1
|
Shoff T, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Determination of Trends Underlying Aspartic Acid Isomerization in Intact Proteins Reveals Unusually Rapid Isomerization of Tau. ACS Chem Neurosci 2025; 16:673-686. [PMID: 39881547 PMCID: PMC11843600 DOI: 10.1021/acschemneuro.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at day 0, isomerization increased over time and was quantifiable for 105 proteins by day 50. Data analysis revealed that the isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our data set, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas
A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Shoff TA, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Unusually Rapid Isomerization of Aspartic Acid in Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626870. [PMID: 39677806 PMCID: PMC11643016 DOI: 10.1101/2024.12.04.626870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at Day 0, isomerization increased across time and was quantifiable for 105 proteins by Day 50. Data analysis revealed that isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our dataset, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Butalewicz JP, Sipe SN, Juetten KJ, James VK, Kim K, Zhang YJ, Meek TD, Brodbelt JS. Insights into the Main Protease of SARS-CoV-2: Thermodynamic Analysis, Structural Characterization, and the Impact of Inhibitors. Anal Chem 2024; 96:15898-15906. [PMID: 39319663 PMCID: PMC11499983 DOI: 10.1021/acs.analchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for coronaviral maturation and is the target of Paxlovid, which is currently the standard-of-care treatment for COVID-19. There remains a need to identify new inhibitors of Mpro as viral resistance to Paxlovid emerges. Here, we report the use of native mass spectrometry coupled with 193 nm ultraviolet photodissociation (UVPD) and integrated with other biophysical tools to structurally characterize Mpro and its interactions with potential covalent inhibitors. The overall energy landscape was obtained using variable temperature nanoelectrospray ionization (vT-nESI), thus providing quantitative evaluation of inhibitor binding on the stability of Mpro. Thermodynamic parameters extracted from van't Hoff plots revealed that the dimeric complexes containing each inhibitor showed enhanced stability through increased melting temperatures as well as overall lower average charge states, giving insight into the basis for inhibition mechanisms.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kangsan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Nasim F, Kumar MS, Alvala M, Qureshi IA. Unraveling the peculiarities and development of novel inhibitors of leishmanial arginyl-tRNA synthetase. FEBS J 2024; 291:2955-2979. [PMID: 38525644 DOI: 10.1111/febs.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aminoacylation by tRNA synthetase is a crucial part of protein synthesis and is widely recognized as a therapeutic target for drug development. Unlike the arginyl-tRNA synthetases (ArgRSs) reported previously, here, we report an ArgRS of Leishmania donovani (LdArgRS) that can follow the canonical two-step aminoacylation process. Since a previously uncharacterized insertion region is present within its catalytic domain, we implemented the splicing by overlap extension PCR (SOE-PCR) method to create a deletion mutant (ΔIns-LdArgRS) devoid of this region to investigate its function. Notably, the purified LdArgRS and ΔIns-LdArgRS exhibited different oligomeric states along with variations in their enzymatic activity. The full-length protein showed better catalytic efficiency than ΔIns-LdArgRS, and the insertion region was identified as the tRNA binding domain. In addition, a benzothiazolo-coumarin derivative (Comp-7j) possessing high pharmacokinetic properties was recognized as a competitive and more specific inhibitor of LdArgRS than its human counterpart. Removal of the insertion region altered the mode of inhibition for ΔIns-LdArgRS and caused a reduction in the inhibitor's binding affinity. Both purified proteins depicted variances in the secondary structural content upon ligand binding and thus, thermostability. Apart from the trypanosomatid-specific insertion and Rossmann fold motif, LdArgRS revealed typical structural characteristics of ArgRSs, and Comp-7j was found to bind within the ATP binding pocket. Furthermore, the placement of tRNAArg near the insertion region enhanced the stability and compactness of LdArgRS compared to other ligands. This study thus reports a unique ArgRS with respect to catalytic as well as structural properties, which can be considered a plausible drug target for the derivation of novel anti-leishmanial agents.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Salmas R, Harris MJ, Borysik AJ. Mapping HDX-MS Data to Protein Conformations through Training Ensemble-Based Models. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1989-1997. [PMID: 37550799 PMCID: PMC10485923 DOI: 10.1021/jasms.3c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
An original approach that adopts machine learning inference to predict protein structural information using hydrogen-deuterium exchange mass spectrometry (HDX-MS) is described. The method exploits an in-house optimization program that increases the resolution of HDX-MS data from peptides to amino acids. A system is trained using Gradient Tree Boosting as a type of machine learning ensemble technique to assign a protein secondary structure. Using limited training data we generate a discriminative model that uses optimized HDX-MS data to predict protein secondary structure with an accuracy of 75%. This research could form the basis for new methods exploiting artificial intelligence to model protein conformations by HDX-MS.
Collapse
Affiliation(s)
| | | | - Antoni J. Borysik
- Department of Chemistry,
Britannia House, King’s College London, London SE1 1DB, U.K.
| |
Collapse
|
6
|
López‐Pérez E, de Gómez‐Puyou MT, Nuñez CJ, Zapién DM, Guardado SA, Beltrán HI, Pérez‐Hernández G. Ordered-domain unfolding of thermophilic isolated β subunit ATP synthase. Protein Sci 2023; 32:e4689. [PMID: 37252686 PMCID: PMC10273367 DOI: 10.1002/pro.4689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
The flexibility of the ATP synthase's β subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated β subunit (Tβ) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tβ shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the β-sheet residual structure at high temperature. We determined that part of the stability origin of Tβ is due to a transversal hydrophobic array that crosses the β-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.
Collapse
Affiliation(s)
- Edgar López‐Pérez
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Marietta Tuena de Gómez‐Puyou
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Concepción José Nuñez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Denise Martínez Zapién
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Salomón Alas Guardado
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Hiram Isaac Beltrán
- División de Ciencias Básicas e Ingeniería, Departamento de Ciencias BásicasUniversidad Autónoma Metropolitana, Unidad AzcapotzalcoCiudad de MéxicoMexico
| | - Gerardo Pérez‐Hernández
- Unidad Cuajimalpa, Departamento de Ciencias NaturalesUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| |
Collapse
|
7
|
Zhao W, Poncet-Legrand C, Staunton S, Quiquampoix H. pH-Dependent Changes in Structural Stabilities of Bt Cry1Ac Toxin and Contrasting Model Proteins following Adsorption on Montmorillonite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5693-5702. [PMID: 36989144 DOI: 10.1021/acs.est.2c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The environmental fate of insecticidal Cry proteins, including time-dependent conservation of biological properties, results from their structural stability in soils. The complex cascade of reactions involved in biological action requires Cry proteins to be in solution. However, the pH-dependent changes in conformational stability and the adsorption-desorption mechanisms of Cry protein on soil minerals remain unclear. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation and differential scanning calorimetry to interpret the driving forces and structural stabilities of Cry1Ac and two contrasting model proteins adsorbed by montmorillonite. The structural stability of Cry1Ac is closer to that of the "hard" protein, α-chymotrypsin, than that of the "soft" bovine serum albumin (BSA). The pH-dependent adsorption of Cry1Ac and α-chymotrypsin could be explained by DLVO theory, whereas the BSA adsorption deviated from it. Patch-controlled electrostatic attraction, hydrophobic effects, and entropy changes following protein unfolding on a mineral surface could contribute to Cry1Ac adsorption. Cry1Ac, like chymotrypsin, was partly denatured on montmorillonite, and its structural stability decreased with an increase in pH. Moreover, small changes in the conformational heterogeneity of both Cry1Ac and chymotrypsin were observed following adsorption. Conversely, adsorbed BSA was completely denatured regardless of the solution pH. The moderate conformational rearrangement of adsorbed Cry1Ac may partially explain why the insecticidal activity of Bt toxin appears to be conserved in soils, albeit for a relatively short time period.
Collapse
Affiliation(s)
- Wenqiang Zhao
- Eco&Sols, INRAE, IRD, Cirad, Institut Agro, Univ Montpellier, 34090 Montpellier, France
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | | | - Siobhan Staunton
- Eco&Sols, INRAE, IRD, Cirad, Institut Agro, Univ Montpellier, 34090 Montpellier, France
| | - Hervé Quiquampoix
- Eco&Sols, INRAE, IRD, Cirad, Institut Agro, Univ Montpellier, 34090 Montpellier, France
| |
Collapse
|
8
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
9
|
Rogers TA, Encarnación-Gómez LG, Bommarius AS. Long-Term Biocatalyst Performance: Mechanistic Prediction and Continuous Non-Isothermal Testing. CHEMSUSCHEM 2022; 15:e202102701. [PMID: 35441829 DOI: 10.1002/cssc.202102701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the operational stability of biocatalysts by conventional direct determination of the total turnover number (TTN), a useful indicator of lifetime biocatalyst productivity, via continuous isothermal experiments tends to be time-consuming, material-intensive, and prone to disturbances, especially in case of rather stable catalysts. In the present work, we present and validate two alternative methods for estimating the TTN of a biocatalyst for any desired operating temperature. The first method is a mechanistic approach, built upon mathematical derivation of enzyme deactivation models derived from first principles, in which TTN can be calculated from two straightforward isothermal biochemical batch measurements. The second method relies on a few non-isothermal, continuous-mode experiments in conjunction with mathematical modeling to determine the intrinsic deactivation parameters of the biocatalyst. We verify both methods on the test case of TEM-1 β-lactamase-catalyzed penicillin G (Pen G) hydrolysis. Both alternative methods provide estimates of TTN which are typically within a factor of two to five or less of the values measured directly via lengthy, costly, and error-prone conventional isothermal aging tests. Therefore, both the mechanistic approach and the non-isothermal continuous approach are extremely valuable tools to enable calculation of catalyst cost contribution in continuous processing and to eliminate underperforming candidates in search of the most stable biocatalyst.
Collapse
Affiliation(s)
- Thomas A Rogers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363, USA
- MilliporeSigma, 6211 El Camino Real, Carlsbad, CA 92009, USA
| | - Luis G Encarnación-Gómez
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
10
|
Koyama S, Nemoto Y, Ichikawa M, Oka D, Tsujii Y, Noguchi T, Takano K, Handa A. Effects of suppressing protein structural changes on the excellent gelling properties of dried egg white via dry-heat treatment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shota Koyama
- Graduate School of Agriculture, Tokyo University of Agriculture
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture
| | - Yuko Nemoto
- Graduate School of Agriculture, Tokyo University of Agriculture
| | | | - Daiki Oka
- Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yoshimasa Tsujii
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture
- Faculty of Applied Bioscience, Tokyo University of Agriculture
| | | | - Katsumi Takano
- Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Akihiro Handa
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture
- R&D Division, Kewpie Corporation
| |
Collapse
|
11
|
Vernhet A, Meistermann E, Cottereau P, Charrier F, Chemardin P, Poncet-Legrand C. Wine Thermosensitive Proteins Adsorb First and Better on Bentonite during Fining: Practical Implications and Proposition of Alternative Heat Tests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13450-13458. [PMID: 32142274 DOI: 10.1021/acs.jafc.0c00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bentonite fining is the most popular treatment used to remove proteins in white and rosé wines. The usual heat test used to adjust the bentonite dose consists of heating the wine during 30 min at 80 °C. At this temperature, all of the proteins are unfolded, and this can lead to an overestimation of the dose. We have shown that proteins adsorb on bentonite in a specific order and, more importantly, that the proteins responsible for haze formation adsorb first. Fluorescence spectroscopy showed that this is due to the structural properties of proteins, which can be classified as hard and soft proteins. Alternative heat tests were performed at a lower temperature (40 °C) and showed a better correlation with accelerated aging. These tests were also less dependent upon the wine pH.
Collapse
Affiliation(s)
- Aude Vernhet
- Sciences pour l'Œnologie (SPO), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Université de Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Eric Meistermann
- Institut Français de la Vigne et du Vin, 30240 Le Grau-du-Roi, France
| | | | - Frederic Charrier
- Institut Français de la Vigne et du Vin, 30240 Le Grau-du-Roi, France
| | - Patrick Chemardin
- Sciences pour l'Œnologie (SPO), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Université de Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Céline Poncet-Legrand
- Sciences pour l'Œnologie (SPO), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Université de Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| |
Collapse
|
12
|
López-Chávez E, Pérez-Hernández G, Aparicio F, Alas SJ. On the Thermal Stability of O 6-Methylguanine-DNA Methyltransferase from Archaeon Pyrococcus kodakaraensis by Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:2138-2154. [PMID: 32250621 DOI: 10.1021/acs.jcim.0c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have employed molecular dynamics simulations to analyze the thermal stability of the O6-methylguanine-DNA methyltransferase (MGMT) protein, both hyperthermophilic archaeon Pyrococcus kodakaraensis (Pk-MGMT) and its mesophilic homologue pair, obtained from enterobacterium Escherichia coli (AdaC). This theoretical study was done at three different temperatures: 302, 371, and 450 K. The molecular dynamics has been performed in explicit aqueous solvent during a period of time of 95 ns, including periodic boundary conditions and constant pressure. The same procedure has been used for both proteins, and each simulation has been carried out by triplicate. Hence, we performed 18 simulations. In this way, we have done different analyses to explore the factors that may affect the thermal stability of Pk-MGMT. The structural behavior was analyzed using indicators such as root-mean-square deviation, radius of gyration, solvent-accessible surface area, hydrogen bonds, native contacts, secondary structure, and salt bridge formation. The results showed that when the temperature increases, the global atomic fluctuations increase too, which suggests that both proteins lose thermal stability, but as expected, this fact is highlighted in AdaC. Moreover, the contacts of the native state in AdaC are considerably lower than those found in Pk-MGMT at 450 K. Also, the structural studies showed that conserved and nonconserved salt bridges kept close contacts with the Pk-MGMT protein at high temperatures. These interaction types act as molecular staples and are mainly responsible to provide thermostability to the hyperthermophilic protein.
Collapse
Affiliation(s)
- Erick López-Chávez
- Posgrado en Ciencias Naturales e Ingeniería, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México 05300, Mexico
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México 05300, Mexico
| | - Felipe Aparicio
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México 05300, Mexico
| | - Salomón J Alas
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Ciudad de México 05300, Mexico.,Departamento de Química, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico
| |
Collapse
|
13
|
Kopeć K, Pędziwiatr M, Gront D, Sztatelman O, Sławski J, Łazicka M, Worch R, Zawada K, Makarova K, Nyk M, Grzyb J. Comparison of α-Helix and β-Sheet Structure Adaptation to a Quantum Dot Geometry: Toward the Identification of an Optimal Motif for a Protein Nanoparticle Cover. ACS OMEGA 2019; 4:13086-13099. [PMID: 31460436 PMCID: PMC6705085 DOI: 10.1021/acsomega.9b00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/23/2019] [Indexed: 05/31/2023]
Abstract
While quantum dots (QDs) are useful as fluorescent labels, their application in biosciences is limited due to the stability and hydrophobicity of their surface. In this study, we tested two types of proteins for use as a cover for spherical QDs, composed of cadmium selenide. Pumilio homology domain (Puf), which is mostly α-helical, and leucine-rich repeat (LRR) domain, which is rich in β-sheets, were selected to determine if there is a preference for one of these secondary structure types for nanoparticle covers. The protein sequences were optimized to improve their interaction with the surface of QDs. The solubilization of the apoproteins and their assembly with nanoparticles required the application of a detergent, which was removed in subsequent steps. Finally, only the Puf-based cover was successful enough as a QD hydrophilic cover. We showed that a single polypeptide dimer of Puf, PufPuf, can form a cover. We characterized the size and fluorescent properties of the obtained QD:protein assemblies. We showed that the secondary structure of the Puf proteins was not destroyed upon contact with the QDs. We demonstrated that these assemblies do not promote the formation of reactive oxygen species during illumination of the nanoparticles. The data represent advances in the effort to obtain a stable biocompatible cover for QDs.
Collapse
Affiliation(s)
- Katarzyna Kopeć
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Marta Pędziwiatr
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL02093 Warsaw, Poland
| | - Olga Sztatelman
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, PL02106 Warsaw, Poland
| | - Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| | - Magdalena Łazicka
- Department
of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL02096 Warsaw, Poland
| | - Remigiusz Worch
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Katarzyna Zawada
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Katerina Makarova
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Marcin Nyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, PL50370 Wrocław, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| |
Collapse
|
14
|
Herrmann KR, Ruff AJ, Infanzón B, Schwaneberg U. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl Microbiol Biotechnol 2019; 103:6435-6448. [DOI: 10.1007/s00253-019-09962-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
|
15
|
Saravanan KM, Selvaraj S. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J Biol Phys 2017; 43:265-278. [PMID: 28577238 PMCID: PMC5471173 DOI: 10.1007/s10867-017-9451-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Samuel Selvaraj
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India.
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
16
|
Rai N, Ramaswamy A. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study. Comput Struct Biotechnol J 2015; 13:329-38. [PMID: 25987966 PMCID: PMC4434178 DOI: 10.1016/j.csbj.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022] Open
Abstract
DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.
Collapse
Affiliation(s)
- Nivedita Rai
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Amutha Ramaswamy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
17
|
Characterization of two putative prolinases (PepR1 and PepR2) from Lactobacillus plantarum WCFS1: Occurrence of two isozymes with structural similarity and different catalytic properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:91-100. [DOI: 10.1016/j.bbapap.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022]
|
18
|
Manjunath K, Sekar K. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase. J Chem Inf Model 2013; 53:2448-61. [PMID: 23962324 DOI: 10.1021/ci400306m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) Cα, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.
Collapse
Affiliation(s)
- Kavyashree Manjunath
- Supercomputer Education and Research Centre, Indian Institute of Science , Bangalore, Karnataka 560 012, India
| | | |
Collapse
|
19
|
Kumar R, Kukreja RV, Li L, Zhmurov A, Kononova O, Cai S, Ahmed SA, Barsegov V, Singh BR. Botulinum neurotoxin: unique folding of enzyme domain of the most-poisonous poison. J Biomol Struct Dyn 2013; 32:804-15. [DOI: 10.1080/07391102.2013.791878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV. Charge-State Dependent Compaction and Dissociation of Protein Complexes: Insights from Ion Mobility and Molecular Dynamics. J Am Chem Soc 2012; 134:3429-38. [DOI: 10.1021/ja2096859] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zoe Hall
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Argyris Politis
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Matthew F. Bush
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lorna J. Smith
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory,
South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry
Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
21
|
Moskovitz Y, Srebnik S. Thermal stability limits of proteins in solution and adsorbed on a hydrophobic surface. Phys Chem Chem Phys 2012; 14:8013-22. [DOI: 10.1039/c2cp00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Rogers TA, Daniel RM, Bommarius AS. Deactivation of TEM-1 β-Lactamase Investigated by Isothermal Batch and Non-Isothermal Continuous Enzyme Membrane Reactor Methods. ChemCatChem 2009; 1:131-137. [PMID: 22039393 PMCID: PMC3203640 DOI: 10.1002/cctc.200900120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Indexed: 11/08/2022]
Abstract
The thermal deactivation of TEM-1 β-lactamase was examined using two experimental techniques: a series of isothermal batch assays and a single, continuous, non-isothermal assay in an enzyme membrane reactor (EMR). The isothermal batch-mode technique was coupled with the three-state "Equilibrium Model" of enzyme deactivation, while the results of the EMR experiment were fitted to a four-state "molten globule model". The two methods both led to the conclusions that the thermal deactivation of TEM-1 β-lactamase does not follow the Lumry-Eyring model and that the T(eq) of the enzyme (the point at which active and inactive states are present in equal amounts due to thermodynamic equilibrium) is at least 10 °C from the T(m) (melting temperature), contrary to the idea that the true temperature optimum of a biocatalyst is necessarily close to the melting temperature.
Collapse
Affiliation(s)
- Thomas A. Rogers
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA (USA) 30332-0323 (USA), Fax: (+ 1) 404-894-2291
| | - Roy M. Daniel
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240 (New Zealand), Fax: (+ 64) 7-8384324
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA (USA) 30332-0323 (USA), Fax: (+ 1) 404-894-2291
| |
Collapse
|
23
|
Sharma RD, Lynn AM, Sharma PK, Rajnee, Jawaid S. High temperature unfolding of Bacillus anthracis amidase-03 by molecular dynamics simulations. Bioinformation 2009; 3:430-4. [PMID: 19759865 PMCID: PMC2737499 DOI: 10.6026/97320630003430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/08/2009] [Accepted: 05/25/2009] [Indexed: 11/23/2022] Open
Abstract
The stability of amidase-03 structure (a cell wall hydrolase protein) from Bacillus anthracis was studied using classical molecular dynamics (MD) simulation. This protein (GenBank accession number: NP_844822) contains an amidase-03 domain which is known to exhibit the catalytic activity of N-acetylmuramoyl-L-alanine amidase (digesting MurNAc-Lalanine linkage of bacterial cell wall). The amidase-03 enzyme has stability at high temperature due to the core formed by the combination of several secondary structure elements made of beta-sheets. We used root-mean-square-displacement (RMSD) of the simulated structure from its initial state to demonstrate the unfolding of the enzyme using its secondary structural elements. Results show that amidase-03 unfolds in transition state ensemble (TSE). The data suggests that alpha-helices unfold before beta-sheets from the core during simulation.
Collapse
|
24
|
Ghosh A, Brinda KV, Vishveshwara S. Dynamics of lysozyme structure network: probing the process of unfolding. Biophys J 2007; 92:2523-35. [PMID: 17208969 PMCID: PMC1864820 DOI: 10.1529/biophysj.106.099903] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently we showed that the three-dimensional structure of proteins can be investigated from a network perspective, where the amino acid residues represent the nodes in the network and the noncovalent interactions between them are considered for the edge formation. In this study, the dynamical behavior of such networks is examined by considering the example of T4 lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein at 300 K and at higher temperatures (400 K and 500 K), respectively. The snapshots of the protein structure from the simulations are represented as protein structure networks in which the strength of the noncovalent interactions is considered an important criterion in the construction of edges. The profiles of the network parameters, such as the degree distribution and the size of the largest cluster (giant component), were examined as a function of interaction strength at different temperatures. Similar profiles are seen at all the temperatures. However, the critical strength of interaction (Icritical) and the size of the largest cluster at all interaction strengths shift to lower values at 500 K. Further, the folding/unfolding transition is correlated with contacts evaluated at Icritical and with the composition of the top large clusters obtained at interaction strengths greater than Icritical. Finally, the results are compared with experiments, and predictions are made about the residues, which are important for stability and folding. To summarize, the network analysis presented in this work provides insights into the details of the changes occurring in the protein tertiary structure at the level of amino acid side-chain interactions, in both the equilibrium and the unfolding simulations. The method can also be employed as a valuable tool in the analysis of molecular dynamics simulation data, since it captures the details at a global level, which may elude conventional pairwise interaction analysis.
Collapse
Affiliation(s)
- Amit Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
25
|
Walser R, Mark AE, van Gunsteren WF. On the temperature and pressure dependence of a range of properties of a type of water model commonly used in high-temperature protein unfolding simulations. Biophys J 2000; 78:2752-60. [PMID: 10827960 PMCID: PMC1300865 DOI: 10.1016/s0006-3495(00)76820-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Molecular dynamics simulations of protein folding and unfolding are often carried out at temperatures (400-600 K) that are much higher than physiological or room temperature to speed up the (un)folding process. Use of such high temperatures changes both the protein and solvent properties considerably, compared to physiological or room temperature. Water models designed for use in conjunction with biomolecules, such as the simple point charge (SPC) model, have generally been calibrated at room temperature and pressure. To determine the distortive effect of high simulation temperatures on the behavior of such "room temperature" water models, the structural, dynamic, and thermodynamic properties of the much-used SPC water model are investigated in the temperature range from 300 to 500 K. Both constant pressure and constant volume conditions, as used in protein simulations, were analyzed. We found that all properties analyzed change markedly with increasing temperature, but no phase transition in this temperature range was observed.
Collapse
Affiliation(s)
- R Walser
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, Switzerland
| | | | | |
Collapse
|
26
|
Velázquez I, Reimann CT, Tapia O. Proteins in Vacuo. Denaturation of Highly Charged Disulfide-Reduced Lysozyme Studied by Molecular Dynamics Simulations. J Phys Chem B 2000. [DOI: 10.1021/jp9842648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- I. Velázquez
- Department of Physical Chemistry, Uppsala University, Box 535, S-751 21 Uppsala, Sweden, and Department of Analytical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
| | - C. T. Reimann
- Department of Physical Chemistry, Uppsala University, Box 535, S-751 21 Uppsala, Sweden, and Department of Analytical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
| | - O. Tapia
- Department of Physical Chemistry, Uppsala University, Box 535, S-751 21 Uppsala, Sweden, and Department of Analytical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
27
|
Velázquez I, C. T. Reimann, and, Tapia O. Proteins in Vacuo: Relaxation of Unfolded Lysozyme Leads to Folding into Native and Non-Native Structures. A Molecular Dynamics Study. J Am Chem Soc 1999. [DOI: 10.1021/ja990911c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I. Velázquez
- Contribution from the Department of Physical Chemistry, Uppsala University, Box 532, S-751 21 Uppsala, Sweden, and Division of Ion Physics, Department of Materials Science, Uppsala University, Box 534, S-751 21 Uppsala, Sweden
| | - C. T. Reimann, and
- Contribution from the Department of Physical Chemistry, Uppsala University, Box 532, S-751 21 Uppsala, Sweden, and Division of Ion Physics, Department of Materials Science, Uppsala University, Box 534, S-751 21 Uppsala, Sweden
| | - O. Tapia
- Contribution from the Department of Physical Chemistry, Uppsala University, Box 532, S-751 21 Uppsala, Sweden, and Division of Ion Physics, Department of Materials Science, Uppsala University, Box 534, S-751 21 Uppsala, Sweden
| |
Collapse
|
28
|
Abstract
A Gaussian solvent-exclusion model for the solvation free energy is developed. It is based on theoretical considerations and parametrized with experimental data. When combined with the CHARMM 19 polar hydrogen energy function, it provides an effective energy function (EEF1) for proteins in solution. The solvation model assumes that the solvation free energy of a protein molecule is a sum of group contributions, which are determined from values for small model compounds. For charged groups, the self-energy contribution is accounted for primarily by the exclusion model. Ionic side-chains are neutralized, and a distance-dependent dielectric constant is used to approximate the charge-charge interactions in solution. The resulting EEF1 is subjected to a number of tests. Molecular dynamics simulations at room temperature of several proteins in their native conformation are performed, and stable trajectories are obtained. The deviations from the experimental structures are similar to those observed in explicit water simulations. The calculated enthalpy of unfolding of a polyalanine helix is found to be in good agreement with experimental data. Results reported elsewhere show that EEF1 clearly distinguishes correctly from incorrectly folded proteins, both in static energy evaluations and in molecular dynamics simulations and that unfolding pathways obtained by high-temperature molecular dynamics simulations agree with those obtained by explicit water simulations. Thus, this energy function appears to provide a realistic first approximation to the effective energy hypersurface of proteins.
Collapse
Affiliation(s)
- T Lazaridis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
29
|
Murphy LR, Li N, Baum J, Levy RM. Tertiary contacts in alpha-lactalbumin at pH 7 and pH 2: a molecular dynamics study. J Biomol Struct Dyn 1998; 16:355-65. [PMID: 9833674 DOI: 10.1080/07391102.1998.10508253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Molecular dynamics simulations of alpha-lactalbumin were performed under conditions of neutral pH and low pH in order to study the acid-induced molten globule state. Through the use of experimental techniques such as NMR and CD spectroscopy, molten globules have been characterized as being compact intermediates with secondary structure similar to that of the native protein but with tertiary structure that is disordered. The detailed structure of the molten globule state is unknown, however. Through the use of computer simulations we can study the structural changes which occur upon lowering pH. The simulations presented here differ from previous unfolding simulations in two important ways: the electrostatic interactions are treated more accurately than ever before, and artificially high temperatures are not used to force the protein to unfold. Simulations of 880 psec each were run at pH 7 (control simulation) and pH 2. We concentrate on the interesting changes in the tertiary interactions within the protein with lowering of pH. In particular, there is a loss of native tertiary contacts in the beta domain and interdomain region, and a large decrease in interdomain hydrogen bonds.
Collapse
Affiliation(s)
- L R Murphy
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854-8087, USA.
| | | | | | | |
Collapse
|
30
|
Gervasoni P, Staudenmann W, James P, Plückthun A. Identification of the binding surface on beta-lactamase for GroEL by limited proteolysis and MALDI-mass spectrometry. Biochemistry 1998; 37:11660-9. [PMID: 9709004 DOI: 10.1021/bi980258q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Escherichia coli beta-lactamase, alone or as a complex with GroEL at 48 degreesC, was partially digested with trypsin, endoproteinase Glu-C, or thermolysin. Peptides were analyzed by matrix-assisted laser desorption and ionization mass spectrometry and aligned with the known sequence. From the protease cleavage sites which become protected upon binding and those which become newly accessible, a model of the complex is proposed in which the carboxy-terminal helix has melted, two loops form the binding interface and the large beta-sheet become partially uncovered by the slight dislocation of other structural elements. This explains how hydrophobic surface on the substrate protein can become accessible while scarcely disrupting the hydrogen bond network of the native structure. An analysis of the GroEL-bound peptides bound after digestion of the beta-lactamase showed no obvious sequence motifs, indicating that binding is provided by hydrophobic patches in the three-dimensional structure.
Collapse
Affiliation(s)
- P Gervasoni
- Biochemisches Institut der Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
31
|
Abstract
We present an investigation of the folding thermodynamics and mechanism of segment B1 of streptococcal protein G. Molecular dynamics simulations of the fully solvated protein are used to probe thermodynamically significant states at different stages of folding. We performed several unfolding simulations to generate a database of initial conditions. The database is analyzed and clustered. The cluster centers extracted from this database were then used as starting points for umbrella sampling of the folding free energy landscape under folding conditions. The resulting sampling was combined with the weighted histogram analysis method. One and two-dimensional free energy surfaces were constructed along several order parameters and used to analyze the folding process. Our findings indicate that an initial collapse precedes the formation of significant native structure. Elements of local structure originate in the regions of the protein shown to have higher H/2H exchange protection factors in early stages of folding. A non-native contact, observed experimentally at the N terminus of the alpha-helix in a peptide excised from the protein, is seen to pre-organize the chain in early stages of folding. Collapse and early structure formation yields a compact globule with a significant number of water molecules present. Desolvation of the protein core is coincident with the final stages of folding from the compact state.
Collapse
Affiliation(s)
- F B Sheinerman
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
32
|
Abstract
Nine nonnative conformations of ubiquitin, generated during two different thermal denaturation trajectories, were simulated under nearly native conditions (62 degrees C). The simulations included all protein and solvent atoms explicitly, and simulation times ranged from 1-2.4 ns. The starting structures had alpha-carbon root-mean-square deviations (RMSDs) from the crystal structure of 4-12 A and radii of gyration as high as 1.3 times that of the native state. In all but one case, the protein collapsed when the temperature was lowered and sampled conformations as compact as those reached in a control simulation beginning from the crystal structure. In contrast, the protein did not collapse when simulated in a 60% methanol:water mixture. The behavior of the protein depended on the starting structure: during simulation of the most native-like starting structures (<5 A RMSD to the crystal structure) the RMSD decreased, the number of native hydrogen bonds increased, and the secondary and tertiary structure increased. Intermediate starting structures (5-10 A RMSD) collapsed to the radius of gyration of the control simulation, hydrophobic residues were preferentially buried, and the protein acquired some native contacts. However, the protein did not refold. The least native starting structures (10-12 A RMSD) did not collapse as completely as the more native-like structures; instead, they experienced large fluctuations in radius of gyration and went through cycles of expansion and collapse, with improved burial of hydrophobic residues in successive collapsed states.
Collapse
Affiliation(s)
- D O Alonso
- Department of Medicinal Chemistry, University of Washington, Seattle 98195-7610, USA
| | | |
Collapse
|
33
|
Kazmirski SL, Daggett V. Simulations of the structural and dynamical properties of denatured proteins: the "molten coil" state of bovine pancreatic trypsin inhibitor. J Mol Biol 1998; 277:487-506. [PMID: 9514766 DOI: 10.1006/jmbi.1998.1634] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dynamic nature of denatured, unfolded proteins makes it difficult to characterize their structures experimentally. To complement experiment and to obtain more detailed information about the structure and dynamic behavior of the denatured state, we have performed eleven 2.5 ns molecular dynamics simulations of reduced bovine pancreatic trypsin inhibitor (BPTI) at high temperature in water and a control simulation at 298 K, for a total of 30 ns of simulation time. In a neutral pH environment (acidic residues ionized), the unfolded protein structures were compact with an average radius of gyration 9% greater than the native state. The compact conformations resulted from the transient formation of non-native hydrophobic clusters, turns and salt bridges. However, when the acidic residues were protonated, the protein periodically expanded to a radius of gyration of 18 to 20 A. The early steps in unfolding were similar in the different simulations until passing through the major transition state of unfolding. Afterwards, unfolding proceeded through one of two general pathways with respect to secondary structure: loss of the C-terminal helix followed by loss of beta-structure or the opposite. To determine whether the protein preferentially sampled particular conformational substates in the denatured state, pairwise Calpha root-mean-square deviations were measured between all structures, but similar structures were found between only two trajectories. Yet, similar composite properties (secondary structure content, side-chain and water contacts, solvent accessible surface area, etc.) were observed for the structures that unfolded through different pathways. Somewhat surprisingly, the unfolded structures are in agreement with both past experiments suggesting that reduced BPTI is a random coil and more recent experiments providing evidence for non-random structure, demonstrating how ensembles of fluctuating structures can give rise to experimental observables that are seemingly at odds.
Collapse
Affiliation(s)
- S L Kazmirski
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA
| | | |
Collapse
|
34
|
Tirado-Rives J, Orozco M, Jorgensen WL. Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. Biochemistry 1997; 36:7313-29. [PMID: 9200680 DOI: 10.1021/bi970096i] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular dynamics simulations of barnase have been conducted both in water and in 8 M urea solution for 500 ps at 25 degrees C and for 2000 ps at 85 degrees C. The final structure of the aqueous simulation at room temperature matches closely the structure obtained by NMR and the experimentally observed protections from isotopic exchange. The comparison of the structures generated by the aqueous simulation at 85 degrees C reveals a trajectory composed of groups of geometrically related structures separated by narrow regions of rapid change in structure. The first of these regions displays changes in backbone rmsd to the crystal structure and solvent-accessible area suggestive of a transition state, while the properties observed during the final 300 ps of the simulation are consistent with a stable intermediate. These assignments were confirmed by calculation of the "progress along the reaction coordinate" phi-values using an empirical equation based on a linear response method. The pathway of unfolding defined in this fashion agrees well with the experimental results of site-directed mutagenesis in terms of secondary structure content of the transition state and the intermediate and reproduces the relative stability of the different elements of secondary structure. The results of the simulations in urea suggest a mechanism at the molecular level for its well-known enhancement of the denaturation of proteins. The analysis of radial distribution functions shows that the first solvation shell of the protein is enriched in urea relative to the bulk solvent. The displacement of water molecules allows greater exposure of hydrophobic side chains, as witnessed particularly in the analysis of solvent-accessible surface areas at the higher temperature. Almost all urea molecules in the first shell form at least one hydrogen bond with the protein. They provide a more favorable environment for accommodation of the remaining water molecules, and they facilitate the separation of secondary structure elements by acting as a bridge between groups previously forming intraprotein hydrogen bonds.
Collapse
Affiliation(s)
- J Tirado-Rives
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA.
| | | | | |
Collapse
|
35
|
Nadig G, Ratnaparkhi GS, Varadarajan R, Vishveshwara S. Dynamics of ribonuclease A and ribonuclease S: computational and experimental studies. Protein Sci 1996; 5:2104-14. [PMID: 8897611 PMCID: PMC2143277 DOI: 10.1002/pro.5560051017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. Previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNase S and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model. According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.
Collapse
Affiliation(s)
- G Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
36
|
Lamy A, Smith JC. Denaturation of Truncated Staphylococcal Nuclease in Molecular Dynamics Simulation at 300 K. J Am Chem Soc 1996. [DOI: 10.1021/ja960095y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Lamy
- Contribution from the Section de Biophysique des Protéines et des Membranes, DBCM, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jeremy C. Smith
- Contribution from the Section de Biophysique des Protéines et des Membranes, DBCM, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
37
|
Abstract
Protein unfolding occurs when the balance of forces between the protein's interaction with itself and the protein's interaction with its environment is disrupted. The disruption of this balance of forces may be as simple as a perturbance of the normal water structure around the protein. A decrease in the normal water-water interaction will result in an increase in the relative interaction of water with the protein. An increase in the number of interactions between water and the protein may initiate a protein's unfolding. This model for protein unfolding is supported by a range of recent experimental and computational data.
Collapse
Affiliation(s)
- C A Schiffer
- Department of Protein Engineering, Genentech Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
38
|
Rich MR, Evans JS. Molecular dynamics simulations of adipocyte lipid-binding protein: effect of electrostatics and acyl chain unsaturation. Biochemistry 1996; 35:1506-15. [PMID: 8634281 DOI: 10.1021/bi951574x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Molecular dynamics (MD) simulations have been performed on adipocyte lipid-binding protein, using the apo and holo forms, bound with stearic and oleic acid. The contribution of electrostatics to protein dynamics and ligand stabilization was assayed by perturbing the electrostatic charge of Arg106 and Arg126 (positive-->neutral) and the fatty acid (132H) headgroup (negative-->neutral). MD simulations for charged holo forms demonstrated significantly greater electrostatic binding energy and a more stabilized hydrogen bond network than simulations performed using neutral forms. Electrostatics, however, appeared to have little effect on fatty acid behavior, e.g., fluctuation of the dihedral head group; number of dihedral transitions within the acyl chain; and change in the end-to-end distance for fatty acid. Instead, fatty acid behavior appeared to be dictated by the presence or absence of an unsaturated bond within the acyl chain. A significantly greater number of transitions were observed during MD simulations in oleic than stearic acid. In addition, significantly greater fluctuation was observed for oleic acid, within the C2 headgroup and C9 and C11 dihedrals (which lie adjacent to the olefin bond of oleic acid). The dynamic behavior of the acyl chain may thereby be more a property of van der Waals contact, and the degree of acyl chain unsaturation, than a function of electrostatics. In the absence of fatty acid, an increase in distance between guanidino carbon centered atoms of Arg126 and Arg106 was observed during MD simulations of the charged apo form. This effect not observed with the neutral apo form or in any of the holo complexes and, presumbably, was a result of repulsion between the negatively charged arginine sidechains. Conserved waters reflected substantially lower mean-square displacement (msd) in all simulations, except the neutral apo form. This suggests that the presence of either charged amino acids or lipid provides increased order for water within the binding pocket. These results provide a dynamic perspective of the interactive nature within the FABP binding pocket regulated in a complex manner by the electrostatics within the binding cavity, acyl chain structure and behavior, and water energetics.
Collapse
Affiliation(s)
- M R Rich
- Department of Biology, New York University, New York 10003, USA
| | | |
Collapse
|
39
|
Abstract
The mechanism of protein folding is being investigated theoretically by the use of both simplified and all-atom models of the polypeptide chain. Lattice heteropolymer simulations of the folding process have led to proposals for the folding mechanism and for the resolution of the Levinthal paradox. Both stability and rapid folding have been shown in model studies to result from the presence of a pronounced global energy minimum corresponding to the native state. Concomitantly, molecular dynamics simulations with detailed atomic models have been used to analyze the initial stages of protein unfolding. Results concerning possible folding intermediates and the role of water in the unfolding process have been obtained. The two types of theoretical approaches are providing information essential for an understanding of the mechanism of protein folding and are useful for the design of experiments to study the mechanism in different proteins.
Collapse
Affiliation(s)
- M Karplus
- Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|