1
|
Sahoo AR, Bhattarai N, Buck M. Cholesterol-dependent dimerization and conformational dynamics of EphA2 receptors from coarse-grained and all-atom simulations. Structure 2025:S0969-2126(25)00134-0. [PMID: 40280119 DOI: 10.1016/j.str.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
The EphA2 transmembrane receptor regulates cellular growth, differentiation, and motility, and its overexpression in various cancers makes it a potential biomarker for clinical cancer management. EphA2 signaling occurs through ligand-induced dimerization where the transmembrane (TM) and juxtamembrane (JM) domains play crucial roles in stabilizing the dimer conformations, thereby facilitating signal transduction. Electrostatic interactions between basic JM residues and signaling lipids (PIP2 and PIP3) regulate phosphorylation while cholesterol's potential role in modulating EphA2 activation remains unclear. To investigate this, we modeled the TM-full JM peptide of EphA2 and employed coarse-grain and all-atom simulations to investigate its dimerization in cholesterol-rich and cholesterol-deficient membranes. Our findings reveal that cholesterol stabilizes specific TM dimers and TM-JM interactions with PIP2, highlighting the importance of membrane composition in EphA2 dimerization, oligomerization, and clustering. These insights enhance our understanding of lipid-mediated regulation of EphA2 and its implications in receptor signaling and cancer progression.
Collapse
Affiliation(s)
- Amita Rani Sahoo
- Departments of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nisha Bhattarai
- Departments of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthias Buck
- Departments of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Mishra S, Chakraborty H. Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane. J Membr Biol 2025; 258:161-171. [PMID: 39825135 DOI: 10.1007/s00232-025-00336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.4 with varying cholesterol concentrations. We have demonstrated that the DENV FP promotes hemifusion formation during the fusion of small unilamellar vesicles (SUVs) mainly at pH 5.0. Moreover, the fusion process demonstrates a strong correlation between fusogenicity and the amount of membrane cholesterol. We have further evaluated the partitioning ability of the peptide in three different membranes at pH 5.0 and pH 7.4. The fusogenic ability of the peptide at pH 5.0 is associated with the composition-dependent binding affinity of the peptide to the membrane. The depth-dependent fluorescence probes are used to evaluate membrane organization and dynamics utilizing steady-state and time-resolved fluorescence spectroscopic techniques. Our results show that the DENV FP promotes hemifusion formation by fluidizing the interfacial region of the membrane.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
| |
Collapse
|
3
|
Sahoo AR, Bhattarai N, Buck M. Cholesterol-Dependent Dimerization and Conformational Dynamics of EphA2 Receptors: Insights from Coarse-Grained and All-Atom Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631553. [PMID: 39829830 PMCID: PMC11741419 DOI: 10.1101/2025.01.07.631553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The EphA2 transmembrane receptor regulates cellular growth, differentiation, and motility, and its overexpression in various cancers makes it a potential biomarker for clinical cancer management. EphA2 signaling occurs through ligand-induced dimerization, where the transmembrane (TM) and juxtamembrane (JM) domains play crucial roles in stabilizing the dimer conformations and thereby facilitating signal transduction. Electrostatic interactions between basic JM residues and signaling lipids (PIP2 and PIP3) regulate phosphorylation while Cholesterol's potential role in modulating EphA2 activation remains unclear. To investigate this, we modeled the TM-full JM peptide of EphA2 and employed coarse-grain and all-atom simulations to investigate its dimerization in cholesterol-rich and cholesterol-deficient membranes. Our findings reveal that cholesterol stabilizes specific TM dimers and TM-JM interactions with PIP2, highlighting the importance of membrane composition in EphA2 dimerization, oligomerization, and clustering. These insights enhance our understanding of lipid-mediated regulation of EphA2 and its implications in receptor signaling and cancer progression.
Collapse
|
4
|
Panda MS, Raghav S, Ghosh SK, Chakraborty H. gp41 Fusion Peptide Alters the Properties of Lipid Monolayer at the Air-Water Interface in a Cholesterol-Dependent Fashion: Implications in Membrane Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6103-6112. [PMID: 40025733 DOI: 10.1021/acs.langmuir.4c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Enveloped viruses fuse at the cell surface or the endosome after the virus is endocytosed for cellular entry. Membrane fusion is a crucial stage in infection regardless of the pathway. The effect of the fusion peptide, a 20-25 N-terminal residue of the fusion domain, facilitates membrane fusion in multiple ways. In this work, we have assessed the effect of the gp41 fusion peptide from the human immunodeficiency virus (HIV) on the DOPC/DOPE/DOPG monolayers with varying concentrations of cholesterol. The ability of the gp41 fusion peptide to promote fusion among small unilamellar vesicles (SUVs) was examined with the same lipid composition, for which we measured the monolayer properties. Our results show that the peptide is adsorbed on the lipid headgroup in the aqueous subphase in the absence of cholesterol, whereas it gets integrated (orients parallel to the lipid molecule) with the addition of cholesterol in the lipid mixture. To support our findings from monolayer measurements, we have further assessed the peptide's impact on the depth-dependent ordering and polarity of the bilayer membrane using steady-state and time-resolved fluorescence techniques. The peptide-induced change in the elastic compressional modulus also depends on the mole fraction of cholesterol in the lipid mixture. We further compared the ability of the peptide to induce fusion with the change in monolayer properties. Our results demonstrate that the orientation of the peptide in the lipid is crucial for its fusogenic ability as the percentage change in the lipid mixing is correlated to the change in area lift-off parameter in monolayer measurements. Taken together, our results offer a better understanding of the cholesterol-dependent fusogenic ability of the gp41 fusion peptide.
Collapse
Affiliation(s)
| | - Sonam Raghav
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 109, Odisha, India
| |
Collapse
|
5
|
Pandia S, Chakraborty H. Strategic Design of Tryptophan-Aspartic Acid-Containing Peptide Inhibitors Using Coronin 1 as a Template: Inhibition of Fusion by Enhancing Acyl Chain Order. J Phys Chem B 2024; 128:9163-9171. [PMID: 39268813 DOI: 10.1021/acs.jpcb.4c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Enveloped viruses enter the host cell by fusing at the cell membrane or entering the cell via endocytosis and fusing at the endosome. Conventional inhibitors target the viral fusion protein to inactivate it for inducing fusion. These target-specific vis-à-vis virus-specific inhibitors fail to display their inhibitory efficacy against emerging and remerging viral infections. This necessitates the need to develop broad-spectrum entry inhibitors that are effective irrespective of the virus. Using a broad range of targeting techniques, the fusion inhibitors can modify the physical characteristics of the viral membrane, making it less prone to fusion. We have previously shown that two tryptophan-aspartic acid (WD)-containing hydrophobic peptides, TG-23 and GG-21, from coronin 1, a phagosomal protein, inhibit membrane fusion by modulating membrane organization and dynamics. In the present work, we designed two WD-containing hydrophilic peptides, QG-22 and AG-22, using coronin 1 as a template and evaluated their fusion inhibitory efficacies in the absence and presence of membrane cholesterol. Our results demonstrate that QG-22 and AG-22 inhibit membrane fusion irrespective of the concentration of membrane cholesterol. Our measurements of depth-dependent membrane organization and dynamics reveal that they impede fusion by enhancing the acyl chain order. Overall, our results validate the hypothesis of designing fusion inhibitors by modulating the membrane's physical properties. In addition, it demonstrates that chain hydrophobicity might not be a critical determinant for the development of peptide-based fusion inhibitors.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
6
|
Hayakawa ESH, Ueki M, Alhatmi E, Oiki S, Tokumasu F, Mitchell DC, Iwamoto M. Different lateral packing stress in acyl chains alters KcsA orientation and structure in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184338. [PMID: 38763269 DOI: 10.1016/j.bbamem.2024.184338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.
Collapse
Affiliation(s)
- Eri Saki H Hayakawa
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Misuzu Ueki
- Division of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Elmukhtar Alhatmi
- Department of Physics, Portland State University, Portland, OR 97201-0751, USA
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Fuyuki Tokumasu
- Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Drake C Mitchell
- Department of Physics, Portland State University, Portland, OR 97201-0751, USA
| | - Masayuki Iwamoto
- Division of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
7
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
8
|
Regmi D, Shen F, Stanic A, Islam M, Du D. Effect of phospholipid liposomes on prion fragment (106-128) amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184199. [PMID: 37454869 DOI: 10.1016/j.bbamem.2023.184199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Misfolding and aggregation of cellular prion protein (PrPc) is a major molecular process involved in the pathogenesis of prion diseases. Here, we studied the aggregation properties of a prion fragment peptide PrP(106-128). The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds. Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106-128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation. The peptide could be used as an improved model molecule to investigate the mechanistic role of the crucial regions of PrP in aggregation in a membrane-rich environment and to screen effective inhibitors to block key interactions between these regions and membranes for preventing PrP aggregation.
Collapse
Affiliation(s)
- Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aleksander Stanic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
9
|
Radzin S, Wiśniewska-Becker A, Markiewicz M, Bętkowski S, Furso J, Waresiak J, Grolik J, Sarna T, Pawlak AM. Structural Impact of Selected Retinoids on Model Photoreceptor Membranes. MEMBRANES 2023; 13:575. [PMID: 37367779 DOI: 10.3390/membranes13060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Photoreceptor membranes have a unique lipid composition. They contain a high level of polyunsaturated fatty acids including the most unsaturated fatty acid in nature, docosahexaenoic acid (22:6), and are enriched in phosphatidylethanolamines. The phospholipid composition and cholesterol content of the subcellular components of photoreceptor outer segments enables to divide photoreceptor membranes into three types: plasma membranes, young disc membranes, and old disc membranes. A high degree of lipid unsaturation, extended exposure to intensive irradiation, and high respiratory demands make these membranes sensitive to oxidative stress and lipid peroxidation. Moreover, all-trans retinal (AtRAL), which is a photoreactive product of visual pigment bleaching, accumulates transiently inside these membranes, where its concentration may reach a phototoxic level. An elevated concentration of AtRAL leads to accelerated formation and accumulation of bisretinoid condensation products such as A2E or AtRAL dimers. However, a possible structural impact of these retinoids on the photoreceptor-membrane properties has not yet been studied. In this work we focused just on this aspect. The changes induced by retinoids, although noticeable, seem not to be significant enough to be physiologically relevant. This is, however, an positive conclusion because it can be assumed that accumulation of AtRAL in photoreceptor membranes will not affect the transduction of visual signals and will not disturb the interaction of proteins engaged in this process.
Collapse
Affiliation(s)
- Szymon Radzin
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Wiśniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Sebastian Bętkowski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Justyna Furso
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Waresiak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jarosław Grolik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna M Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Joardar A, Chakraborty H. Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on the Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4439-4449. [PMID: 36931902 DOI: 10.1021/acs.langmuir.3c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Membrane fusion is a common course in innumerable biological processes that helps in the survival of eukaryotes. Enveloped viruses utilize this process to enter the host cells. Generally, the membrane lipid compositions play an important role in membrane fusion by modulating the membrane's physical properties and the behavior of membrane proteins in the cellular milieu. In this work, we have demonstrated the role of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, on the organization, dynamics, and fusion of homogeneous and heterogeneous membranes. We have exploited arrays of steady-state and time-resolved fluorescence spectroscopic methods and polyethylene glycol-induced membrane fusion assay to elucidate the behavior of EPA and DHA on dioleoyl phosphatidylcholine (DOPC)/cholesterol (CH) homogeneous and DOPC/sphingomyelin/CH heterogeneous membranes. Our results suggest that EPA and DHA display differential effects on two different membranes. The effects of PUFAs in homogeneous membranes are majorly attributed to their flexible chain dynamics, whereas the ability of PUFA-induced cholesterol transfer from the lo to the ld phase rules their behavior in heterogeneous membranes. Overall, our results provide detailed information on the effect of PUFAs on homogeneous and heterogeneous membranes.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
11
|
Verra DM, Spinnhirny P, Sandu C, Grégoire S, Acar N, Berdeaux O, Brétillon L, Sparrow JR, Hicks D. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration. Graefes Arch Clin Exp Ophthalmol 2022; 260:3131-3148. [PMID: 35524799 DOI: 10.1007/s00417-022-05684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.
Collapse
Affiliation(s)
- Daniela M Verra
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Perrine Spinnhirny
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Cristina Sandu
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France
| | - Stéphane Grégoire
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Olivier Berdeaux
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Lionel Brétillon
- UMR 1324 Centre des Sciences du Goût et de l'Alimentation, Eye and Nutrition Research Group, INRA, Dijon, France.,UMR 6265 Centre des Sciences du Goût et de l'Alimentation, CNRS, Dijon, France.,Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Janet R Sparrow
- Departments of Ophthalmology, and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Hicks
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 8 Allée Général Rouvillois, 67000, Strasbourg Cedex, France.
| |
Collapse
|
12
|
Yee SM, Lorenz CD. On the Structure and Flip-flop of Free Docosahexaenoic Acid in a Model Human Brain Membrane. J Phys Chem B 2021; 125:8038-8047. [PMID: 34270235 DOI: 10.1021/acs.jpcb.1c03929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the omega-3 fatty acids, docosahexaenoic acid (DHA, sn22:6) is particularly vital in human brain cell membranes. There is considerable interest in DHA because low-level DHA has been associated with declined cognitive function and poor visual acuity. In this work, atomistic molecular dynamics simulations were used to investigate the effects of free protonated DHA (DHAP) in molar fractions of 0, 17, 30, and 38% in a realistic model of a healthy brain cell membrane comprising 26 lipid types. Numerous flip-flop events of DHAP were observed and categorized as successful or aborted. Novel use of the machine learning technique, density-based spatial clustering of applications with noise (DBSCAN), effectively identified flip-flop events by way of clustering. Our data show that increasing amounts of DHAP in the membrane disorder the bilayer packing, fluidize the membrane, and increase the rates of successful flip-flop from k = 0.2 μs-1 (17% DHAP) to 0.8 μs-1 (30% DHAP) and to 1.3 μs-1 (38% DHAP). In addition, we also provided a detailed understanding of the flip-flop mechanism of DHAP across this complex membrane. Interestingly, we noted the role of hydrogen bonds in two distinct coordinated flip-flop phenomena between two DHAP molecules: double flip-flop and assisted flip-flop. Understanding the effects of various concentrations of DHAP on the dynamics within a lipid membrane and the resulting structural properties of the membrane are important when considering the use of DHAP as a dietary supplement or as a potential therapeutic.
Collapse
Affiliation(s)
- Sze May Yee
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
13
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
14
|
Ayuyan AG, Cohen FS. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology. Biophys J 2019; 114:904-918. [PMID: 29490250 DOI: 10.1016/j.bpj.2017.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 10/17/2022] Open
Abstract
Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways.
Collapse
Affiliation(s)
- Artem G Ayuyan
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| | - Fredric S Cohen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
15
|
Elola MD, Rodriguez J. Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers. J Phys Chem B 2018; 122:5897-5907. [PMID: 29742895 DOI: 10.1021/acs.jpcb.8b00360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.
Collapse
Affiliation(s)
- M Dolores Elola
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina
| | - Javier Rodriguez
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina.,ECyT , UNSAM , Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires , Argentina
| |
Collapse
|
16
|
Lopez M, Denver J, Evangelista SE, Armetta A, Di Domizio G, Lee S. Effects of Acyl Chain Unsaturation on Activation Energy of Water Permeability across Droplet Bilayers of Homologous Monoglycerides: Role of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2147-2157. [PMID: 29323917 DOI: 10.1021/acs.langmuir.7b03590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol is an important component of total lipid in mammalian cellular membranes; hence, the knowledge of its association with lipid bilayer membranes will be essential to understanding membrane structure and function. A droplet interface bilayer (DIB) provides a convenient and reliable platform through which values for permeability coefficient and activation energy of water transport across the membrane can be extracted. In this study, we investigated the effect of acyl chain structure in amphiphilic monoglycerides on the permeability of water across DIB membranes composed of cholesterol and these monoglycerides, where the acyl chain length, number of double bonds, and the position of double bond are varied systematically along the acyl chains. To elucidate the role of cholesterol in these membranes, we investigated its influence on water permeability and associated activation energies at two different cholesterol concentrations. Our systematic studies show dramatic sensitivity and selectivity of specific interaction of cholesterol with the monoglyceride bilayer having structural variations in acyl chain compositions. Our findings allow us to delineate the exquisite interplay between membrane properties and structural components and understand the balanced contribution of each.
Collapse
Affiliation(s)
- Maria Lopez
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jacqueline Denver
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sue Ellen Evangelista
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alessandra Armetta
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Gabriella Di Domizio
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
17
|
Nasir MN, Crowet JM, Lins L, Obounou Akong F, Haudrechy A, Bouquillon S, Deleu M. Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes. Biochimie 2016; 130:23-32. [DOI: 10.1016/j.biochi.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
|
18
|
do Canto AMTM, Robalo JR, Santos PD, Carvalho AJP, Ramalho JPP, Loura LMS. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2647-2661. [PMID: 27475296 DOI: 10.1016/j.bbamem.2016.07.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Fluorescence spectroscopy and microscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in these membranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3-4Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using them as membrane reporters.
Collapse
Affiliation(s)
- António M T M do Canto
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - João R Robalo
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal; Theory and Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, D-14424 Potsdam, Germany
| | - Patrícia D Santos
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - Alfredo J Palace Carvalho
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - J P Prates Ramalho
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - Luís M S Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, P-3000-548 Coimbra, Portugal; Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, P-3004-535 Coimbra, Portugal.
| |
Collapse
|
19
|
Konyakhina TM, Feigenson GW. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:153-61. [PMID: 26525664 DOI: 10.1016/j.bbamem.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022]
Abstract
Phospholipids having a polyunsaturated acyl chain are abundant in biological membranes, but their behavior in lipid mixtures is difficult to study. Here we elucidate the nature of such mixtures with this report of the first ternary phase diagram containing the polyunsaturated lipid SDPC in mixtures of BSM/SDPC/Chol (brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol). These mixtures show coexisting macroscopic liquid-disordered (Ld) and liquid-ordered (Lo) phase separation, with phase boundaries determined by FRET and by fluorescence microscopy imaging of giant unilamellar vesicles (GUVs). Surprisingly, SDPC mixes with BSM/Chol similarly to how DOPC and POPC mix with BSM/Chol. Notably, intermediate states are produced within the Ld+Lo liquid-liquid immiscibility region upon addition of fourth component POPC. These mixtures of BSM/SDPC/POPC/Chol exhibit nanoscopic Ld+Lo domains over a very large volume of composition space, possibly because Ld/Lo line tension is not high.
Collapse
Affiliation(s)
- Tatyana M Konyakhina
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Schubert T, Römer W. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26211452 DOI: 10.1016/j.bbamcr.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Thomas Schubert
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Fluorescence study of the effect of cholesterol on spectrin–aminophospholipid interactions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:635-45. [DOI: 10.1007/s00249-015-1057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/26/2022]
|
22
|
General and specific lipid-protein interactions in Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1729-43. [PMID: 25791351 DOI: 10.1016/j.bbamem.2015.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions."
Collapse
|
23
|
Ferrand P, Gasecka P, Kress A, Wang X, Bioud FZ, Duboisset J, Brasselet S. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores. Biophys J 2015; 106:2330-9. [PMID: 24896112 DOI: 10.1016/j.bpj.2014.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
The orientational distribution of fluorophores is an important reporter of the structure and function of their molecular environment. Although this distribution affects the fluorescence signal under polarized-light excitation, its retrieval is limited to a small number of parameters. Because of this limitation, the need for a geometrical model (cone, Gaussian, etc.) to effect such retrieval is often invoked. In this work, using a symmetry decomposition of the distribution function of the fluorescent molecules, we show that polarized two-photon fluorescence based on tunable linear dichroism allows for the retrieval of this distribution with reasonable fidelity and without invoking either an a priori knowledge of the system to be investigated or a geometrical model. We establish the optimal level of detail to which any distribution can be retrieved using this technique. As applied to artificial lipid vesicles and cell membranes, the ability of this method to identify and quantify specific structural properties that complement the more traditional molecular-order information is demonstrated. In particular, we analyze situations that give access to the sharpness of the angular constraint, and to the evidence of an isotropic population of fluorophores within the focal volume encompassing the membrane. Moreover, this technique has the potential to address complex situations such as the distribution of a tethered membrane protein label in an ordered environment.
Collapse
Affiliation(s)
- Patrick Ferrand
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France.
| | - Paulina Gasecka
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| | - Alla Kress
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| | - Xiao Wang
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| | - Fatma-Zohra Bioud
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| | - Julien Duboisset
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France
| |
Collapse
|
24
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
25
|
Abstract
There is growing evidence that cell membranes can contain domains with different lipid and protein compositions and with different physical properties. Furthermore, it is increasingly appreciated that sphingolipids play a crucial role in the formation and properties of ordered lipid domains (rafts) in cell membranes. This review describes recent advances in our understanding of ordered membrane domains in both cells and model membranes. In addition, how the structure of sphingolipids influences their ability to participate in the formation of ordered domains, as well as how sphingolipid structure alters ordered domain properties, is described. The diversity of sphingolipid structure is likely to play an important role in modulating the biologically relevant properties of "rafts" in cell membranes.
Collapse
|
26
|
Baumler SM, Blanchard GJ. Lipid adlayer organization mediated by a liquid overlayer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:429-435. [PMID: 22995467 DOI: 10.1016/j.saa.2012.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
We report on the formation of a chemically bound 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayer on modified Au and silica surfaces, and changes in the organization of the interfacial lipid layer associated with immersion in aqueous solution. We have studied the interface using steady state and time resolved fluorescence spectroscopy, water contact angle and optical ellipsometry measurements, and electrochemical methods. Our data reveal that the DMPC adlayer in contact with air forms a relatively well organized interface that mediates the rotational motion of perylene. In the presence of an aqueous overlayer, perylene reorientation becomes more rapid, consistent with a reduction in the organization of the interfacial lipid adlayer. One implication of this finding is that the interfacial adlayer is less than a uniform monolayer, which is confirmed by electrochemical data. Our data underscore the importance of water in mediating the organization of interfacial lipid adlayers.
Collapse
Affiliation(s)
- S M Baumler
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA
| | | |
Collapse
|
27
|
Li Z, Janosi L, Gorfe AA. Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition. J Am Chem Soc 2012; 134:17278-85. [PMID: 22994893 PMCID: PMC3479155 DOI: 10.1021/ja307716z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments have shown that homologous Ras proteins containing different lipid modification, which is required for membrane binding, form nonoverlapping nanoclusters on the plasma membrane. However, the physical basis for clustering and lateral organization remains poorly understood. We have begun to tackle this issue using coarse-grained molecular dynamics simulations of the H-ras lipid anchor (tH), a triply lipid-modified heptapeptide embedded in a domain-forming mixed lipid bilayer [Janosi L. et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8097]. Here we use the same simulation approach to investigate the effect of peptide concentration and bilayer composition on the clustering and lateral distribution of tH. We found no major difference in the clustering behavior of tH above a certain concentration. However, the simulations predict the existence of a critical concentration below which tH does not form nanoclusters. Moreover, our data demonstrate that cholesterol enhances the stability of tH nanoclusters but is not required for their formation. Finally, analyses of peptide distributions and partition free energies allowed us to quantitatively describe how clustering facilitates the accumulation of tH at the interface between ordered and disordered domains of the simulated bilayer systems. These thermodynamic insights represent some of the key elements for a comprehensive understanding of the molecular basis for the formation and stability of Ras signaling platforms.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Thøgersen L, Nissen P. Flexible P-type ATPases interacting with the membrane. Curr Opin Struct Biol 2012; 22:491-9. [PMID: 22749193 DOI: 10.1016/j.sbi.2012.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023]
Abstract
Cation pumps and lipid flippases of the P-type ATPase family maintain electrochemical gradients and asymmetric lipid distributions across membranes, and offer significant insight of protein:membrane interactions. The sarcoplasmic reticulum Ca(2+)-ATPase features flexible and adaptive interactions with the surrounding membrane, while the Na(+),K(+)-ATPase complex is modulated by membrane components and a role for the γ-subunit as a stabilizer of a specific lipid interaction with the α-subunit has been proposed. The first crystal structure of a heavy-metal transporting ATPase shows a markedly amphipathic helix at the cytoplasmic membrane surface, highlighting this structure as a general motif of all P-type ATPases although with specialization to different membranes. Residues of central importance for the lipid flippase activity of the P4-type ATPase subfamily have been pinpointed by mutational studies, but the transport pathway and mechanism remain unknown.
Collapse
Affiliation(s)
- Lea Thøgersen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
29
|
Chemical–Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation. Cell Biochem Biophys 2012; 64:45-59. [DOI: 10.1007/s12013-012-9365-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Abstract
Psychiatric disorders are a significant source of disability worldwide. Increasing evidence indicates that disturbances of fatty acids and phospholipid metabolism can play a part in a wide range of psychiatric, neurological, and developmental disorders in adults. Essential fatty acids, ω-3 and ω-6 polyunsaturated fatty acids, play a central role in the normal development and functioning of the brain and central nervous system. The aim of this article is to discuss the overall insight into roles of essential fatty acids in the development of mental disorders (depression, schizophrenia, bipolar disorder) and, in light of the fact that disturbances of fatty acid metabolism can play a part in the above-mentioned disorders, to investigate the current knowledge of lipid abnormalities in posttraumatic stress disorder. The information in this review was obtained after extensive MEDLINE searching of each topic area through relevant published studies from the past 20 years. References from the obtained studies were also used. This review summarizes the knowledge in terms of essential fatty acids intake and metabolism, as well as evidence pointing to potential mechanisms of essential fatty acids in normal brain functioning and development of neuropsychiatric disorders. The literature shows that ω-3 fatty acids provide numerous health benefits and that changes in their concentration in organisms are connected to a variety of psychiatric symptoms and disorders, including stress, anxiety, cognitive impairment, mood disorders, and schizophrenia. Further studies are necessary to confirm ω-3 fatty acids' supplementation as a potential rational treatment in psychiatric disorders.
Collapse
Affiliation(s)
- Marina Mandelsamen Perica
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, HR-10 000 Zagreb, Croatia
| | | |
Collapse
|
31
|
Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 2011; 99:3309-18. [PMID: 21081079 DOI: 10.1016/j.bpj.2010.09.064] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/08/2010] [Accepted: 09/29/2010] [Indexed: 01/28/2023] Open
Abstract
Phase diagrams of ternary lipid mixtures containing cholesterol have provided valuable insight into cell membrane behaviors, especially by describing regions of coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. Fluorescence microscopy imaging of giant unilamellar vesicles has greatly assisted the determination of phase behavior in these systems. However, the requirement for optically resolved Ld + Lo domains can lead to the incorrect inference that in lipid-only mixtures, Ld + Lo domain coexistence generally shows macroscopic domains. Here we show this inference is incorrect for the low melting temperature phosphatidylcholines abundant in mammalian plasma membranes. By use of high compositional resolution Förster resonance energy transfer measurements, together with electron spin resonance data and spectral simulation, we find that ternary mixtures of DSPC and cholesterol together with either POPC or SOPC, do indeed have regions of Ld + Lo coexistence. However, phase domains are much smaller than the optical resolution limit, likely on the order of the Förster distance for energy transfer (R(0), ∼2-8 nm).
Collapse
Affiliation(s)
- Frederick A Heberle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
32
|
Kučerka N, Marquardt D, Harroun TA, Nieh MP, Wassall SR, de Jong DH, Schäfer LV, Marrink SJ, Katsaras J. Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation. Biochemistry 2010; 49:7485-93. [DOI: 10.1021/bi100891z] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Norbert Kučerka
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada
- Department of Physical Chemistry of Drugs, Comenius University, 835 35 Bratislava, Slovakia
| | - Drew Marquardt
- Department of Physics, Brock University, St. Catherines, Ontario L2S 3A1, Canada
| | - Thad A. Harroun
- Department of Physics, Brock University, St. Catherines, Ontario L2S 3A1, Canada
| | - Mu-Ping Nieh
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada
| | - Stephen R. Wassall
- Department of Physics, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Djurre H. de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Lars V. Schäfer
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - John Katsaras
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada
- Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
33
|
Fraňová M, Repáková J, Čapková P, Holopainen JM, Vattulainen I. Effects of DPH on DPPC−Cholesterol Membranes with Varying Concentrations of Cholesterol: From Local Perturbations to Limitations in Fluorescence Anisotropy Experiments. J Phys Chem B 2010; 114:2704-11. [DOI: 10.1021/jp908533x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Miroslava Fraňová
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-12116 Czech Republic, Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland, Nanotechnology Centre, Technical University of Ostrava, 17.listopadu 15, 70833 Ostrava, Czech Republic, Helsinki Eye Lab, Department of Ophthalmology, University of Helsinki, Haartmaninkatu 4 C, FI-00290 Helsinki, Finland, Department of Physics, Tampere
| | - Jarmila Repáková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-12116 Czech Republic, Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland, Nanotechnology Centre, Technical University of Ostrava, 17.listopadu 15, 70833 Ostrava, Czech Republic, Helsinki Eye Lab, Department of Ophthalmology, University of Helsinki, Haartmaninkatu 4 C, FI-00290 Helsinki, Finland, Department of Physics, Tampere
| | - Pavla Čapková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-12116 Czech Republic, Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland, Nanotechnology Centre, Technical University of Ostrava, 17.listopadu 15, 70833 Ostrava, Czech Republic, Helsinki Eye Lab, Department of Ophthalmology, University of Helsinki, Haartmaninkatu 4 C, FI-00290 Helsinki, Finland, Department of Physics, Tampere
| | - Juha M. Holopainen
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-12116 Czech Republic, Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland, Nanotechnology Centre, Technical University of Ostrava, 17.listopadu 15, 70833 Ostrava, Czech Republic, Helsinki Eye Lab, Department of Ophthalmology, University of Helsinki, Haartmaninkatu 4 C, FI-00290 Helsinki, Finland, Department of Physics, Tampere
| | - Ilpo Vattulainen
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, CZ-12116 Czech Republic, Department of Applied Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland, Nanotechnology Centre, Technical University of Ostrava, 17.listopadu 15, 70833 Ostrava, Czech Republic, Helsinki Eye Lab, Department of Ophthalmology, University of Helsinki, Haartmaninkatu 4 C, FI-00290 Helsinki, Finland, Department of Physics, Tampere
| |
Collapse
|
34
|
Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain. GENES AND NUTRITION 2009; 4:309-14. [PMID: 19727886 DOI: 10.1007/s12263-009-0141-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/15/2022]
Abstract
The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer's disease. Despite years of research, pharmacological interventions to treat or forestall the development of Alzheimer's disease have primarily focused on enhancing cholinergic transmission, either through increasing acetylcholine (ACh) synthesis or inhibition of the acetylcholinesterase enzyme responsible for ACh hydrolysis. However, recent studies have indicated that dietary supplementation can impact the cholinergic system, particularly during aging. The purpose of the present review is to examine the relevant research suggesting that cholinergic functioning may be maintained during aging via consuming a diet containing polyunsaturated fatty acids (PUFAs). The data reviewed herein indicate that, at least in animal studies, inclusion of PUFAs in the diet can improve cholinergic transmission in the brain, possibly leading to improvements in cognitive functioning.
Collapse
|
35
|
Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments. J Am Chem Soc 2009; 131:12714-20. [DOI: 10.1021/ja903529f] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. F. Drew Bennett
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Justin L. MacCallum
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marlon J. Hinner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Chapter 1 Free Energies of Lipid–Lipid Interactions in Membranes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1574-1400(09)00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Detailed molecular dynamics simulations of model biological membranes containing cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:86-96. [DOI: 10.1016/j.bbamem.2008.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/18/2022]
|
38
|
Polyunsaturated fatty acid–cholesterol interactions: Domain formation in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:24-32. [DOI: 10.1016/j.bbamem.2008.10.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
|
39
|
Greenough KP, Blanchard GJ. Lipid headgroups mediate organization and dynamics in bilayers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 71:2050-2056. [PMID: 18805049 DOI: 10.1016/j.saa.2008.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
We report on the fluorescence lifetime and anisotropy decay dynamics of the tethered chromophore NBD in unilamellar vesicles comprised of phosphoglycerol and phosphocholine lipids with C(12) and C(18) saturated acyl chains, with or without cholesterol and/or sphingomyelin. For the phosphocholine vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and for the phosphoglycerol vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (NBD-PG). The addition of cholesterol and/or sphingomyelin to the PC vesicles restricts the chromophore environment, in agreement with the known rigidizing effect of cholesterol on PC membranes. The PG systems do not exhibit an analogous effect with the addition of cholesterol and/or sphingomyelin. The motional freedom of the NBD chromophore is, in general, more restricted in the PC bilayers than it is in the PG bilayers, and we understand this behavior in the context of the role of the lipid headgroups in mediating bilayer organization.
Collapse
Affiliation(s)
- Kelly P Greenough
- Michigan State University, Department of Chemistry, East Lansing, MI 48824, United States
| | | |
Collapse
|
40
|
Ordering effects of cholesterol and its analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:97-121. [DOI: 10.1016/j.bbamem.2008.08.022] [Citation(s) in RCA: 450] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
41
|
Chong PLG, Zhu W, Venegas B. On the lateral structure of model membranes containing cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2-11. [DOI: 10.1016/j.bbamem.2008.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 10/18/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
42
|
Asymmetric rotor-like probes to polarized fluorescence study of the macroscopically oriented uniaxial media: Model parameters recognition. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Harroun TA, Katsaras J, Wassall SR. Cholesterol Is Found To Reside in the Center of a Polyunsaturated Lipid Membrane. Biochemistry 2008; 47:7090-6. [DOI: 10.1021/bi800123b] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thad A. Harroun
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| | - John Katsaras
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| | - Stephen R. Wassall
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| |
Collapse
|
44
|
The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys J 2008; 95:2792-805. [PMID: 18515383 DOI: 10.1529/biophysj.107.122465] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer's hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers.
Collapse
|
45
|
Abstract
The plasma membranes of all eukaryotic cells contain heterogeneous self-organising intrinsically unstable liquid ordered domains or lipid assemblies in which key signal transduction proteins are localised. These assemblies are classified as 'lipid rafts' (10-200 nm), which are composed mostly of cholesterol and sphingolipid microdomains and therefore do not integrate well into the fluid phospholipid bilayers. In addition, caveolae represent a subtype of lipid raft macrodomain that form flask-shaped membrane invaginations containing structural proteins, i.e. caveolins. With respect to the diverse biological effects of long-chain PUFA, increasing evidence suggests that n-3 PUFA and perhaps conjugated fatty acids uniquely alter the basic properties of cell membranes. Because of its polyunsaturation, DHA and possibly conjugated linoleic acid are sterically incompatible with sphingolipid and cholesterol and, therefore, appear to alter lipid raft behaviour and protein function. The present review examines the evidence indicating that dietary sources of n-3 PUFA can profoundly alter the biochemical make up of lipid rafts/caveolae microdomains, thereby influencing cell signalling, protein trafficking and cell cytokinetics.
Collapse
|
46
|
Abstract
Solid-state (2)H-NMR of [(2)H(31)]-N-palmitoylsphingomyelin ([(2)H(31)]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE, PDPE) and cholesterol. When compared with (2)H-NMR data for analogous mixtures of [(2)H(31)]16:0-18:1PE (POPE*) or [(2)H(31)]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA--but not for OA--excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft) domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane domains.
Collapse
|
47
|
Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids 2008; 153:14-23. [PMID: 18346463 DOI: 10.1016/j.chemphyslip.2008.02.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A growing body of epidemiological, clinical, and experimental evidence has underscored both the pharmacological potential and the nutritional value of dietary fish oil enriched in very long chain n-3 PUFAs such as docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3). The broad health benefits of very long chain n-3 PUFAs and the pleiotropic effects of dietary fish oil and DHA have been proposed to involve alterations in membrane structure and function, eicosanoid metabolism, gene expression and the formation of lipid peroxidation products, although a comprehensive understanding of the mechanisms of action has yet to be elucidated. In this review, we present data demonstrating that DHA selectively modulates the subcellular localization of lipidated signaling proteins depending on their transport pathway, which may be universally applied to other lipidated protein trafficking. An interesting possibility raised by the current observations is that lipidated proteins may exhibit different subcellular distribution profiles in various tissues, which contain a distinct membrane lipid composition. In addition, the current findings clearly indicate that subcellular localization of proteins with a certain trafficking pathway can be subjected to selective regulation by dietary manipulation. This form of regulated plasma membrane targeting of a select subset of upstream signaling proteins may provide cells with the flexibility to coordinate the arrangement of signaling translators on the cell surface. Ultimately, this may allow organ systems such as the colon to optimally decode, respond, and adapt to the vagaries of an ever-changing extracellular environment.
Collapse
Affiliation(s)
- Robert S Chapkin
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843-2553, United States.
| | | | | | | |
Collapse
|
48
|
Chapter 9 On the Nature of Lipid Rafts: Insights from Molecularly Detailed Simulations of Model Biological Membranes Containing Mixtures of Cholesterol and Phospholipids. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
49
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
50
|
Estronca LMBB, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of the association of dehydroergosterol with lipid bilayer membranes. Biophys J 2007; 93:4244-53. [PMID: 17766353 PMCID: PMC2098731 DOI: 10.1529/biophysj.107.112847] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the detailed kinetics and thermodynamics of the association of Ergosta-5,7,9(11),22-tetraen-3beta-ol (dehydroergosterol, DHE) with lipid bilayers prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), a 1:1 binary mixture of POPC and cholesterol (Chol), and a 6:4 binary mixture of egg sphingomyelin (SpM) and Chol. Association of DHE with all three membranes was shown to be entropically driven, most so in the case of SpM-Chol bilayers. Equilibrium partition coefficients for partitioning of DHE between the lipid phase and the aqueous phase were shown to be similar for POPC and POPC-Chol bilayers between 15 and 35 degrees C. Partitioning into the SpM-Chol bilayer is favored at higher temperatures and there is a crossover in solubility preference at approximately 25 degrees C. Insertion (k(+)) and desorption (k(-)) rate constants were shown to be very similar for POPC and POPC-Chol bilayer membranes, but were lower for SpM-Chol bilayers. Similar results were previously reported by us for the association of other amphiphiles with these membranes. We propose a model for the microscopic structure of a POPC-Chol (1:1) bilayer membrane that is consistent with these observations.
Collapse
|