase transition depends on the DPPC concentration, with a lower DPPC concentration (and therefore a higher ice fraction), resulting in a higher degree of Lβ'-to-Gel III conversion. By comparing the data from this study with the literature data on the pressure/temperature Lβ'/Gel III phase boundary and the lamellar lattice constant of the Lβ' phase, the freeze-induced pressure is estimated to be approximately 0.2-2.6 kbar. The study introduces DPPC as a probe to detect a pressure increase during freezing, therefore addressing the gap between a theoretical possibility of protein destabilization by freeze-induced pressure and the current lack of methods to detect freeze-induced pressure. In addition, the observation of a freeze-induced phase transition in a phospholipid can improve the mechanistic understanding of factors that could disrupt the structure of lipid-based biopharmaceuticals, such as liposomes and mRNA vaccines, during freezing and thawing.
Collapse
Affiliation(s)
- Miguel
A. Rodrigues
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Olga Matsarskaia
- Institut
Laue−Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Pedro Rego
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Vitor Geraldes
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Lauren E. Connor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- Collaborative
International Research Programme, University
of Strathclyde and Nanyang Technological University, Singapore, Technology
Innovation Centre, Glasgow G1 1RD, U.K.
| | - Iain D. H. Oswald
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Michael Sztucki
- European
Synchrotron Radiation Facility, Grenoble Cedex 9 38043, France
| | - Evgenyi Shalaev
- Abbvie Inc., 2525 Dupont Drive, Irvine, California 92612, United States
| |
Collapse
|
2
|
Johnson S, Hall C, Das S, Devireddy R. Freezing of Solute-Laden Aqueous Solutions: Kinetics of Crystallization and Heat- and Mass-Transfer-Limited Model. Bioengineering (Basel) 2022; 9:bioengineering9100540. [PMID: 36290508 PMCID: PMC9598362 DOI: 10.3390/bioengineering9100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Following an earlier study, we reexamined the latent heat of fusion during freezing at 5 K/min of twelve different pre-nucleated solute-laden aqueous solutions using a Differential Scanning Calorimeter (DSC) and correlated it with the amount of initially dissolved solids or solutes in the solution. In general, a decrease in DSC-measured heat release (in comparison to that of pure water, 335 mJ/mg) was observed with an increasing fraction of dissolved solids or solutes, as observed in the earlier study. In addition, the kinetics of ice crystallization was also obtained in three representative biological media by performing additional experiments at 1, 5 and 20 K/min. A model of ice crystallization based on the phase diagram of a water–NaCl binary solution and a modified Avrami-like model of kinetics was then developed and fit to the experimental data. Concurrently, a heat and mass transfer model of the freezing of a salt solution in a small container is also presented to account for the effect of the cooling rate as well as the solute concentration on the measured latent of freezing. This diffusion-based model of heat and mass transfer was non-dimensionalized, solved using a numerical scheme and compared with experimental results. The simulation results show that the heat and mass transfer model can predict (± 10%) the experimental results.
Collapse
|
3
|
de Jesús Valle MJ, Alves A, Coutinho P, Prata Ribeiro M, Maderuelo C, Sánchez Navarro A. Lyoprotective Effects of Mannitol and Lactose Compared to Sucrose and Trehalose: Sildenafil Citrate Liposomes as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13081164. [PMID: 34452127 PMCID: PMC8400243 DOI: 10.3390/pharmaceutics13081164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The lyoprotective effects of mannitol and lactose have been evaluated in the production of sildenafil citrate liposomes. Liposomes were prepared by mixing the components under ultrasonic agitation, followed by a transmembrane pH gradient for remote drug loading. Mannitol and lactose, as compared to sucrose and trehalose, were used as the stabilizing agents, and different freeze-drying cycles were assayed. The remaining moisture and the thermal characteristics of the lyophilized samples were analyzed. Size, entrapment efficiency, biocompatibility, and cell internalization of original and rehydrated liposomes were compared. The type of additive did not affect the biocompatibility or cell internalization, but did influence other liposome attributes, including the thermal characteristics and the remaining moisture of the lyophilized samples. A cut-off of 5% (w/w) remaining moisture was an indicator of primary drying completion-information useful for scaling up and transfer from laboratory to large-scale production. Lactose increased the glass transition temperature to over 70 °C, producing lyoprotective effects similar to those obtained with sucrose. Based on these results, formulations containing liposomes lyophilized with lactose meet the FDA's requirements and can be used as a biocompatible and biodegradable vehicle for the pulmonary delivery of therapeutic doses of sildenafil citrate.
Collapse
Affiliation(s)
- María José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
- Institute of Biomedical Research of the University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Andreía Alves
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maximiano Prata Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (A.A.); (P.C.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Cristina Maderuelo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.d.J.V.); (C.M.)
- Institute of Biomedical Research of the University of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-677584152
| |
Collapse
|
4
|
Wang Y, Grainger DW. Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments. Adv Drug Deliv Rev 2019; 151-152:56-71. [PMID: 30898571 DOI: 10.1016/j.addr.2019.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/16/2023]
Abstract
Given the successful entry of several liposomal drug products into market, and some with decades of clinical efficacy, liposomal drug delivery systems have proven capabilities to overcome certain limitations of traditional drug delivery, especially for toxic and biologic drugs. This experience has helped promote new liposomal approaches to emerging drug classes and current therapeutic challenges. All approved liposomal dosage forms are parenteral formulations, a pathway demonstrating greatest safety and efficacy to date. Due to the intrinsic instability of aqueous liposomal dispersions, lyophilization is commonly applied as an important solution to improve liposomal drug stability, and facilitate transportation, storage and improve product shelf-life. While lyophilization is a mature pharmaceutical technology, liposome-specific lyophilization platforms must be developed using particular lyophilization experience and strategies. This review provides an overview of liposome formulation-specific lyophilization approaches for parenteral use, excipients used exclusively in liposomal parenteral products, lyophilized liposome formulation design and process development, long-term storage, and current regulatory guidance for liposome drug products. Readers should capture a comprehensive understanding of formulation and process variables and strategies for developing parenterally administered liposomal drugs.
Collapse
|
5
|
Bhatnagar B, Zakharov B, Fisyuk A, Wen X, Karim F, Lee K, Seryotkin Y, Mogodi M, Fitch A, Boldyreva E, Kostyuchenko A, Shalaev E. Protein/Ice Interaction: High-Resolution Synchrotron X-ray Diffraction Differentiates Pharmaceutical Proteins from Lysozyme. J Phys Chem B 2019; 123:5690-5699. [DOI: 10.1021/acs.jpcb.9b02443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bakul Bhatnagar
- BTx PharmSci Pharmaceutical R&D, Pfizer, Inc., One Burtt Road, Andover 01810, Massachusetts, United States
| | - Boris Zakharov
- Boreskov Institute of Catalysis, Siberian Branch of the RAS, Lavrentieva Avenue, 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Alexander Fisyuk
- Laboratory of Organic Synthesis, Chemistry Department, Omsk F.M. Dostoevsky State University, Prospect Mira 55a, Omsk 644053, Russian Federation
- Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - Xin Wen
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles 90032, California, United States
| | - Fawziya Karim
- BTx PharmSci Pharmaceutical R&D, Pfizer, Inc., One Burtt Road, Andover 01810, Massachusetts, United States
| | - Kimberly Lee
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles 90032, California, United States
| | - Yurii Seryotkin
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Ac.Koptyuga Avenue 3, Novosibirsk 630090, Russian Federation
| | - Mashikoane Mogodi
- The European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38043, France
| | - Andy Fitch
- The European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38043, France
| | - Elena Boldyreva
- Boreskov Institute of Catalysis, Siberian Branch of the RAS, Lavrentieva Avenue, 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk 630090, Russia
| | - Anastasia Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Avenue, Omsk 644050, Russian Federation
| | - Evgenyi Shalaev
- Allergan Inc., Pharmaceutical Development, 2525 DuPont Dr, Irvine 92612, California, United States
| |
Collapse
|
6
|
Bacior M, Harańczyk H, Nowak P, Kijak P, Marzec M, Fitas J, Olech MA. Low-temperature immobilization of water in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Part I. Turgidosculum complicatulum. Colloids Surf B Biointerfaces 2019; 173:869-875. [PMID: 30551303 DOI: 10.1016/j.colsurfb.2018.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
The studies of low-temperature immobilization of bound water in Antarctic lichenized fungus Turgidosculum complicatulum were performed using 1H NMR and DSC over a wide range of thallus hydration. 1H NMR free induction decays were decomposed into a solid component well described by the Gaussian function and two exponentially decaying components coming from a tightly bound water and from a loosely bound water fraction. 1H NMR spectra revealed one averaged mobile proton signal component. 1H NMR measurements recorded in time and in frequency domain suggest the non-cooperative bound water immobilization in T. complicatulum thallus. The threshold of the hydration level estimated by 1H NMR analysis at which the cooperative bound water freezing was detected was Δm/m0 ≈ 0.39, whereas for DSC analysis was equal to Δm/m0 = 0.375. Main ice melting estimated from DSC measurements for zero hydration level of the sample starts at tm = -(19.29 ± 1.19)°C. However, DSC melting peak shows a composed form being a superposition of the main narrow peak (presumably melting of mycobiont areas) and a broad low-temperature shoulder (presumably melting of isolated photobiont cells). DSC traces recorded after two-hour incubation of T. complicatulum thallus at -20 °C suggest much lower threshold level of hydration at which the ice formation occurs (Δm/m0 = 0.0842). Presumably it is a result of diffusion induced migration of separated water molecules to ice microcrystallites already present in thallus, but still beyond the calorimeter resolution.
Collapse
Affiliation(s)
- M Bacior
- Department of Physics, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - H Harańczyk
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - P Nowak
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - P Kijak
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - M Marzec
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - J Fitas
- Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - M A Olech
- Institute of Botany, Jagiellonian University, ul. Kopernika 27, 31-501 Kraków, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Franzé S, Selmin F, Samaritani E, Minghetti P, Cilurzo F. Lyophilization of Liposomal Formulations: Still Necessary, Still Challenging. Pharmaceutics 2018; 10:E139. [PMID: 30154315 PMCID: PMC6161153 DOI: 10.3390/pharmaceutics10030139] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023] Open
Abstract
Nowadays, the freeze-drying of liposome dispersions is still necessary to provide a solid dosage form intended for different routes of administration (i.e., parenteral, oral, nasal and/or pulmonary). However, after decades of studies the optimization of process conditions remains still challenging since the freezing and the dehydration destabilize the vesicle organization with the concomitant drug leakage. Starting from the thermal properties of phospholipids, this work reviews the main formulation and process parameters which can guarantee a product with suitable characteristics and increase the efficiency of the manufacturing process. In particular, an overview of the cryo- and/or lyo-protective mechanisms of several excipients and the possible use of co-solvent mixtures is provided. Attention is also focused on the imaging methods recently proposed to characterize the appearance of freeze-dried products and liposome dispersions upon reconstitution. The combination of such data would allow a better knowledge of the factors causing inter-vials variability in the attempt to improve the quality of the final medicinal product.
Collapse
Affiliation(s)
- Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Elena Samaritani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| |
Collapse
|
8
|
Bound water behavior in Cetraria aculeata thalli during freezing. Polar Biol 2018. [DOI: 10.1007/s00300-017-2249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Affiliation(s)
- Osato Miyawaki
- Department of Food Science, Ishikawa Prefectural University
| |
Collapse
|
10
|
Natesan H, Bischof JC. Multiscale Thermal Property Measurements for Biomedical Applications. ACS Biomater Sci Eng 2017; 3:2669-2691. [PMID: 33418696 DOI: 10.1021/acsbiomaterials.6b00565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioheat transfer-based innovations in health care include applications such as focal treatments for cancer and cardiovascular disease and the preservation of tissues and organs for transplantation. In these applications, the ability to preserve or destroy a biomaterial is directly dependent on its temperature history. Thus, thermal measurement and modeling are necessary to either avoid or induce the injury required. In this review paper, we will first define and discuss thermal conductivity and calorimetric measurements of biomaterials in the cryogenic (<-40 °C), subzero (<0 °C), hypothermic (<37 °C), and hyperthermic (>37 °C) regimes. For thermal conductivity measurements, we review the use of 3ω and laser flash techniques for measurement of thermal conductivity in thin (1 μm-2 mm thick), anisotropic, and/or multilayered tissues. At the nanoscale, we review the use of pump-probe and scanning probe methods to measure thermal conductivity at short temporal scales (10 ps-100 ns) and spatial scales (1 nm-1 μm), particularly in the coating and surrounding medium around metallic nanoparticles (1 nm-20 nm). For calorimetric techniques, we review differential scanning calorimetry (DSC), which is intrinsically at the microscale (e.g., tissue pieces or millions of cells in media). DSC is used with large sample mass (∼3-100 mg) over wide temperature ranges (-180 to 750 °C) with low-temperature scanning rates (<750 °C/min). The need to assess smaller samples at higher rates has led to the development of nanocalorimetry on a silicon based membrane. Here the sample weight is as low as 10 ng, thereby allowing ultra-rapid heating rates (∼1 × 107 C/min). Finally, we discuss various opportunities that are driving the need for new micro- and nanoscale thermal measurements.
Collapse
Affiliation(s)
- Harishankar Natesan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Harańczyk H, Baran E, Nowak P, Florek-Wojciechowska M, Leja A, Zalitacz D, Strzałka K. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae. Cell Mol Biol Lett 2016; 20:717-35. [PMID: 26447484 DOI: 10.1515/cmble-2015-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022] Open
Abstract
This study applied 1H-NMR in time and in frequency domain measurements to monitor the changes that occur in bound water dynamics at decreased temperature and with increased hydration level in lyophilizates of native wheat photosynthetic lamellae and in photosynthetic lamellae reconstituted from lyophilizate. Proton relaxometry (measured as free induction decay = FID) distinguishes a Gaussian component S within the NMR signal (o). This comes from protons of the solid matrix of the lamellae and consists of (i) an exponentially decaying contribution L1 from mobile membrane protons, presumably from lipids, and from water that is tightly bound to the membrane surface and thus restricted in mobility; and (ii) an exponentially decaying component L2 from more mobile, loosely bound water pool. Both proton relaxometry data and proton spectroscopy show that dry lyophilizate incubated in dry air, i.e., at a relative humidity (p/p0) of 0% reveals a relatively high hydration level. The observed liquid signal most likely originates from mobile membrane protons and a tightly bound water fraction that is sealed in pores of dry lyophilizate and thus restricted in mobility. The estimations suggest that the amount of sealed water does not exceed the value characteristic for the main hydration shell of a phospholipid. Proton spectra collected for dry lyophilizate of photosynthetic lamellae show a continuous decrease in the liquid signal component without a distinct freezing transition when it is cooled down to -60ºC, which is significantly lower than the homogeneous ice nucleation temperature [Bronshteyn, V.L. et al. Biophys. J. 65 (1993) 1853].
Collapse
|
12
|
Tristram-Nagle S. Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid. Subcell Biochem 2015; 71:17-43. [PMID: 26438260 DOI: 10.1007/978-3-319-19060-0_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this chapter I begin with a historical perspective of membrane models, starting in the early twentieth century. As these membrane models evolved, so did experiments to characterize the structure and water content of purified lipid bilayers. The wide-spread use of the X-ray gravimetric, or Luzzati method, is critically discussed. The main motivation of the gravimetric technique is to determine the number of water molecules/lipid, n(W), and then derive other important structural quantities, such as area/lipid, A(L). Subsequent experiments from the Nagle/Tristram-Nagle laboratory using X-ray and neutron scattering, first determine A(L) and then calculate n(W), using molecular lipid V(L) and water V(W) volumes. This chapter describes the details of our volume experiments to carefully measure V(L). Our results also determine n(W)', the steric water associated with the lipid headgroup, and how our calculated value compares to many literature values of tightly-associated headgroup water.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Izutsu KI, Yomota C, Kawanishi T. Stabilization of Liposomes in Frozen Solutions Through Control of Osmotic Flow and Internal Solution Freezing by Trehalose. J Pharm Sci 2011; 100:2935-44. [DOI: 10.1002/jps.22518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/07/2010] [Accepted: 01/25/2011] [Indexed: 11/05/2022]
|
14
|
Huang L, Wan J, Huang W, Rayas-Duarte P, Liu G. Effects of glycerol on water properties and steaming performance of prefermented frozen dough. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Siow LF, Rades T, Lim MH. Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures. Cryobiology 2007; 55:210-21. [PMID: 17905224 DOI: 10.1016/j.cryobiol.2007.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/14/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Freezing behaviors of egg yolk l-alpha-phosphatidylcholine (EPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) large unilamellar vesicles (LUV) were quantitatively characterized in relation to freezing temperatures, cooling rates, holding time, presence of sodium chloride and phospholipid phase transition temperature. Cooling of the EPC LUV showed an abrupt increase in leakage of the encapsulated carboxyfluorescein (CF) between -5 degrees C and -10 degrees C, which corresponded with the temperatures of the extraliposomal ice formation at around -7 degrees C. For the DPPC LUV, CF leakage started at -10 degrees C, close to the temperature of the extraliposomal ice formation; followed by a subsequent rapid increase in leakage between -10 degrees C and -25 degrees C. Scanning electron microscopy showed that both of these LUV were freeze-concentrated and aggregated at sub-freezing temperatures. We suggest that the formation of the extraliposomal ice and the decrease of the unfrozen fraction causes freeze-injury and leakage of the CF. The degree of leakage, however, differs between EPC LUV and DPPC LUV that inherently vary in their phospholipid phase transition temperatures. With increasing holding time, the EPC LUV were observed to have higher leakage when they were held at -15 degrees C compared to at -30 degrees C whilst leakage of the DPPC LUV was higher when holding at -40 degrees C than at -15 degrees C and -50 degrees C. At slow cooling rates, osmotic pressure across the bilayers may cause an additional stress to the EPC LUV. The present work elucidates freeze-injury mechanisms of the phospholipid bilayers through the liposomal model membranes.
Collapse
Affiliation(s)
- Lee Fong Siow
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
16
|
Dynamics of water at membrane surfaces: Effect of headgroup structure. Biointerphases 2006; 1:98-105. [DOI: 10.1116/1.2354573] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Bach D, Miller IR. Hydration of phospholipid bilayers in the presence and absence of cholesterol. Chem Phys Lipids 2005; 136:67-72. [PMID: 15941564 DOI: 10.1016/j.chemphyslip.2005.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/29/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022]
Abstract
The number of water molecules bound (unfreezable) by a molecule of dipalmitoyl phosphatidylserine (DPPS) or by a molecule of dipalmitoyl phosphatidylcholine (DPPC) alone or in mixtures with cholesterol was determined by differential scanning calorimetry (DSC). When the phospholipids are in the gel state and in the absence of cholesterol, molecule of DPPS binds about 3.5 molecules of water and molecule of DPPC binds about 6 molecules of water. Number of water molecules bound increases when cholesterol crystallites are formed in the bilayer. For DPPS-cholesterol mixture at X(chol) -0.5, as well as for DPPC-cholesterol mixture at X(chol) -0.5 about 7 water molecules are bound.
Collapse
Affiliation(s)
- D Bach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
18
|
Kiselev MA, Gutberlet T, Lesieur P, Hauss T, Ollivon M, Neubert RHH. Properties of ternary phospholipid/dimethyl sulfoxide/water systems at low temperatures. Chem Phys Lipids 2005; 133:181-93. [PMID: 15642586 DOI: 10.1016/j.chemphyslip.2004.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 10/06/2004] [Accepted: 10/18/2004] [Indexed: 11/21/2022]
Abstract
X-ray diffraction, neutron diffraction and differential scanning calorimetry were used to investigate phase transitions in the ternary system phospholipid/dimethyl sulfoxide (DMSO)/water under cooling for three homologous phospholipids: dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). Below the temperature of ice formation from -40 to -113 degrees C, a new lamellar phase of DPPC and DSPC was found at and above a DMSO molar fraction of X(DMSO) = 0.05. Below X(DMSO) = 0.05 only a single dehydrated Lc-phase exists after ice formation. The new phase has an increased membrane repeat distance and coexists with a dehydrated Lc-phase. DPPC with a DMSO molar fraction of X(DMSO) = 0.07 shows a membrane repeat distance of the new phase of d = 6.61 +/- 0.03 nm. The value of d increases at the increase of X(DMSO). The new phase was not observed in the ternary system with DMPC. No correlation between the new phase and the glass transition of bound water in the intermembrane space was detected. The new phase was detected only in the systems with excess of water. The creation of the new phase demonstrates the specific DMSO interaction with hydrocarbon chains.
Collapse
Affiliation(s)
- M A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|
19
|
Kodama M, Kawasaki Y, Aoki H, Furukawa Y. Components and fractions for differently bound water molecules of dipalmitoylphosphatidylcholine–water system as studied by DSC and 2H-NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1667:56-66. [PMID: 15533306 DOI: 10.1016/j.bbamem.2004.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/24/2004] [Accepted: 08/31/2004] [Indexed: 11/16/2022]
Abstract
Differently bound water molecules of dipalmitoylphosphatidylcholine (DPPC)-H2O system were investigated with differential scanning calorimetry (DSC). According to a method previously reported by us, the ice-melting DSC curves of the DPPC-H2O samples of varying water contents were deconvoluted into multiple components, and the ice-melting enthalpies for the individual deconvoluted components were used to estimate average molar ice-melting enthalpies for freezable interlamellar and bulk waters, respectively. With these average molar ice-melting enthalpies, the numbers of differently bound water molecules of the DPPC-H2O system were calculated at varying water contents and were used to construct a water distribution diagram of this system. Furthermore, to evaluate the reliability of the present DSC deconvolution method, 2H-NMR T1 measurements of DPPC-2H2O system were carried out at 5 degrees C of the gel phase temperature, and components and fractions for differently bound water (2H2O) molecules were estimated from the analysis of nonexponential magnetization recovery curves.
Collapse
Affiliation(s)
- M Kodama
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan.
| | | | | | | |
Collapse
|
20
|
Milhaud J. New insights into water–phospholipid model membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:19-51. [PMID: 15157606 DOI: 10.1016/j.bbamem.2004.02.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 01/22/2004] [Accepted: 02/04/2004] [Indexed: 11/18/2022]
Abstract
Modulating the relative humidity (RH) of the ambient gas phase of a phospholipid/water sample for modifying the activity of phospholipid-sorbed water [humidity-controlled osmotic stress methods, J. Chem. Phys. 92 (1990) 4519 and J. Phys. Chem. 96 (1992) 446] has opened a new field of research of paramount importance. New types of phase transitions, occurring at specific values of this activity, have been then disclosed. Hence, it is become recognized that this activity, like the temperature T, is an intensive parameter of the thermodynamical state of these samples. This state can be therefore changed (phase transition) either, by modulating T at a given water activity (a given hydration level), or, by modulating the water activity, at a given T. The underlying mechanisms of these two types of transition differ, especially when they appear as disorderings of fatty chains. In lyotropic transitions, this disordering follows from two thermodynamical laws. First, acting on the activity (the chemical potential) of water external to a phospholipid/water sample, a transbilayer gradient of water chemical potential is created, leading to a transbilayer flux of water (Fick's law). Second, water molecules present within the hydrocarbon region of this phospholipid bilayer interact with phospholipid molecules through their chemical potential (Gibbs-Duhem relation): the conformational state of fatty chains (the thermodynamical state of the phospholipid molecules) changes. This process is slow, as revealed by osmotic stress time-resolved experiments. In thermal chain-melting transitions, the first rapid step is the disordering of fatty chains of a fraction of phospholipid molecules. It occurs a few degrees before the main transition temperature, T(m), during the pretransition and the sub-main transition. The second step, less rapid, is the redistribution of water molecules between the different parts of the sample, as revealed by T-jump time-resolved experiments. Finally, in lyotropic and thermal transitions, hydration and conformation are linked but the order of anteriority of their change, in each case, is probably not the same. In this review, first, the interactions of phospholipid submolecular fragments and water molecules, in the interfacial and hydrocarbon regions of phospholipid/water multibilayer stacks, will be described. Second, the coupling of the conformational states of phospholipid and water molecules, during thermal and lyotropic transitions, will be demonstrated through examples.
Collapse
Affiliation(s)
- Jeannine Milhaud
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire/Chimie et Spectroscopie Structurale Biomoléculaire (LPBC/CSSB), UMR CNRS 7033 (Box 138), Université Pierre et Marie Curie, 4 Place Jussieu 75252, Paris Cedex 05, France.
| |
Collapse
|
21
|
Kaasgaard T, Mouritsen OG, Jørgensen K. Freeze/thaw effects on lipid-bilayer vesicles investigated by differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:77-83. [PMID: 12948589 DOI: 10.1016/s0005-2736(03)00194-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Differential scanning calorimetry (DSC) has been used to study the effects of repeated freezing and thawing on dipalmitoylphosphatidylcholine (DPPC) vesicles. Aqueous suspensions of both multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) were cycled between -37 and 8 degrees C, and for each thawing event, the enthalpy of ice-melting was measured. In the case of MLVs, the enthalpy increased each time the vesicles were thawed until a steady state was attained. In contrast, the enthalpies measured for LUV suspensions were independent of the number of previous thawing events. It was concluded that MLVs in terms of freezing characteristics contain two pools of water, namely bulk water and interlamellar water. Interlamellar water does not freeze under the conditions employed in the present study, and the MLVs therefore experience freeze-induced dehydration, which is the reason for the observed increase in ice-melting enthalpy. Furthermore, the thermodynamic results suggest that the osmotic stress resulting from the freeze-induced dehydration changes the lamellarity of the MLVs.
Collapse
Affiliation(s)
- Thomas Kaasgaard
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
22
|
Harańczyk H, Grandjean J, Olech M, Michalik M. Freezing of water bound in lichen thallus as observed by 1H NMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(02)00150-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abstract
There is a growing awareness of the utility of lipid phase behavior data in studies of membrane-related phenomena. Such miscibility information is commonly reported in the form of temperature-composition (T-C) phase diagrams. The current index is a conduit to the relevant literature. It lists lipid phase diagrams, their components and conditions of measurement, and complete bibliographic information. The main focus of the index is on lipids of membrane origin where water is the dispersing medium. However, it also includes records on acylglycerols, fatty acids, cationic lipids, and detergent-containing systems. The miscibility of synthetic and natural lipids with other lipids, with water, and with biomolecules (proteins, nucleic acids, carbohydrates, etc.) and non-biological materials (drugs, anesthetics, organic solvents, etc.) is within the purview of the index. There are 2188 phase diagram records in the index, the bulk (81%) of which refers to binary (two-component) T-C phase diagrams. The remainder is made up of more complex (ternary, quaternary) systems, pressure-T phase diagrams, and other more exotic miscibility studies. The index covers the period from 1965 through to July, 2001.
Collapse
Affiliation(s)
- Rumiana Koynova
- Biochemistry, Biophysics, Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
24
|
Oliver AE, Hincha DK, Crowe JH. Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:515-25. [PMID: 11867277 DOI: 10.1016/s1095-6433(01)00514-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plants and animals that can survive dehydration accumulate high concentrations of disaccharides in their cells and tissues during desiccation. These sugars are necessary both for the depression of the membrane phase transition temperature of the dry lipid and for the formation of a carbohydrate glass. In the past decade, however, it has become clear that certain types of adventitious enzymatic reactions are possible at low water contents, which along with free-radical mediated damage, can cause hydrolysis of lipids and loss of membrane barrier function. Disaccharides do not necessarily prevent these types of reactions, which suggests that other compounds might also be necessary for protecting organisms from this type of degradation during anhydrobiosis. Arbutin, one possible example, accumulates in large quantities in certain resurrection plants and has been shown to inhibit phospholipase A(2) activity at low water contents. The direct effect of arbutin on membranes under stress conditions depends on the membrane lipid composition. It can serve a protective function during desiccation- or freeze/thaw-induced stress in the presence of nonbilayer-forming lipids or a disruptive function in their absence. Other possible amphiphiles, including certain naturally occurring flavonols, may serve as anti-oxidants and some might have similar lipid composition-dependent effects. Such compounds, therefore, are likely to be localized near specific membranes, where they might provide the greatest benefit at the least liability to the organism.
Collapse
Affiliation(s)
- Ann E Oliver
- Section of Molecular and Cellular Biology, University of California, CA, Davis, USA.
| | | | | |
Collapse
|
25
|
Utoh S. Nonfreezing water confined in water layer of multilamellar L-α, distearoyl phosphatidylcholine in temperature range between 0 °C and −190 °C. J Chem Phys 2001. [DOI: 10.1063/1.1371952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Abstract
The quantitative experimental uncertainty in the structure of fully hydrated, biologically relevant, fluid (L(alpha)) phase lipid bilayers has been too large to provide a firm base for applications or for comparison with simulations. Many structural methods are reviewed including modern liquid crystallography of lipid bilayers that deals with the fully developed undulation fluctuations that occur in the L(alpha) phase. These fluctuations degrade the higher order diffraction data in a way that, if unrecognized, leads to erroneous conclusions regarding bilayer structure. Diffraction measurements at high instrumental resolution provide a measure of these fluctuations. In addition to providing better structural determination, this opens a new window on interactions between bilayers, so the experimental determination of interbilayer interaction parameters is reviewed briefly. We introduce a new structural correction based on fluctuations that has not been included in any previous studies. Updated measurements, such as for the area compressibility modulus, are used to provide adjustments to many of the literature values of structural quantities. Since the gel (L(beta)') phase is valuable as a stepping stone for obtaining fluid phase results, a brief review is given of the lower temperature phases. The uncertainty in structural results for lipid bilayers is being reduced and best current values are provided for bilayers of five lipids.
Collapse
Affiliation(s)
- J F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
27
|
Abstract
Premelting at the surface of ice crystals is caused by factors such as temperature, radius of curvature, and solute composition. When polycrystalline ice samples are warmed from well below the equilibrium melting point, surface melting may begin at temperatures as low as -15 degrees C. However, it has been reported (Bronshteyn and Steponkus, 1993. Biophys. J. 65:1853-1865) that when polycrystalline ice was warmed in a differential scanning calorimetry (DSC) pan, melting began at about -50 degrees C, this extreme behavior being attributed to short-range forces. We show that there is no driving force for such premelting, and that for pure water samples in DSC pans curvature effects will cause premelting typically at just a few degrees below the equilibrium melting point. We also show that the rate of warming affects the slope of the DSC baseline and that this might be incorrectly interpreted as an endotherm. The work has consequences for DSC operators who use water as a standard in systems where subfreezing runs are important.
Collapse
Affiliation(s)
- P W Wilson
- Physiology Department, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
28
|
Shalaev EY, Steponkus PL. Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1419:229-47. [PMID: 10407074 DOI: 10.1016/s0005-2736(99)00068-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing <9 wt% water. The L(c) phase was observed in samples with a water content of 2-6 wt% that were annealed at 0 degrees C for 2 or more days. The L(c) phase melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of <0.5 wt%. The phase diagram, which includes five lipid phases and two water phases (ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram.
Collapse
Affiliation(s)
- E Y Shalaev
- Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
29
|
Devireddy RV, Raha D, Bischof JC. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 1998; 36:124-55. [PMID: 9527874 DOI: 10.1006/cryo.1997.2071] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new technique using a differential scanning calorimeter (DSC) was developed to obtain dynamic and quantitative water transport data in cell suspensions during freezing. The model system investigated was a nonattached spherical lymphocyte (Epstein-Barr virus transformed, EBVT) human cell line. Data from the technique show that the initial heat release of a prenucleated sample containing osmotically active cells in media is greater than the final heat release of an identical sample of osmotically inactive or lysed cells in media. The total integrated magnitude of this difference, Deltaqdsc, was found to be proportional to the cytocrit and hence also to the supercooled water volume in the sample. Further, the normalized fractional integrated heat release difference as a function of temperature, Deltaq(T)dsc/Deltaqdsc, was shown to correlate with the amount of supercooled cellular water which had exosmosed from the cell as a function of subzero temperature at constant cooling rates of 5, 10, and 20 degrees C/min. Several important limitations of the technique are (1) that it requires a priori knowledge of geometric parameters such as the surface area, initial volume, and osmotically inactive cell volume and (2) that the technique alone cannot determine whether the heat released from supercooled cellular water is due to dehydration or intracellular ice formation. Cryomicroscopy was used to address these limitations. The initial cell volume and surface area were obtained directly whereas a Boyle-van't Hoff (BVH) plot was constructed to obtain the osmotically inactive cell volume Vb. Curve fitting the BVH data assuming linear osmometric behavior yielded Vb = 0.258V0; however, nonlinearity in the data suggests that the EBVT lymphocyte cells are not "ideal osmometers" at low subzero temperatures and created some uncertainty in the actual value of Vb. Cryomicroscopy further confirmed that dehydration was the predominant biophysical response of the cells over the range of cooling rates investigated. One notable exception occurred at a rate of 20 degrees C/min where evidence for intracellular ice formation due to a DSC measured heat release between -30 and -34 degrees C correlated with a higher end volume but no darkening of the cells during cryomicroscopy. For the cooling rate tested (5 degrees C/min) the cryomicroscopy data correlated statistically very well with the DSC water transport data. A model of water transport was fit to the DSC water transport data and the average (5, 10, and 20 degrees C/min) biophysical parameters for the EBVT lymphocytes were found to be Lpg = 0.10 micro m/min-atm, ELp = 15.5 kcal/mol. Finally, the decrease in heat release from osmotically active cells measured by the DSC during repetitive freezing and thawing was found to correlate strongly with the viability of the cells measured during identical freeze/thaw protocols with cryomicroscopy. This shows the additional ability of the technique to assess freeze/thaw injury. In summary, this DSC technique is a promising new approach for measuring water transport in cellular systems during freezing.
Collapse
Affiliation(s)
- R V Devireddy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A
| | | | | |
Collapse
|
30
|
Ishikawa E, Seoung-Kwon B, Miyawaki O, Nakamura K, Shiinoki Y, Ito K. Freezing injury of cultured rice cells analyzed by dielectric measurement. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)80983-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Hsieh CH, Wu WG. Structure and dynamics of primary hydration shell of phosphatidylcholine bilayers at subzero temperatures. Biophys J 1996; 71:3278-87. [PMID: 8968597 PMCID: PMC1233815 DOI: 10.1016/s0006-3495(96)79520-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deuterium NMR relaxation and intensity measurements of the 2H-labeled H2O/dimyristoyl phosphatidylcholine bilayer were performed to understand the molecular origin of the freezing event of phospholipid headgroup and the structure and dynamics of unfrozen water molecules in the interbilayer space at subzero temperatures. The results suggest that about one to two water molecules associated with the phosphate group freeze during the freezing event of phospholipid headgroups, whereas about five to six waters near the trimethylammonium group behave as a water cluster and remain unfrozen at temperatures as low as -70 degrees C. In addition, temperature-dependent T1 and T2 relaxation times suggest that dynamic coupling occurs not only between the phosphate group and its bound water, but also between the methyl group and the adjacent water molecules. Based on these observations, the primary hydration shell of phosphatidylcholine headgroup at subzero temperatures is suggested to consist of two distinct regions: a clathrate-like water cluster, most likely a water pentamer, near the hydrophobic methyl group, and hydration water molecules associated with the phosphate group.
Collapse
Affiliation(s)
- C H Hsieh
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
32
|
Webb MS, Irving TC, Steponkus PL. Effects of plant sterols on the hydration and phase behavior of DOPE/DOPC mixtures. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1239:226-38. [PMID: 7488628 DOI: 10.1016/0005-2736(95)00147-u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Freeze-induced injury of protoplasts of non-acclimated rye and oat is associated with the formation of the inverted hexagonal (HII) phase in regions where the plasma membrane and various endomembranes are brought into close apposition as a result of freeze-induced dehydration. The influence of lipid composition and hydration on the propensity of mixtures of DOPE:DOPC containing either sterols or acylated steryl glucosides to form the HII phase was determined by DSC, freeze-fracture electron microscopy and X-ray diffraction. The addition of plant sterols to a mixture of DOPE/DOPC (either 1:1:1 or 1:1:2 mole ratio of DOPE/DOPC/sterols) reduced the total hydration of the mixture (expressed as wt% water) after desorption over a range of osmotic pressures of 2.8 to 286 MPa. However, most or all of the water remaining in the dehydrated lipid mixtures was associated predominantly with the phospholipids. Both sterols and acylated steryl glucosides significantly promoted both the dehydration-induced and thermally induced L alpha-->HII phase transitions in DOPE/DOPC mixtures however, acylated steryl glucosides were much more effective. In mixtures containing plant sterols, the HII phase occurred after dehydration at 20 MPa (20 degrees C), which resulted in a water content of 11.7 wt%. In contrast, mixtures containing acylated steryl glucosides were in the HII phase in excess water, i.e., they did not require dehydration to effect the L alpha-->HII phase transition. The results indicate that genotypic differences in the lipid composition of the plasma membrane of rye and oat leaves have a significant influence on the propensity for formation of the HII phase during freeze-induced dehydration.
Collapse
Affiliation(s)
- M S Webb
- Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Hsieh CH, Wu WG. Three distinct types of unfrozen water in fully hydrated phospholipid bilayers: a combined 2H- and 31P-NMR study. Chem Phys Lipids 1995. [DOI: 10.1016/0009-3084(95)02481-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Hsieh CH, Wu WG. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures. Biophys J 1995; 69:4-12. [PMID: 7669908 PMCID: PMC1236219 DOI: 10.1016/s0006-3495(95)79885-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The packing and dynamics of lipid bilayers at the phosphocholine headgroup region within the temperature range of -40 to -110 degrees C have been investigated by solid-state nuclear magnetic resonance (NMR) measurements of selectively deuterium-labeled H2O/dimyristoylphosphatidylcholine (DMPC) bilayers. Two coexisting signals with 2H NMR quadrupolar, splittings of 36.1 and 9.3 (or smaller) kHz were detected from the -CD3 of choline methyl group. These two signals have been assigned to two coexisting gel-state headgroup structures with fast rotational motion of -CD3 and -N(CD3)3 group, respectively, with a threefold symmetry. The largest quadrupolar splitting of the NMR signal detected from the -CD2 of C alpha and C beta methylene segment was found to be 115.2 kHz, which is 10% lower than its static value of 128.2 kHz. Thus, there are extensive motions of the entire choline group of gel-state phosphatidylcholine bilayers even at a subzero temperature of -110 degrees C. These results strongly support the previous suggestion (E. J. Dufourc, C. Mayer, J. Stohrer, G. Althoff, and G. Kothe, 1992, Biophys. J. 61:42-57) that 31P chemical shift tensor elements of DMPC determined under similar conditions are not the rigid static values. The free energy difference between the two gel-state headgroup structures was determined to be 26.3 +/- 0.9 kJ/mol for fully hydrated bilayers. Furthermore, two structures with similar free energy difference were also detected for "frozen" phosphorylcholine chloride solution in a control experiment, leading to the conclusion that the two structures may be governed solely by the energetics of fully hydrated phosphocholine headgroup. The intermolecular interactions among lipids, however, stabilize the static headgroup structure as evidenced by the apparently lower free energy difference between the two structures for partially hydrated lipid bilayers. Evidence is also presented to suggest that one of the headgroup structures with trimethylammonium group rotation, which is not compatible with the static headgroup structure in crystals, is due to the dielectric relaxation of the slowly reorienting inter bilayer water molecules near the physical edge of membrane surface. Finally, a molecular model of the hydration-induced conformational changes at the torsion angle a5 of the O-C-CN+ bond is proposed to explain the two detected coexisting headgroup structures. These results emphasize the important role of the trimethylammonium group in monitoring the structure and dynamics of the lipid headgroup.
Collapse
Affiliation(s)
- C H Hsieh
- Institute of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|