1
|
Zhang Y, Wang M, Shao G, Shang Q, Dong M, Qin X, Mi LZ. Multiple allostery in the regulation of PDGFR beta kinase activities. Acta Biochim Biophys Sin (Shanghai) 2024; 57:344-355. [PMID: 39623946 PMCID: PMC11986439 DOI: 10.3724/abbs.2024205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 04/04/2025] Open
Abstract
Platelet-derived growth factor receptor beta (PDGFRβ), a type III receptor tyrosine kinase (RTK) with a featured kinase insert, regulates important cellular functions. Dysregulation of PDGFRβ is associated with cardiovascular and fibrosis diseases. Thus, its kinase activity needs to be precisely regulated under physiological conditions. Early studies demonstrated that its kinase is autoinhibited by its juxtamembrane segment and activated by transphosphorylation. However, additional mechanisms are required for the comprehensive regulation of the receptor kinase. Herein, we provide evidence that dimerization of activated kinases, autoinhibition by the kinase insert, and dimerization of inactive kinase, all contribute to the regulation of the receptor kinase. Moreover, we find such multiple allosteric regulation is also conserved in other type III RTKs, including colony stimulating factor 1 receptor (CSF1R). Impaired allosteric regulation of CSF1R is associated with malfunctions of microglia and demyelination of neurons in hereditary diffuse leukoencephalopathy with spheroids (HDLS).
Collapse
Affiliation(s)
- Yanfeng Zhang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Meimei Wang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Guangcan Shao
- National Institute of Biological SciencesBeijing102206China
| | - Qingbin Shang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Mengqiu Dong
- National Institute of Biological SciencesBeijing102206China
| | - Xiaohong Qin
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Li-Zhi Mi
- School of Life SciencesTianjin UniversityTianjin300072China
| |
Collapse
|
2
|
Clayton AHA. Phase-Sensitive Fluorescence Image Correlation Spectroscopy. Int J Mol Sci 2024; 25:11165. [PMID: 39456948 PMCID: PMC11508332 DOI: 10.3390/ijms252011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal function that is sensitive to the lifetime of the fluorescent species. In this paper, the theory of phase-sensitive fluorescence image correlation spectroscopy is described. In this version of lifetime imaging, image correlation spectroscopy analysis (i.e., spatial autocorrelation) is applied to successive fluorescence images acquired at different phase settings of the detector. Simulations of different types of lifetime distributions reveal that the phase-dependent density of fluorescent objects is dependent on the heterogeneity of lifetimes present in the objects. We provide an example of this analysis workflow to a cervical cancer cell stained with a fluorescent membrane probe.
Collapse
Affiliation(s)
- Andrew H A Clayton
- Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
3
|
Gopal AA, Fernandez B, Delano J, Weissleder R, Dubach JM. PARP trapping is governed by the PARP inhibitor dissociation rate constant. Cell Chem Biol 2024; 31:1373-1382.e10. [PMID: 38262416 PMCID: PMC11259578 DOI: 10.1016/j.chembiol.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of DNA damage. Yet, PARPi function mainly by trapping PARP1 onto DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi koff. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.
Collapse
Affiliation(s)
- Angelica A Gopal
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Bianca Fernandez
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Justin Delano
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - J Matthew Dubach
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
| |
Collapse
|
4
|
Dubach RA, Dubach JM. Autocorrelation analysis of a phenotypic screen reveals hidden drug activity. Sci Rep 2024; 14:10046. [PMID: 38698021 PMCID: PMC11066105 DOI: 10.1038/s41598-024-60654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Phenotype based screening is a powerful tool to evaluate cellular drug response. Through high content fluorescence imaging of simple fluorescent labels and complex image analysis phenotypic measurements can identify subtle compound-induced cellular changes unique to compound mechanisms of action (MoA). Recently, a screen of 1008 compounds in three cell lines was reported where analysis detected changes in cellular phenotypes and accurately identified compound MoA for roughly half the compounds. However, we were surprised that DNA alkylating agents and other compounds known to induce or impact the DNA damage response produced no measured activity in cells with fluorescently labeled 53BP1-a canonical DNA damage marker. We hypothesized that phenotype analysis is not sensitive enough to detect small changes in 53BP1 distribution and analyzed the screen images with autocorrelation image analysis. We found that autocorrelation analysis, which quantifies fluorescently-labeled protein clustering, identified higher compound activity for compounds and MoAs known to impact the DNA damage response, suggesting altered 53BP1 recruitment to damaged DNA sites. We then performed experiments under more ideal imaging settings and found autocorrelation analysis to be a robust measure of changes to 53BP1 clustering in the DNA damage response. These results demonstrate the capacity of autocorrelation to detect otherwise undetectable compound activity and suggest that autocorrelation analysis of specific proteins could serve as a powerful screening tool.
Collapse
Affiliation(s)
| | - J Matthew Dubach
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
5
|
Morales SV, Mahmood A, Pollard J, Mayne J, Figeys D, Wiseman PW. The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis. Biophys J 2023; 122:3783-3797. [PMID: 37559362 PMCID: PMC10541495 DOI: 10.1016/j.bpj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-β-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-β-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.
Collapse
Affiliation(s)
- Sebastian V Morales
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Ahmad Mahmood
- Department of Physics, Faculty of Science, McGill University, Montreal, Canada
| | - Jacob Pollard
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul W Wiseman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada; Department of Physics, Faculty of Science, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Abu-Arish A, Pandžić E, Luo Y, Sato Y, Turner MJ, Wiseman PW, Hanrahan JW. Lipid-driven CFTR clustering is impaired in CF and restored by corrector drugs. J Cell Sci 2022; 135:274066. [PMID: 35060604 PMCID: PMC8976878 DOI: 10.1242/jcs.259002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022] Open
Abstract
Membrane proteins often cluster in nanoscale membrane domains (lipid rafts) that coalesce into ceramide-rich platforms during cell stress, however the clustering mechanisms remain uncertain. The cystic fibrosis transmembrane conductance regulator (CFTR), which is mutated in cystic fibrosis (CF), forms clusters that are cholesterol-dependent and become incorporated into long-lived platforms during hormonal stimulation. We report here that clustering does not involve known tethering interactions of CFTR with PDZ domain proteins, filamin A or the actin cytoskeleton. It also does not require CFTR palmitoylation but is critically dependent on membrane lipid order and is induced by detergents that increase the phase separation of membrane lipids. Clustering and integration of CFTR into ceramide-rich platforms are abolished by the disease mutations F508del and S13F and rescued by the CFTR modulators elexacaftor+tezacaftor. These results indicate CF therapeutics that correct mutant protein folding restore both trafficking and normal lipid interactions in the plasma membrane.
Collapse
Affiliation(s)
- Asmahan Abu-Arish
- Department of Physiology, McGill University, Montréal QC H3G 1Y6, Canada
- Cystic Fibrosis Translational Research centre, McGill University, Canada
| | - Elvis Pandžić
- UNSW Australia, Biomedical Imaging Facility, Mark Wainwright Analytical Center, Sydney, Australia
| | - Yishan Luo
- Department of Physiology, McGill University, Montréal QC H3G 1Y6, Canada
- Cystic Fibrosis Translational Research centre, McGill University, Canada
| | - Yukiko Sato
- Department of Physiology, McGill University, Montréal QC H3G 1Y6, Canada
- Cystic Fibrosis Translational Research centre, McGill University, Canada
| | - Mark J. Turner
- Department of Physiology, McGill University, Montréal QC H3G 1Y6, Canada
- Cystic Fibrosis Translational Research centre, McGill University, Canada
| | - Paul W. Wiseman
- Department of Chemistry and Department of Physics, McGill University, Montréal, QC, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal QC H3G 1Y6, Canada
- Cystic Fibrosis Translational Research centre, McGill University, Canada
- Research Institute of the McGill University Health Centre, Canada
| |
Collapse
|
8
|
Revealing Plasma Membrane Nano-Domains with Diffusion Analysis Methods. MEMBRANES 2020; 10:membranes10110314. [PMID: 33138102 PMCID: PMC7693849 DOI: 10.3390/membranes10110314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Nano-domains are sub-light-diffraction-sized heterogeneous areas in the plasma membrane of cells, which are involved in cell signalling and membrane trafficking. Throughout the last thirty years, these nano-domains have been researched extensively and have been the subject of multiple theories and models: the lipid raft theory, the fence model, and the protein oligomerization theory. Strong evidence exists for all of these, and consequently they were combined into a hierarchal model. Measurements of protein and lipid diffusion coefficients and patterns have been instrumental in plasma membrane research and by extension in nano-domain research. This has led to the development of multiple methodologies that can measure diffusion and confinement parameters including single particle tracking, fluorescence correlation spectroscopy, image correlation spectroscopy and fluorescence recovery after photobleaching. Here we review the performance and strengths of these methods in the context of their use in identification and characterization of plasma membrane nano-domains.
Collapse
|
9
|
Abu-Arish A, Pandžić E, Kim D, Tseng HW, Wiseman PW, Hanrahan JW. Agonists that stimulate secretion promote the recruitment of CFTR into membrane lipid microdomains. J Gen Physiol 2019; 151:834-849. [PMID: 31048413 PMCID: PMC6572005 DOI: 10.1085/jgp.201812143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/05/2019] [Indexed: 01/20/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a tightly regulated anion channel that mediates secretion by epithelia and is mutated in the disease cystic fibrosis. CFTR forms macromolecular complexes with many proteins; however, little is known regarding its associations with membrane lipids or the regulation of its distribution and mobility at the cell surface. We report here that secretagogues (agonists that stimulate secretion) such as the peptide hormone vasoactive intestinal peptide (VIP) and muscarinic agonist carbachol increase CFTR aggregation into cholesterol-dependent clusters, reduce CFTR lateral mobility within and between membrane microdomains, and trigger the fusion of clusters into large (3.0 µm2) ceramide-rich platforms. CFTR clusters are closely associated with motile cilia and with the enzyme acid sphingomyelinase (ASMase) that is constitutively bound on the cell surface. Platform induction is prevented by pretreating cells with cholesterol oxidase to disrupt lipid rafts or by exposure to the ASMase functional inhibitor amitriptyline or the membrane-impermeant reducing agent 2-mercaptoethanesulfonate. Platforms are reversible, and their induction does not lead to an increase in apoptosis; however, blocking platform formation does prevent the increase in CFTR surface expression that normally occurs during VIP stimulation. These results demonstrate that CFTR is colocalized with motile cilia and reveal surprisingly robust regulation of CFTR distribution and lateral mobility, most likely through autocrine redox activation of extracellular ASMase. Formation of ceramide-rich platforms containing CFTR enhances transepithelial secretion and likely has other functions related to inflammation and mucosal immunity.
Collapse
Affiliation(s)
- Asmahan Abu-Arish
- Department of Physiology, McGill University, Montréal, Canada
- Department of Physics, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Elvis Pandžić
- Department of Physics, McGill University, Montréal, Canada
| | - Dusik Kim
- Department of Physiology, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Hsin Wei Tseng
- Department of Physiology, McGill University, Montréal, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montréal, Canada
- Department of Chemistry, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
- McGill University Health Centre Research Institute, Montréal, Canada
| |
Collapse
|
10
|
Bidaux G, Le Nézet C, Pisfil MG, Henry M, Furlan A, Bensaude O, Vandenbunder B, Héliot L. FRET Image Correlation Spectroscopy Reveals RNAPII-Independent P-TEFb Recruitment on Chromatin. Biophys J 2019; 114:522-533. [PMID: 29414698 DOI: 10.1016/j.bpj.2017.11.3783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Biochemical studies have revealed that the RNA Polymerase II (RNAPII) pause release is triggered by phosphorylation of the transcription machinery by the positive transcription elongation factor b (P-TEFb). However, there are no direct report that P-TEFb and RNA polymerase II interact in single living cells and the biophysical mechanisms mediating this association are still unclear. Förster resonance energy transfer (FRET) detects molecular interactions at the subcellular level. Time domain fluorescence lifetime imaging provides an accurate quantification of FRET efficiency, EFRET, because it is fluorochrome concentration-independent and insensitive to fluorescence bleed-through. However, the way FRET signal is usually analyzed does not provide information about the areas where protein-protein interactions take place. In this work, we developed a method, dubbed FRET image correlation spectroscopy (FICS), which relied on FRET fluorescence lifetime imaging image acquisition and image correlation spectroscopy of EFRET clusters to quantify the spatial distribution of interaction clusters in the nucleus. The combination of high content FRET microscopy with batch image analysis allowed a robust statistical analysis. By applying FICS, we characterized the area and density of interaction clusters between P-TEFb and RNAPII or histone H2A in single living cells. The FICS method applied to cells expressing genetically engineered mutated proteins confirmed that the histidine-rich domain of P-TEFb is required for its interaction with RNAPII. Furthermore, it demonstrated that P-TEFb was also located in close vicinity to histone H2A, independently of its interactions with RNAPII. These results support the hypothesis that P-TEFb dynamics on chromatin regulate its recruitment on RNAPII.
Collapse
Affiliation(s)
- Gabriel Bidaux
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France.
| | - Corentin Le Nézet
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Mariano Gonzalez Pisfil
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Mélanie Henry
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Alessandro Furlan
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Oliver Bensaude
- S-2 Génomique Fonctionnelle, IBENS, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris, France
| | - Bernard Vandenbunder
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France
| | - Laurent Héliot
- CNRS UMR 8523, Laboratoire de Physique des Lasers, Atomes et Molécules, University Lille, Lille, France.
| |
Collapse
|
11
|
Mohsin ASM, Salim MB. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy. Int J Nanomedicine 2018; 13:6019-6028. [PMID: 30323589 PMCID: PMC6177377 DOI: 10.2147/ijn.s175523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have introduced a novel method to quantify the intracellular refractive index (RI) of living cells and determine the molecular interaction of two interacting molecules using single particle spectroscopy. The advantages of this proposed technique over fluorescence-based imaging techniques is that it does not require any contrasting agent and it does not blink and bleach. Instead, our technique provides a non-destructive, non-invasive, high-resolution imaging of live cells. METHODS To verify our technique, we initially tested our approach for a dielectric medium where gold nanoparticles (AuNPs) were embedded in a polyvinyl alcohol (PVA) matrix, which was then extended to the cellular environment. In the dielectric medium, we identified the single particle and dimer and determined the interparticle distance of AuNPs using confocal laser scattering microscopy. We also determined the single particle RI from dark-field scattering microscopy images, which was confirmed with Mie theory and finite-difference time-domain (FDTD) simulated results. The single particle spectroscopy and microscopy technique was then extended to determine the intracellular RI and biomolecular interaction inside living cells using hyperspectral imaging and dark-field scattering microscopy. RESULTS The novelty of the paper lies in the demonstration of a direct and accurate method to probe the intracellular RI and molecular interaction focused on single particle analysis whereas previous demonstrations were based on AuNP ensembles. Optically acquired single particle and dimer images was verified by correlated SEM images also optical spectrum with analytical models and FDTD simulations for both the dielectric and cellular environment. We reported the interparticle distance of AuNPs inside HeLa cells and intracellular refractive index, which was also confirmed with Mie Theory and extensive FDTD simulations. CONCLUSION Moreover, we believe that our in-depth plasmonic NP-based alternate imaging technique will provide a new insight in monitoring cellular dynamics and tracking the targeted NPs within live cells, enabling us to use plasmonic NPs as an intracellular biosensor.
Collapse
Affiliation(s)
- Abu S M Mohsin
- Centre for Micro-Photonics, Department of Physics, Swinburne University of Technology, Melbourne, VIC 3122, Australia,
| | - Mariam B Salim
- Electrical and Telecommunication Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
12
|
Parslow AC, Clayton AHA, Lock P, Scott AM. Confocal Microscopy Reveals Cell Surface Receptor Aggregation Through Image Correlation Spectroscopy. J Vis Exp 2018:57164. [PMID: 30124657 PMCID: PMC6126602 DOI: 10.3791/57164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Confocal microscopy provides an accessible methodology to capture sub-cellular interactions critical for the characterization and further development of pre-clinical agents labeled with fluorescent probes. With recent advancements in antibody based cytotoxic drug delivery systems, understanding the alterations induced by these agents within the realm of receptor aggregation and internalization is of critical importance. This protocol leverages the well-established methodology of fluorescent immunocytochemistry and the open source FIJI distribution of ImageJ, with its inbuilt autocorrelation and image mathematical functions, to perform spatial image correlation spectroscopy (ICS). This protocol quantitates the fluorescent intensity of labeled receptors as a function of the beam area of the confocal microscope. This provides a quantitative measure of the state of target molecule aggregation on the cell surface. This methodology is focused on the characterization of static cells with potential to expand into temporal investigations of receptor aggregation. This protocol presents an accessible methodology to provide quantification of clustering events occurring at the cell surface, utilizing well established techniques and non-specialized imaging apparatus.
Collapse
Affiliation(s)
- Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute; School of Cancer Medicine, La Trobe University
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology
| | - Peter Lock
- LIMS Bioimaging Facility, La Trobe Institute for Molecular Science, La Trobe University
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute; School of Cancer Medicine, La Trobe University; Department of Medical Oncology, Olivia Newton-John Cancer and Wellnes Centre, Austin Health; Department of Medicine, University of Melbourne; Department of Molecular Imaging and Therapy, Austin Health;
| |
Collapse
|
13
|
Chakraborty H, Jafurulla M, Clayton AHA, Chattopadhyay A. Exploring oligomeric state of the serotonin1A receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function. Faraday Discuss 2018; 207:409-421. [DOI: 10.1039/c7fd00192d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photobleaching image correlation spectroscopy (pbICS) reveals that membrane cholesterol modulates the oligomeric state of the serotonin1A receptor.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
- School of Chemistry
- Sambalpur University
| | - Md. Jafurulla
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007
- India
| | - Andrew H. A. Clayton
- Centre for Microphotonics
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn
| | | |
Collapse
|
14
|
Toplak T, Palmieri B, Juanes-García A, Vicente-Manzanares M, Grant M, Wiseman PW. Wavelet Imaging on Multiple Scales (WIMS) reveals focal adhesion distributions, dynamics and coupling between actomyosin bundle stability. PLoS One 2017; 12:e0186058. [PMID: 29049414 PMCID: PMC5648137 DOI: 10.1371/journal.pone.0186058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
We introduce and use Wavelet Imaging on Multiple Scales (WIMS) as an improvement to fluorescence correlation spectroscopy to measure physical processes and features that occur across multiple length scales. In this study, wavelet transforms of cell images are used to characterize molecular dynamics at the cellular and subcellular levels (i.e. focal adhesions). We show the usefulness of the technique by applying WIMS to an image time series of a migrating osteosarcoma cell expressing fluorescently labelled adhesion proteins, which allows us to characterize different components of the cell ranging from optical resolution scale through to focal adhesion and whole cell size scales. Using WIMS we measured focal adhesion numbers, orientation and cell boundary velocities for retraction and protrusion. We also determine the internal dynamics of individual focal adhesions undergoing assembly, disassembly or elongation. Thus confirming as previously shown, WIMS reveals that the number of adhesions and the area of the protruding region of the cell are strongly correlated, establishing a correlation between protrusion size and adhesion dynamics. We also apply this technique to characterize the behavior of adhesions, actin and myosin in Chinese hamster ovary cells expressing a mutant form of myosin IIB (1935D) that displays decreased filament stability and impairs front-back cell polarity. We find separate populations of actin and myosin at each adhesion pole for both the mutant and wild type form. However, we find these populations move rapidly inwards toward one another in the mutant case in contrast to the cells that express wild type myosin IIB where those populations remain stationary. Results obtained with these two systems demonstrate how WIMS has the potential to reveal novel correlations between chosen parameters that belong to different scales.
Collapse
Affiliation(s)
- Tim Toplak
- Department of Physics, McGill University, Montréal, Québec, Canada
| | - Benoit Palmieri
- Department of Physics, McGill University, Montréal, Québec, Canada
| | - Alba Juanes-García
- Universidad Autonoma de Madrid School of Medicine/IIS-Princesa Diego de Leon, Madrid, Spain
| | | | - Martin Grant
- Department of Physics, McGill University, Montréal, Québec, Canada
| | - Paul W. Wiseman
- Department of Physics, McGill University, Montréal, Québec, Canada
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
15
|
Gopal AA, Ricoult SG, Harris SN, Juncker D, Kennedy TE, Wiseman PW. Spatially Selective Dissection of Signal Transduction in Neurons Grown on Netrin-1 Printed Nanoarrays via Segmented Fluorescence Fluctuation Analysis. ACS NANO 2017; 11:8131-8143. [PMID: 28679208 DOI: 10.1021/acsnano.7b03004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Axonal growth cones extend during neural development in response to precise distributions of extracellular cues. Deleted in colorectal cancer (DCC), a receptor for the chemotropic guidance cue netrin-1, directs F-actin reorganization, and is essential for mammalian neural development. To elucidate how the extracellular distribution of netrin-1 influences the distribution of DCC and F-actin within axonal growth cones, we patterned nanoarrays of substrate bound netrin-1 using lift-off nanocontact printing. The distribution of DCC and F-actin in embryonic rat cortical neuron growth cones was then imaged using total internal reflection fluorescence (TIRF) microscopy. Fluorescence fluctuation analysis via image cross-correlation spectroscopy (ICCS) was applied to extract the molecular density and aggregation state of DCC and F-actin, identifying the fraction of DCC and F-actin colocalizing with the patterned netrin-1 substrate. ICCS measurement of spatially segmented images based on the substrate nanodot patterns revealed distinct molecular distributions of F-actin and DCC in regions directly overlying the nanodots compared to over the reference surface surrounding the nanodots. Quantifiable variations between the populations of DCC and F-actin on and off the nanodots reveal specific responses to the printed protein substrate. We report that nanodots of substrate-bound netrin-1 locally recruit and aggregate DCC and direct F-actin organization. These effects were blocked by tetanus toxin, consistent with netrin-1 locally recruiting DCC to the plasma membrane via a VAMP2-dependent mechanism. Our findings demonstrate the utility of segmented ICCS image analysis, combined with precisely patterned immobilized ligands, to reveal local receptor distribution and signaling within specialized subcellular compartments.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Sebastien G Ricoult
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Stephanie N Harris
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - David Juncker
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Timothy E Kennedy
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| | - Paul W Wiseman
- Department of Chemistry, ‡Department of Neurology and Neurosurgery, Montreal Neurological Institute, §Department of Biomedical Engineering, Genome Quebec Innovation Centre, and ∥Department of Physics, McGill University , Montreal, Quebec H3A 0G4 Canada
| |
Collapse
|
16
|
Shang Q, Zhao L, Wang X, Wang M, Sui SF, Mi LZ. Expression and purification of functional PDGF receptor beta. Biochem Biophys Res Commun 2017; 489:353-359. [DOI: 10.1016/j.bbrc.2017.05.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
17
|
An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat Commun 2017; 8:15100. [PMID: 28452360 PMCID: PMC5414349 DOI: 10.1038/ncomms15100] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/21/2017] [Indexed: 01/12/2023] Open
Abstract
Clustering of the T-cell receptor (TCR) is thought to initiate downstream signalling. However, the detection of protein clustering with high spatial and temporal resolution remains challenging. Here we establish a Förster resonance energy transfer (FRET) sensor, named CliF, which reports intermolecular associations of neighbouring proteins in live cells. A key advantage of the single-chain FRET sensor is that it can be combined with image correlation spectroscopy (ICS), single-particle tracking (SPT) and fluorescence lifetime imaging microscopy (FLIM). We test the sensor with a light-sensitive actuator that induces protein aggregation upon radiation with blue light. When applied to T cells, the sensor reveals that TCR triggering increases the number of dense TCR–CD3 clusters. Further, we find a correlation between cluster movement within the immunological synapse and cluster density. In conclusion, we develop a sensor that allows us to map the dynamics of protein clustering in live T cells. Cellular signalling is often facilitated by membrane protein clustering, but detection of protein clustering at high spatiotemporal resolution is challenging. Here the authors develop a single-chain FRET sensor they name CliF to look at intermolecular associations and dynamics of TCR-CD3 clusters on the T cell surface.
Collapse
|
18
|
Gopal AA, Rappaz B, Rouger V, Martyn IB, Dahlberg PD, Meland RJ, Beamish IV, Kennedy TE, Wiseman PW. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS. Biophys J 2017; 110:623-634. [PMID: 26840727 DOI: 10.1016/j.bpj.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or by pharmacological block of Src family kinase signaling, consistent with receptor recruitment requiring netrin-1-activated signaling. Our findings reveal a mechanism activated by netrin-1 that recruits DCC and UNC5B to the plasma membrane.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Benjamin Rappaz
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Rouger
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Iain B Martyn
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter D Dahlberg
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel J Meland
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ian V Beamish
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Get your kICS by measuring membrane protein dynamics. Biophys J 2016; 109:1-2. [PMID: 26153695 DOI: 10.1016/j.bpj.2015.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023] Open
|
20
|
Abu-Arish A, Pandzic E, Goepp J, Matthes E, Hanrahan JW, Wiseman PW. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J 2016; 109:85-94. [PMID: 26153705 DOI: 10.1016/j.bpj.2015.04.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.
Collapse
Affiliation(s)
| | - Elvis Pandzic
- Physics, McGill University, Montreal, Quebec, Canada
| | - Julie Goepp
- Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Paul W Wiseman
- Chemistry & Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Martos A, Raso A, Jiménez M, Petrášek Z, Rivas G, Schwille P. FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves. Biophys J 2016; 108:2371-83. [PMID: 25954894 DOI: 10.1016/j.bpj.2015.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division is driven by an FtsZ ring in which the FtsZ protein localizes at mid-cell and recruits other proteins, forming a divisome. In Escherichia coli, the first molecular assembly of the divisome, the proto-ring, is formed by the association of FtsZ polymers to the cytoplasmic membrane through the membrane-tethering FtsA and ZipA proteins. The MinCDE system plays a major role in the site selection of the division ring because these proteins oscillate from pole to pole in such a way that the concentration of the FtsZ-ring inhibitor, MinC, is minimal at the cell center, thus favoring FtsZ assembly in this region. We show that MinCDE drives the formation of waves of FtsZ polymers associated to bilayers by ZipA, which propagate as antiphase patterns with respect to those of Min as revealed by confocal fluorescence microscopy. The emergence of these FtsZ waves results from the displacement of FtsZ polymers from the vicinity of the membrane by MinCD, which efficiently competes with ZipA for the C-terminal region of FtsZ, a central hub for multiple interactions that are essential for division. The coupling between FtsZ polymers and Min is enhanced at higher surface densities of ZipA or in the presence of crowding agents that favor the accumulation of FtsZ polymers near the membrane. The association of FtsZ polymers to the membrane modifies the response of FtsZ to Min, and comigrating Min-FtsZ waves are observed when FtsZ is free in solution and not attached to the membrane by ZipA. Taken together, our findings show that the dynamic Min patterns modulate the spatial distribution of FtsZ polymers in controlled minimal membranes. We propose that ZipA plays an important role in mid-cell recruitment of FtsZ orchestrated by MinCDE.
Collapse
Affiliation(s)
- Ariadna Martos
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Raso
- Max Planck Institute of Biochemistry, Martinsried, Germany; Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Zdeněk Petrášek
- Max Planck Institute of Biochemistry, Martinsried, Germany; Institut für Biotechnologie und Bioprozesstechnik, Graz, Austria
| | - Germán Rivas
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
22
|
Penjweini R, Deville S, D'Olieslaeger L, Berden M, Ameloot M, Ethirajan A. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy. J Control Release 2015; 218:82-93. [DOI: 10.1016/j.jconrel.2015.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023]
|
23
|
Slenders E, vandeVen M, Hooyberghs J, Ameloot M. Coherent intensity fluctuation model for autocorrelation imaging spectroscopy with higher harmonic generating point scatterers-a comprehensive theoretical study. Phys Chem Chem Phys 2015; 17:18937-43. [PMID: 26130478 DOI: 10.1039/c5cp02567b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a general analytical model for the intensity fluctuation autocorrelation function for second and third harmonic generating point scatterers. Expressions are derived for a stationary laser beam and for scanning beam configurations for specific correlation methodologies. We discuss free translational diffusion in both three and two dimensions. At low particle concentrations, the expressions for fluorescence are retrieved, while at high particle concentrations a rescaling of the function parameters is required for a stationary illumination beam, provided that the phase shift per unit length of the beam equals zero.
Collapse
Affiliation(s)
- Eli Slenders
- Biomed, Hasselt University, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium.
| | | | | | | |
Collapse
|
24
|
Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2411-9. [PMID: 26164626 DOI: 10.1016/j.bbamcr.2015.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022]
Abstract
Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.
Collapse
|
25
|
Wiseman PW. Image correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2015; 2015:336-48. [PMID: 25834267 DOI: 10.1101/pdb.top086124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Image correlation spectroscopy (ICS) was developed as the imaging analog of fluorescence correlation spectroscopy. Using standard fluorescence microscopy image series as input, different versions of ICS can be used to extract parameters on the molecular transport properties (diffusion and flow) and oligomerization state for fluorescently labeled species in cells. This review introduces the various forms of spatial and temporal ICS and discusses application of these methods to reveal properties of the biomolecules that can be measured from standard fluorescence image time series sampled from cells and neurons.
Collapse
|
26
|
Nie W, Wei MT, Ou-Yang HD, Jedlicka SS, Vavylonis D. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization. Cytoskeleton (Hoboken) 2015; 72:29-46. [PMID: 25641802 DOI: 10.1002/cm.21207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.
Collapse
Affiliation(s)
- Wei Nie
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | | | | | | | |
Collapse
|
27
|
Bell TDM, Clayton AHA. The transition from single molecule to ensemble revealed by fluorescence polarization. Sci Rep 2015; 5:8158. [PMID: 25640875 PMCID: PMC4313089 DOI: 10.1038/srep08158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022] Open
Abstract
Fluorescence polarization measurements in the condensed phase provide rich information on rotational dynamics and interactions between macromolecules. An important parameter in these studies is the limiting polarization or po which is the emission polarization in the absence of molecular rotation. Here we explore how molecular number averaging affects the observed value of po. Using a simple mathematical model we show that for a collection of fluorescent dipoles (1-50 molecules) the fluorescence polarization (p) increases with the number of molecules (N) due to the progressive onset of photo-selection with a relation of the form p = po(1 - N(-β)). This concept is demonstrated experimentally using single molecule polarization measurements of perylene diimide dye molecules in a rigid polymer matrix where it is shown that the average emission polarization increases significantly when the number of molecules per averaging window is increased from 1 to 10 molecules. These results suggest that the definition of limiting polarization needs to be refined in the quasi-single molecule regime. Moreover, these results pave a new way for measuring clustering of molecules from single cluster polarization histograms.
Collapse
Affiliation(s)
- Toby D. M. Bell
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
28
|
Kozer N, Barua D, Henderson C, Nice EC, Burgess AW, Hlavacek WS, Clayton AHA. Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 2014; 53:2594-604. [PMID: 24697349 PMCID: PMC4010257 DOI: 10.1021/bi500182x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Adaptor
protein Grb2 binds phosphotyrosines in the epidermal growth
factor (EGF) receptor (EGFR) and thereby links receptor activation
to intracellular signaling cascades. Here, we investigated how recruitment
of Grb2 to EGFR is affected by the spatial organization and quaternary
state of activated EGFR. We used the techniques of image correlation
spectroscopy (ICS) and lifetime-detected Förster resonance
energy transfer (also known as FLIM-based FRET or FLIM–FRET)
to measure ligand-induced receptor clustering and Grb2 binding to
activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected
with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR
(EGFR–eGFP). Following stimulation of the cells with EGF, we
detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP
clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP
per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP
had an average cluster size of 1 ± 0.3 EGFR molecules per punctum.
In the absence of EGF, there was no association between EGFR–eGFP
and Grb2–mRFP. To interpret these data, we extended our recently
developed model for EGFR activation, which considers EGFR oligomerization
up to tetramers, to include recruitment of Grb2 to phosphorylated
EGFR. The extended model, with adjustment of one new parameter (the
ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster
size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1%
of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2.
Together, our experimental and modeling results further implicate
tetrameric EGFR as the key signaling unit and call into question the
widely held view that dimeric EGFR is the predominant signaling unit.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Bag N, Wohland T. Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging. Annu Rev Phys Chem 2013; 65:225-48. [PMID: 24328446 DOI: 10.1146/annurev-physchem-040513-103641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.
Collapse
Affiliation(s)
- Nirmalya Bag
- Departments of Biological Sciences and Chemistry, and NUS Center for Bio-Imaging Sciences (CBIS), National University of Singapore, 117557 Singapore; ,
| | | |
Collapse
|
30
|
LUND F, WÜSTNER D. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility. J Microsc 2013; 252:169-88. [DOI: 10.1111/jmi.12080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 02/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- F.W. LUND
- Department of Biochemistry and Molecular Biology, University of Southern Denmark; DK-5230 Odense M Denmark
| | - D. WÜSTNER
- Department of Biochemistry and Molecular Biology, University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
31
|
Ciccotosto GD, Kozer N, Chow TTY, Chon JWM, Clayton AHA. Aggregation distributions on cells determined by photobleaching image correlation spectroscopy. Biophys J 2013; 104:1056-64. [PMID: 23473488 DOI: 10.1016/j.bpj.2013.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022] Open
Abstract
The organization of molecules into macromolecular (nanometer scale), supramolecular complexes (submicron-to-micron scale), and within subcellular domains, is an important architectural principle of cellular biology and biochemistry. Determining the precise nature and distribution of complexes within the cellular milieu is a challenging biophysical problem. Time-series analysis of laser scanning confocal microscopy images by image correlation spectroscopy (ICS) or fluctuation moments methods provides information on aggregation, flow, and dynamics of fluorescently tagged macromolecules. All the methods to date require a brightness standard to relate the experimental data to absolute aggregation. In this article, we show that ICS as a function of gradual photobleaching is a sensitive indicator of aggregation distribution on the submicron scale. Specifically, in photobleaching ICS, the extent of nonlinearity of the apparent cluster density as a function of bleaching is related to the size of clusters. The analysis is tested using computer simulations on model aggregate systems and then applied to an experimental determination of Aβ peptide aggregation on nerve cells. The analysis reveals time-dependent increases in Aβ1-42 peptide aggregation. Globally, the datasets could be described by a monomer-dimer-tetramer-hexamer or a monomer-dimer-trimer-pentamer model. The results demonstrate the utility of photobleaching with ICS for determining aggregation states on the supramolecular scale in intact cells without the requirement for a brightness standard.
Collapse
Affiliation(s)
- Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | | | | | | | | |
Collapse
|
32
|
Potvin-Trottier L, Chen L, Horwitz AR, Wiseman PW. A nu-space for ICS: characterization and application to measure protein transport in live cells. NEW JOURNAL OF PHYSICS 2013; 15:10.1088/1367-2630/15/8/085006. [PMID: 24223019 PMCID: PMC3821402 DOI: 10.1088/1367-2630/15/8/085006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for STICS that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and ICAM ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrinligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
Collapse
|
33
|
Rappaz B, Wiseman PW. Image correlation spectroscopy for measurements of particle densities and colocalization. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 4:4.27.1-4.27.15. [PMID: 23728747 DOI: 10.1002/0471143030.cb0427s59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells interact with their environment through receptor proteins expressed at their plasma membrane, and protein-protein interactions govern the transduction of signals across the membrane into the cell. Therefore, the ability to measure receptor densities and protein colocalization within the membrane of intact cells is of paramount importance. This unit describes a technique to extract these parameters from fluorescence microscopy images obtained using a commercial confocal laser scanning microscope (CLSM) and other similar types of microscopes. It is based on the analysis of spatial fluorescence intensity fluctuations in the images, which can then be related to particle density and aggregation state via calculation of a spatial autocorrelation function, or used to measure particle colocalization via calculation of a spatial cross-correlation function from dual-color images of proteins tagged with two different fluorophores and imaged in two detection channels. These parameters offer key insights on the interaction of the cell with its environment.
Collapse
Affiliation(s)
- Benjamin Rappaz
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Lee SY, Walsh GF, Dal Negro L. Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection. OPTICS EXPRESS 2013; 21:4945-4957. [PMID: 23482027 DOI: 10.1364/oe.21.004945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate successful integration of aperiodic arrays of metal nanoparticles with microfluidics technology for optical sensing using the spectral-colorimetric responses of nanostructured arrays to refractive index variations. Different aperiodic arrays of gold (Au) nanoparticles with varying interparticle separations and Fourier spectral properties are fabricated using Electron Beam Lithography (EBL) and integrated with polydimethylsiloxane (PDMS) microfluidics structures by soft-lithographic micro-imprint techniques. The spectral shifts of scattering spectra and the distinctive modifications of structural color patterns induced by refractive index variations were simultaneously measured inside microfluidic flow cells by dark-field spectroscopy and image correlation analysis in the visible spectral range. The integration of engineered aperiodic arrays of Au nanoparticles with microfluidics devices provides a novel sensing platform with multiplexed spatial-spectral responses for opto-fluidics applications and lab-on-a-chip optical biosensing.
Collapse
Affiliation(s)
- Sylvanus Y Lee
- Department of Electrical and Computer Engineering & Photonics Center, Boston University, 8 St. Mary's St., Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
35
|
Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc Natl Acad Sci U S A 2013; 110:1530-5. [PMID: 23297229 DOI: 10.1073/pnas.1205756110] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) participate in ubiquitous transmembrane signal transduction processes by activating heterotrimeric G proteins. In the current "canonical" model of GPCR signaling, arrestins terminate receptor signaling by impairing receptor-G-protein coupling and promoting receptor internalization. However, parathyroid hormone receptor type 1 (PTHR), an essential GPCR involved in bone and mineral metabolism, does not follow this conventional desensitization paradigm. β-Arrestins prolong G protein (G(S))-mediated cAMP generation triggered by PTH, a process that correlates with the persistence of arrestin-PTHR complexes on endosomes and which is thought to be associated with prolonged physiological calcemic and phosphate responses. This presents an inescapable paradox for the current model of arrestin-mediated receptor-G-protein decoupling. Here we show that PTHR forms a ternary complex that includes arrestin and the Gβγ dimer in response to PTH stimulation, which in turn causes an accelerated rate of G(S) activation and increases the steady-state levels of activated G(S), leading to prolonged generation of cAMP. This work provides the mechanistic basis for an alternative model of GPCR signaling in which arrestins contribute to sustaining the effect of an agonist hormone on the receptor.
Collapse
|
36
|
Bachir AI, Kubow KE, Horwitz AR. Fluorescence fluctuation approaches to the study of adhesion and signaling. Methods Enzymol 2013; 519:167-201. [PMID: 23280111 DOI: 10.1016/b978-0-12-405539-1.00006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm-μm) and time (ms-min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions.
Collapse
Affiliation(s)
- Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.
| | | | | |
Collapse
|
37
|
Wiseman PW. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space. Methods Enzymol 2013; 518:245-67. [PMID: 23276542 DOI: 10.1016/b978-0-12-388422-0.00010-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described.
Collapse
Affiliation(s)
- Paul W Wiseman
- Department of Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Abstract
Tumor metastasis involves a progressive loss of tissue architecture and dissolution of structural boundaries between the epithelium and connective tissue. The basement membrane (BM), a specialized network of extracellular matrix proteins forms a barrier that physically restricts pre-invasive lesions such that they remain as local insults. The BM is not a static structure, but one that is constantly regenerated and remodeled in the adult organism. Matrix organization also regulates cell function. Thus alterations in the balance of synthesis, remodeling and proteolytic degradation of the extracellular matrix proteins may contribute to a loss of structural integrity. However, the de novo assembly and maintenance of the complex structural properties of in vivo basement membranes remain elusive. Here, this paper highlights the current understanding on the structural properties and the establishment of the BM, and discusses the potential role of self-generated forces in adult tissue remodeling and the maintenance of the BM as a malignancy suppressor.
Collapse
Affiliation(s)
- Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NIH), 37 Convent Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Kloster-Landsberg M, Herbomel G, Wang I, Derouard J, Vourc'h C, Usson Y, Souchier C, Delon A. Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy. Biophys J 2012; 103:1110-9. [PMID: 22995483 PMCID: PMC3446677 DOI: 10.1016/j.bpj.2012.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 07/21/2012] [Accepted: 07/27/2012] [Indexed: 10/27/2022] Open
Abstract
Heat shock triggers a transient and ubiquitous response, the function of which is to protect cells against stress-induced damage. The heat-shock response is controlled by a key transcription factor known as heat shock factor 1 (HSF1). We have developed a multiconfocal fluorescence correlation spectroscopy setup to measure the dynamics of HSF1 during the course of the heat-shock response. The system combines a spatial light modulator, to address several points of interest, and an electron-multiplying charge-coupled camera for fast multiconfocal recording of the photon streams. Autocorrelation curves with a temporal resolution of 14 μs were analyzed before and after heat shock on eGFP and HSF1-eGFP-expressing cells. Evaluation of the dynamic parameters of a diffusion-and-binding model showed a slower HSF1 diffusion after heat shock. It is also observed that the dissociation rate decreases after heat shock, whereas the association rate is not affected. In addition, thanks to the multiconfocal fluorescence correlation spectroscopy system, up to five spots could be simultaneously located in each cell nucleus. This made it possible to quantify the intracellular variability of the diffusion constant of HSF1, which is higher than that of inert eGFP molecules and increases after heat shock. This finding is consistent with the fact that heat-shock response is associated with an increase of HSF1 interactions with DNA and cannot be explained even partially by heat-induced modifications of nuclear organization.
Collapse
Affiliation(s)
- Meike Kloster-Landsberg
- University of Grenoble I/Centre National de la Recherche Scientifique, Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | - Gaëtan Herbomel
- University of Grenoble I/Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823 team 10, Grenoble, France
| | - Irène Wang
- University of Grenoble I/Centre National de la Recherche Scientifique, Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | - Jacques Derouard
- University of Grenoble I/Centre National de la Recherche Scientifique, Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | - Claire Vourc'h
- University of Grenoble I/Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823 team 10, Grenoble, France
| | - Yves Usson
- University of Grenoble I/Centre National de la Recherche Scientifique, Laboratoire TIMC-IMAG, Grenoble, France
| | - Catherine Souchier
- University of Grenoble I/Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823 team 10, Grenoble, France
| | - Antoine Delon
- University of Grenoble I/Centre National de la Recherche Scientifique, Laboratoire Interdisciplinaire de Physique, Grenoble, France
| |
Collapse
|
40
|
Notelaers K, Smisdom N, Rocha S, Janssen D, Meier JC, Rigo JM, Hofkens J, Ameloot M. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3131-40. [PMID: 22906711 DOI: 10.1016/j.bbamem.2012.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane.
Collapse
Affiliation(s)
- Kristof Notelaers
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, Agoralaan gebouw C, 3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Baumgärtel V, Müller B, Lamb DC. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly. Viruses 2012; 4:777-99. [PMID: 22754649 PMCID: PMC3386619 DOI: 10.3390/v4050777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022] Open
Abstract
Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.
Collapse
Affiliation(s)
- Viola Baumgärtel
- Department of Chemistry, Center for NanoScience (CeNS) and Center for Integrated Protein Science, Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; (B.M.); (D.C.L.); Tel.: +49-6221-56-1325 (B.M.); +49-89-2180-77564 (D.C.L.); Fax: +49-6221-56-5003 (B.M.); +49-89-2180-77560 (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Center for NanoScience (CeNS) and Center for Integrated Protein Science, Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany;
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Authors to whom correspondence should be addressed; (B.M.); (D.C.L.); Tel.: +49-6221-56-1325 (B.M.); +49-89-2180-77564 (D.C.L.); Fax: +49-6221-56-5003 (B.M.); +49-89-2180-77560 (D.C.L.)
| |
Collapse
|
42
|
Lacoste J, Vining C, Zuo D, Spurmanis A, Brown CM. Optimal Conditions for Live Cell Microscopy and Raster Image Correlation Spectroscopy. REVIEWS IN FLUORESCENCE 2010 2012. [DOI: 10.1007/978-1-4419-9828-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Sungkaworn T, Lenbury Y, Chatsudthipong V. Oxidative stress increases angiotensin receptor type I responsiveness by increasing receptor degree of aggregation using image correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2496-500. [DOI: 10.1016/j.bbamem.2011.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/11/2023]
|
44
|
Fitzpatrick JAJ, Lillemeier BF. Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr Opin Struct Biol 2011; 21:650-60. [DOI: 10.1016/j.sbi.2011.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/02/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
45
|
Ruthardt N, Lamb DC, Bräuchle C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 2011; 19:1199-211. [PMID: 21654634 DOI: 10.1038/mt.2011.102] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Highly sensitive fluorescence microscopy techniques allow single nanoparticles to be tracked during their uptake into living cells with high temporal and spatial resolution. From analysis of the trajectories, random motion can be discriminated from active transport and the average transport velocity and/or diffusion coefficient determined. Such an analysis provides important information regarding the uptake pathway and location of viruses and nanoparticles. In this review, we give an introduction into single-particle tracking (SPT) and determination of the mean-squared displacement. We also give an overview of recent advances in SPT. These include millisecond alternating-laser excitation for removal of spectral crosstalk, alternating wide-field (WF), and total internal reflection fluorescence (TIRF) microscopy for sensitive experiments at the plasma membrane and three-dimensional tracking strategies. Throughout the review, we highlight recent advances regarding the entry (and egress) of natural and artificial viruses obtained via SPT.
Collapse
Affiliation(s)
- Nadia Ruthardt
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
46
|
Jiang Y, Nohe A, Bragdon B, Tian C, Rudarakanchana N, Morrell NW, Petersen NO. Trapping of BMP receptors in distinct membrane domains inhibits their function in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2011; 301:L218-27. [PMID: 21622843 DOI: 10.1152/ajplung.00300.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are pleiotrophic growth factors that influence diverse processes such as skeletal development, hematopoiesis, and neurogenesis. They play crucial roles in diseases such as pulmonary arterial hypertension (PAH). In PAH, mutants of the BMP type II receptors (BMPR2) were detected, and their functions were impaired during BMP signaling. It is thought that expression levels of these receptors determine the fate of BMP signaling, with low levels of expression leading to decreased Smad activation in PAH. However, our studies demonstrate, for the first time, that the localization of receptors on the plasma membrane, in this case BMPR2, was misdirected. Three BMPR2 mutants, D485G, N519K, and R899X, which are known to be involved in PAH, were chosen as our model system. Our results show that all three BMPR2 mutants decreased BMP-dependent Smad phosphorylation and Smad signaling. Although the three mutants reached the cell membrane and their expression was lower than that of BMPR2, they formed smaller clusters and associated differently with membrane domains, such as caveolae and clathrin-coated pits. The disruption of these domains restored the Smad signaling of D485G and N519K to the level of wild-type BMPR2, showing that these mutants were trapped in the domains, rather than just expressed at a lower level on the surface. Therefore, new treatment options for PAH should also target receptor localization, rather than just expression level.
Collapse
Affiliation(s)
- Yaxin Jiang
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Azartash K, Kwan J, Paugh JR, Nguyen AL, Jester JV, Gratton E. Pre-corneal tear film thickness in humans measured with a novel technique. Mol Vis 2011; 17:756-67. [PMID: 21527997 PMCID: PMC3081798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/14/2011] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The purpose of this work was to gather preliminary data in normals and dry eye subjects, using a new, non-invasive imaging platform to measure the thickness of pre-corneal tear film. METHODS Human subjects were screened for dry eye and classified as dry or normal. Tear film thickness over the inferior paracentral cornea was measured using laser illumination and a complementary metal-oxide-semiconductor (CMOS) camera. A previously developed mathematical model was used to calculate the thickness of the tear film by applying the principle of spatial auto-correlation function (ACF). RESULTS Mean tear film thickness values (±SD) were 3.05 μm (0.20) and 2.48 μm (0.32) on the initial visit for normals (n=18) and dry eye subjects (n=22), respectively, and were significantly different (p<0.001, 2-sample t-test). Repeatability was good between visit 1 and 2 for normals (intraclass correlation coefficient [ICC]=0.935) and dry eye subjects (ICC=0.950). Tear film thickness increased above baseline for the dry eye subjects following viscous drop instillation and remained significantly elevated for up to approximately 32 min (n=20; p<0.05 until 32 min; general linear mixed model and Dunnett's tests). CONCLUSIONS This technique for imaging the ocular surface appears to provide tear thickness values in agreement with other non-invasive methods. Moreover, the technique can differentiate between normal and dry eye patient types.
Collapse
Affiliation(s)
- Kaveh Azartash
- Biomedical Engineering, University of California Irvine, Irvine, CA
| | - Justin Kwan
- Southern California College of Optometry, Fullerton, CA
| | | | | | - James V. Jester
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA
| | - Enrico Gratton
- Biomedical Engineering, University of California Irvine, Irvine, CA
| |
Collapse
|
48
|
Kurniawan NA, Rajagopalan R. Probe-independent image correlation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2775-2782. [PMID: 21319845 DOI: 10.1021/la104478x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conventional image correlation spectroscopy (ICS) analysis assumes point-like probe particles whose sizes are much smaller than the beam focus. This assumption yields erroneous results when the particle size is larger than a certain threshold. Here, a formalism is presented to study image correlation spectroscopy for particles of arbitrary geometries, sizes, and fluorophore distributions. We demonstrate the usefulness of this method by analyzing simulated image sequences of diffusing fluorescent point sources, disks, and randomly oriented rigid rods of various sizes. In addition, we also perform ICS analysis on confocal images of fluorescent microspheres of different diameters diffusing in a medium of known viscosity to experimentally validate the method. The new method, which we call template analysis, yields excellent agreement with theoretical predictions, thus extending the capability of ICS for studying dynamic processes in a probe-independent manner.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Singapore 117456
| | | |
Collapse
|
49
|
Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol 2011; 13:469-74. [DOI: 10.1038/ncb2215] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/20/2011] [Indexed: 11/09/2022]
|
50
|
Abstract
Molecular diffusion and transport processes are fundamental in physical, chemical, and biological systems. Current approaches to measuring molecular transport in cells and tissues based on perturbation methods, e.g., fluorescence recovery after photobleaching, are invasive; single-point fluctuation correlation methods are local; and single-particle tracking requires the observation of isolated particles for relatively long periods of time. We discuss here the detection of molecular transport by exploiting spatiotemporal correlations measured among points at large distances (>1 μm). We illustrate the evolution of the conceptual framework that started with single-point fluorescence fluctuation analysis based on the transit of fluorescent molecules through a small volume of illumination. This idea has evolved to include the measurement of fluctuations at many locations in the sample using microscopy imaging methods. Image fluctuation analysis has become a rich and powerful technique that can be used to extract information about the spatial distribution of molecular concentration and transport in cells and tissues.
Collapse
Affiliation(s)
- Michelle A Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|