1
|
Salami P, Paulk AC, Soper DJ, Bourdillon P, Hadar PN, Alamoudi OA, Sisterson ND, Richardson RM, Pati S, Cash SS. Inter-seizure variability in thalamic recruitment and its implications for precision thalamic neuromodulation. COMMUNICATIONS MEDICINE 2025; 5:190. [PMID: 40404918 PMCID: PMC12098681 DOI: 10.1038/s43856-025-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Thalamic stimulation is a promising approach to controlling seizures in patients with intractable epilepsy. It does not, however, provide good control for everyone. A big issue is that the role of the thalamus in seizure organization and propagation is unclear. When using responsive stimulation devices, they must detect seizure activity before sending stimulation. So, it's important to know which parts of the thalamus are involved in different seizures. METHODS To better choose thalamic targets for stimulation, we studied how different seizures spread to each stimulation target. Expert reviews and automated tools were used to identify seizure spread recorded from invasive recordings. We categorized seizures based on how they start and spread, and determined whether seizures reached thalamic areas early or late. We used generalized linear models (GLM) to evaluate which seizure properties are predictive of time of spread to the thalamus, testing effect significance using Wald tests. RESULTS We show that seizures with <2 Hz synchronized-spiking patterns do not spread early to the thalamus, while seizures starting with faster activity (<20 Hz) spread early to all thalamic areas. Most importantly, seizures that begin broadly across the brain quickly recruit the centromedian and pulvinar areas, suggesting these may be better stimulation targets in such cases. Alternatively, seizures that start deep in the temporal lobe tend to involve the anterior part of the thalamus, meaning the centromedian might not be the best choice for those seizures. CONCLUSIONS Our results suggest that by analyzing electrical activity during seizures, we can better predict which parts of the thalamus are involved. This could lead to more effective stimulation treatments for people with epilepsy.
Collapse
Affiliation(s)
- Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Soper
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Bourdillon
- Department of Neurosurgery, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Peter N Hadar
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Omar A Alamoudi
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Biomedical Engineering Program, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nathaniel D Sisterson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Phang CR, Hirata A. Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities. J Neural Eng 2025; 22:026010. [PMID: 39983236 DOI: 10.1088/1741-2552/adb90c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Objective.Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilitate the tedious manual labeling process. Notably, recently proposed sleep staging algorithms lack model explainability and still require performance improvement.Approach.We implemented multiscale neurophysiology-mimicking kernels to capture sleep-related electroencephalogram (EEG) activities at varying frequencies and temporal lengths; the implemented model was named 'multiscale temporal convolutional neural network (MTCNN).' Further, we evaluated its performance using an open-source dataset (Sleep-EDF Database Expanded comprising 153 d of polysomnogram data).Main results.By investigating the learned kernel weights, we observed that MTCNN detected the EEG activities specific to each sleep stage, such as the frequencies, K-complexes, and sawtooth waves. Furthermore, regarding the characterization of these neurophysiologically significant features, MTCNN demonstrated an overall accuracy (OAcc) of 91.12% and a Cohen kappa coefficient of 0.86 in the cross-subject paradigm. Notably, it demonstrated an OAcc of 88.24% and a Cohen kappa coefficient of 0.80 in the leave-few-days-out analysis. Our MTCNN model also outperformed the existing deep learning models in sleep stage classification even when it was trained with only 16% of the total EEG data, achieving an OAcc of 85.62% and a Cohen kappa coefficient of 0.75 on the remaining 84% of testing data.Significance.The proposed MTCNN enables model explainability and it can be trained with lesser amount of data, which is beneficial to its application in the real-world because large amounts of training data are not often and readily available.
Collapse
Affiliation(s)
- Chun-Ren Phang
- Department of Electrical and Mechanical Engineering, and the Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Aichi, Japan
- DNAKE BCI Lab, Brain-Computer Interaction Business Unit, DNAKE (Xiamen) Intelligent Technology CO., LTD, Xiamen, Fujian, People's Republic of China
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, and the Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Aichi, Japan
| |
Collapse
|
3
|
Mylonas D, Patel R, Larson O, Zhu L, Vangel M, Baxter B, Manoach DS. Does fragmented sleep mediate the relationship between deficits in sleep spindles and memory consolidation in schizophrenia? SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 6:zpae090. [PMID: 39811395 PMCID: PMC11725649 DOI: 10.1093/sleepadvances/zpae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Study Objectives Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC. We investigated whether this relationship is mediated by sleep fragmentation. Methods We detected spindles (12-15 Hz) during N2 at central electrodes in overnight polysomnography records from 56 participants with chronic schizophrenia and 59 healthy controls. Our primary measures of sleep continuity were the sleep fragmentation index and, in a subset of the data, visually scored arousals. SDMC was measured as overnight improvement on the finger-tapping motor sequence task. Results Participants with schizophrenia showed reductions of both spindle density (#/min) and SDMC in the context of normal sleep continuity and architecture. Spindle density predicted SDMC in both groups. In contrast, neither increased sleep fragmentation nor arousals predicted lower spindle density or worse SDMC in either group. Conclusions Our findings fail to support the hypothesis that sleep fragmentation accounts for spindle deficits, impaired SDMC, or their relationship in individuals with chronic schizophrenia. Instead, our findings are consistent with the hypothesis that spindle deficits directly impair memory consolidation in schizophrenia. Since sleep continuity and architecture are intact in this population, research aimed at developing interventions should instead focus on understanding dysfunction within the thalamocortical-hippocampal circuitry that both generates spindles and synchronizes them with other NREM oscillations to mediate SDMC.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Larson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
4
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
5
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
6
|
Perez Velazquez JL, Mateos DM, Guevara R, Wennberg R. Unifying biophysical consciousness theories with MaxCon: maximizing configurations of brain connectivity. Front Syst Neurosci 2024; 18:1426986. [PMID: 39135560 PMCID: PMC11317472 DOI: 10.3389/fnsys.2024.1426986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
There is such a vast proliferation of scientific theories of consciousness that it is worrying some scholars. There are even competitions to test different theories, and the results are inconclusive. Consciousness research, far from converging toward a unifying framework, is becoming more discordant than ever, especially with respect to theoretical elements that do not have a clear neurobiological basis. Rather than dueling theories, an integration across theories is needed to facilitate a comprehensive view on consciousness and on how normal nervous system dynamics can develop into pathological states. In dealing with what is considered an extremely complex matter, we try to adopt a perspective from which the subject appears in relative simplicity. Grounded in experimental and theoretical observations, we advance an encompassing biophysical theory, MaxCon, which incorporates aspects of several of the main existing neuroscientific consciousness theories, finding convergence points in an attempt to simplify and to understand how cellular collective activity is organized to fulfill the dynamic requirements of the diverse theories our proposal comprises. Moreover, a computable index indicating consciousness level is presented. Derived from the level of description of the interactions among cell networks, our proposal highlights the association of consciousness with maximization of the number of configurations of neural network connections -constrained by neuroanatomy, biophysics and the environment- that is common to all consciousness theories.
Collapse
Affiliation(s)
- Jose Luis Perez Velazquez
- The Ronin Institute, Montclair, NJ, United States
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Diego Martin Mateos
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
| | - Ramon Guevara
- Department of Physics and Astronomy, Department of Developmental Psychology and Socialization, University of Padua, Padova, Italy
| | - Richard Wennberg
- University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Seok JM, Yang KI. Sleep and neuroimmunology: a narrative review. ENCEPHALITIS 2024; 4:55-61. [PMID: 38916073 PMCID: PMC11237187 DOI: 10.47936/encephalitis.2024.00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024] Open
Abstract
Numerous neuroimmunological disorders present with sleep-related symptoms. The identification of novel autoantibodies introduces new clinical categories in autoimmune diseases of the central nervous system and generates interest in the dynamic interaction between sleep and the immune system. In this review, the complex relationship among sleep, immune regulation, and neuroimmunological disorders was examined with emphasis on the vital role of sleep in modulating immune function and its influence on these conditions, This relationship emphasizes the importance of assessments and management of sleep quality in the treatment approaches for neuroimmunological disorders.
Collapse
Affiliation(s)
- Jin Myoung Seok
- Sleep Disorders Center, Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kwang Ik Yang
- Sleep Disorders Center, Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
8
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
9
|
Höller Y, Eyjólfsdóttir S, Van Schalkwijk FJ, Trinka E. The effects of slow wave sleep characteristics on semantic, episodic, and procedural memory in people with epilepsy. Front Pharmacol 2024; 15:1374760. [PMID: 38725659 PMCID: PMC11079234 DOI: 10.3389/fphar.2024.1374760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Slow wave sleep (SWS) is highly relevant for verbal and non-verbal/spatial memory in healthy individuals, but also in people with epilepsy. However, contradictory findings exist regarding the effect of seizures on overnight memory retention, particularly relating to procedural and non-verbal memory, and thorough examination of episodic memory retention with ecologically valid tests is missing. This research explores the interaction of SWS duration with epilepsy-relevant factors, as well as the relation of spectral characteristics of SWS on overnight retention of procedural, verbal, and episodic memory. In an epilepsy monitoring unit, epilepsy patients (N = 40) underwent learning, immediate and 12 h delayed testing of memory retention for a fingertapping task (procedural memory), a word-pair task (verbal memory), and an innovative virtual reality task (episodic memory). We used multiple linear regression to examine the impact of SWS duration, spectral characteristics of SWS, seizure occurrence, medication, depression, seizure type, gender, and epilepsy duration on overnight memory retention. Results indicated that none of the candidate variables significantly predicted overnight changes for procedural memory performance. For verbal memory, the occurrence of tonic-clonic seizures negatively impacted memory retention and higher psychoactive medication load showed a tendency for lower verbal memory retention. Episodic memory was significantly impacted by epilepsy duration, displaying a potential nonlinear impact with a longer duration than 10 years negatively affecting memory performance. Higher drug load of anti-seizure medication was by tendency related to better overnight retention of episodic memory. Contrary to expectations longer SWS duration showed a trend towards decreased episodic memory performance. Analyses on associations between memory types and EEG band power during SWS revealed lower alpha-band power in the frontal right region as significant predictor for better episodic memory retention. In conclusion, this research reveals that memory modalities are not equally affected by important epilepsy factors such as duration of epilepsy and medication, as well as SWS spectral characteristics.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | | | - Frank Jasper Van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Member of the European Reference Network EpiCARE, Neuroscience Institute, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Riazi H, Nazari M, Raoufy MR, Mirnajafi-Zadeh J, Shojaei A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci 2024; 14:378. [PMID: 38672027 PMCID: PMC11048381 DOI: 10.3390/brainsci14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
- Center for Proteins in Memory—PROMEMO, Danish National Research Foundation, 1057 København, Denmark
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
11
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
13
|
Manasova D, Stankovski T. Neural Cross-Frequency Coupling Functions in Sleep. Neuroscience 2023:S0306-4522(23)00227-0. [PMID: 37225051 DOI: 10.1016/j.neuroscience.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
The human brain presents a heavily connected complex system. From a relatively fixed anatomy, it can enable a vast repertoire of functions. One important brain function is the process of natural sleep, which alters consciousness and voluntary muscle activity. On neural level, these alterations are accompanied by changes of the brain connectivity. In order to reveal the changes of connectivity associated with sleep, we present a methodological framework for reconstruction and assessment of functional interaction mechanisms. By analyzing EEG (electroencephalogram) recordings from human whole night sleep, first, we applied a time-frequency wavelet transform to study the existence and strength of brainwave oscillations. Then we applied a dynamical Bayesian inference on the phase dynamics in the presence of noise. With this method we reconstructed the cross-frequency coupling functions, which revealed the mechanism of how the interactions occur and manifest. We focus our analysis on the delta-alpha coupling function and observe how this cross-frequency coupling changes during the different sleep stages. The results demonstrated that the delta-alpha coupling function was increasing gradually from Awake to NREM3 (non-rapid eye movement), but only during NREM2 and NREM3 deep sleep it was significant in respect of surrogate data testing. The analysis on the spatially distributed connections showed that this significance is strong only for within the single electrode region and in the front-to-back direction. The presented methodological framework is for the whole-night sleep recordings, but it also carries general implications for other global neural states.
Collapse
Affiliation(s)
- Dragana Manasova
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France; Université Paris Cité, Paris, France
| | - Tomislav Stankovski
- Faculty of Medicine, Ss Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
14
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
15
|
Closed-Loop tACS Delivered during Slow-Wave Sleep Reduces Retroactive Interference on a Paired-Associates Learning Task. Brain Sci 2023; 13:brainsci13030468. [PMID: 36979277 PMCID: PMC10046133 DOI: 10.3390/brainsci13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen’s d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen’s d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.
Collapse
|
16
|
Perez Velazquez JL, Mateos DM, Guevara R. Is the tendency to maximise energy distribution an optimal collective activity for biological purposes? A proposal for a global principle of biological organization. Heliyon 2023; 9:e15005. [PMID: 37095928 PMCID: PMC10121639 DOI: 10.1016/j.heliyon.2023.e15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Our purpose is to address the biological problem of finding foundations of the organization in the collective activity among cell networks in the nervous system, at the meso/macroscale, giving rise to cognition and consciousness. But in doing so, we encounter another problem related to the interpretation of methods to assess the neural interactions and organization of the neurodynamics, because thermodynamic notions, which have precise meaning only under specific conditions, have been widely employed in these studies. The consequence is that apparently contradictory results appear in the literature, but these contradictions diminish upon the considerations of the specific circumstances of each experiment. After clarifying some of these controversial points and surveying some experimental results, we propose that a necessary condition for cognition/consciousness to emerge is to have available enough energy, or cellular activity; and a sufficient condition is the multiplicity of configurations in which cell networks can communicate, resulting in non-uniform energy distribution, the generation and dissipation of energy gradients due to the constant activity. The diversity of sensorimotor processing of higher animals needs a flexible, fluctuating web on neuronal connections, and we review results supporting such multiplicity of configurations among brain regions associated with conscious awareness and healthy brain states. These ideas may reveal possible fundamental principles of brain organization that could be extended to other natural phenomena and how healthy activity may derive to pathological states.
Collapse
|
17
|
Baena D, Fang Z, Gibbings A, Smith D, Ray LB, Doyon J, Owen AM, Fogel SM. Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles. Front Neurosci 2023; 16:1090045. [PMID: 36741053 PMCID: PMC9889560 DOI: 10.3389/fnins.2022.1090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation. It is not clear whether dissociable parts of the brain are recruited when coupled to SW vs. when spindles or SW occur in isolation. Here, we tested differences in cerebral activation time-locked to uncoupled spindles, uncoupled SW and coupled SW-spindle complexes using simultaneous EEG-fMRI. Consistent with the "active system model," we hypothesized that brain activations time-locked to coupled SW-spindles would preferentially occur in brain areas known to be critical for sleep-dependent memory consolidation. Our results show that coupled spindles and uncoupled spindles recruit distinct parts of the brain. Specifically, we found that hippocampal activation during sleep is not uniquely related to spindles. Rather, this process is primarily driven by SWs and SW-spindle coupling. In addition, we show that SW-spindle coupling is critical in the activation of the putamen. Importantly, SW-spindle coupling specifically recruited frontal areas in comparison to uncoupled spindles, which may be critical for the hippocampal-neocortical dialogue that preferentially occurs during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Aaron Gibbings
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Dylan Smith
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Laura B. Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Adrian M. Owen
- The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Stuart M. Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada,School of Psychology, University of Ottawa, Ottawa, ON, Canada,The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,*Correspondence: Stuart M. Fogel,
| |
Collapse
|
18
|
Ngo HVV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci U S A 2022; 119:e2123428119. [PMID: 36279449 PMCID: PMC9636934 DOI: 10.1073/pnas.2123428119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep constitutes a privileged state for new memories to reactivate and consolidate. Previous work has demonstrated that consolidation can be bolstered experimentally either via delivery of reminder cues (targeted memory reactivation [TMR]) or via noninvasive brain stimulation geared toward enhancing endogenous sleep rhythms. Here, we combined both approaches, controlling the timing of TMR cues with respect to ongoing slow-oscillation (SO) phases. Prior to sleep, participants learned associations between unique words and a set of repeating images (e.g., car) while hearing a prototypical image sound (e.g., engine starting). Memory performance on an immediate test vs. a test the next morning quantified overnight memory consolidation. Importantly, two image sounds were designated as TMR cues, with one cue delivered at SO UP states and the other delivered at SO DOWN states. A novel sound was used as a TMR control condition. Behavioral results revealed a significant reduction of overnight forgetting for words associated with UP-state TMR compared with words associated with DOWN-state TMR. Electrophysiological results showed that UP-state cueing led to enhancement of the ongoing UP state and was followed by greater spindle power than DOWN-state cueing. Moreover, UP-state (and not DOWN-state) cueing led to reinstatement of target image representations. Together, these results unveil the behavioral and mechanistic effects of delivering reminder cues at specific phases of endogenous sleep rhythms and mark an important step for the endeavor to experimentally modulate memories during sleep.
Collapse
Affiliation(s)
- Hong-Viet V. Ngo
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Centre for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard P. Staresina
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
19
|
Menicucci D, Lunghi C, Zaccaro A, Morrone MC, Gemignani A. Mutual interaction between visual homeostatic plasticity and sleep in adult humans. eLife 2022; 11:70633. [PMID: 35972073 PMCID: PMC9417418 DOI: 10.7554/elife.70633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep and plasticity are highly interrelated, as sleep slow oscillations and sleep spindles are associated with consolidation of Hebbian-based processes. However, in adult humans, visual cortical plasticity is mainly sustained by homeostatic mechanisms, for which the role of sleep is still largely unknown. Here, we demonstrate that non-REM sleep stabilizes homeostatic plasticity of ocular dominance induced in adult humans by short-term monocular deprivation: the counterintuitive and otherwise transient boost of the deprived eye was preserved at the morning awakening (>6 hr after deprivation). Subjects exhibiting a stronger boost of the deprived eye after sleep had increased sleep spindle density in frontopolar electrodes, suggesting the involvement of distributed processes. Crucially, the individual susceptibility to visual homeostatic plasticity soon after deprivation correlated with the changes in sleep slow oscillations and spindle power in occipital sites, consistent with a modulation in early occipital visual cortex.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Claudia Lunghi
- Département d'études Cognitives, École Normale Supérieure, UMR 8248 CNRS, Paris, France
| | - Andrea Zaccaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Mofrad MH, Gilmore G, Koller D, Mirsattari SM, Burneo JG, Steven DA, Khan AR, Suller Marti A, Muller L. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load. eLife 2022; 11:75769. [PMID: 35766286 PMCID: PMC9242645 DOI: 10.7554/elife.75769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep is generally considered to be a state of large-scale synchrony across thalamus and neocortex; however, recent work has challenged this idea by reporting isolated sleep rhythms such as slow oscillations and spindles. What is the spatial scale of sleep rhythms? To answer this question, we adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves in high-noise settings for analysis of neural recordings in sleep. We then studied sleep spindles in non-human primate electrocorticography (ECoG), human electroencephalogram (EEG), and clinical intracranial electroencephalogram (iEEG) recordings in the human. Within each recording type, we find widespread spindles occur much more frequently than previously reported. We then analyzed the spatiotemporal patterns of these large-scale, multi-area spindles and, in the EEG recordings, how spindle patterns change following a visual memory task. Our results reveal a potential role for widespread, multi-area spindles in consolidation of memories in networks widely distributed across primate cortex. The brain processes memories as we sleep, generating rhythms of electrical activity called ‘sleep spindles’. Sleep spindles were long thought to be a state where the entire brain was fully synchronized by this rhythm. This was based on EEG recordings, short for electroencephalogram, a technique that uses electrodes on the scalp to measure electrical activity in the outermost layer of the brain, the cortex. But more recent intracranial recordings of people undergoing brain surgery have challenged this idea and suggested that sleep spindles may not be a state of global brain synchronization, but rather localised to specific areas. Mofrad et al. sought to clarify the extent to which spindles co-occur at multiple sites in the brain, which could shed light on how networks of neurons coordinate memory storage during sleep. To analyse highly variable brain wave recordings, Mofrad et al. adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves. The resulting algorithm, designed to more sensitively detect spindles amongst other brain activity, was then applied to a range of sleep recordings from humans and macaque monkeys. The analyses revealed that widespread and complex patterns of spindle rhythms, spanning multiple areas in the cortex of the brain, actually appear much more frequently than previously thought. This finding was consistent across all the recordings analysed, even recordings under the skull, which provide the clearest window into brain circuits. Further analyses found that these multi-area spindles occurred more often in sleep after people had completed tasks that required holding many visual scenes in memory, as opposed to control conditions with fewer visual scenes. In summary, Mofrad et al. show that neuroscientists had previously not appreciated the complex and dynamic patterns in this sleep rhythm. These patterns in sleep spindles may be able to adapt based on the demands needed for memory storage, and this will be the subject of future work. Moreover, the findings support the idea that sleep spindles help coordinate the consolidation of memories in brain circuits that stretch across the cortex. Understanding this mechanism may provide insights into how memory falters in aging and sleep-related diseases, such as Alzheimer’s disease. Lastly, the algorithm developed by Mofrad et al. stands to be a useful tool for analysing other rhythmic waveforms in noisy recordings.
Collapse
Affiliation(s)
- Maryam H Mofrad
- Department of Mathematics, Western University, London, Canada.,Brain and Mind Institute, Western University, London, Canada
| | - Greydon Gilmore
- Brain and Mind Institute, Western University, London, Canada.,Department of Biomedical Engineering, Western University, London, Canada
| | - Dominik Koller
- Advanced Concepts Team, European Space Agency, Noordwijk, Netherlands
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Psychology, Western University, London, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ali R Khan
- Brain and Mind Institute, Western University, London, Canada.,Department of Biomedical Engineering, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ana Suller Marti
- Brain and Mind Institute, Western University, London, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Lyle Muller
- Department of Mathematics, Western University, London, Canada.,Brain and Mind Institute, Western University, London, Canada
| |
Collapse
|
21
|
Gonzalez C, Jiang X, Gonzalez-Martinez J, Halgren E. Human Spindle Variability. J Neurosci 2022; 42:4517-4537. [PMID: 35477906 PMCID: PMC9172080 DOI: 10.1523/jneurosci.1786-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, sleep spindles are 10- to 16-Hz oscillations lasting approximately 0.5-2 s. Spindles, along with cortical slow oscillations, may facilitate memory consolidation by enabling synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall slower frequency than central-posterior channels. This robust, topographical finding led to dichotomizing spindles as "slow" versus "fast," modeled as two distinct spindle generators in frontal versus posterior cortex. Using a large dataset of intracranial stereoelectroencephalographic (sEEG) recordings from 20 patients (13 female, 7 male) and 365 bipolar recordings, we show that the difference in spindle frequency between frontal and parietal channels is comparable to the variability in spindle frequency within the course of individual spindles, across different spindles recorded by a given site, and across sites within a given region. Thus, fast and slow spindles only capture average differences that obscure a much larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one of several ways that spindles differ. For example, compared with parietal, frontal spindles are smaller, tend to occur after parietal when both are engaged, and show a larger decrease in frequency within-spindles. However, frontal and parietal spindles are similar in being longer, less variable, and more widespread than occipital, temporal, and Rolandic spindles. These characteristics are accentuated in spindles which are highly phase-locked to posterior hippocampal spindles. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles differ continuously and quasi-independently in multiple dimensions, with variability due about equally to within-spindle, within-region, and between-region factors.SIGNIFICANCE STATEMENT Sleep spindles are 10- to 16-Hz neural oscillations generated by cortico-thalamic circuits that promote memory consolidation. Spindles are often dichotomized into slow-anterior and fast-posterior categories for cognitive and clinical studies. Here, we show that the anterior-posterior difference in spindle frequency is comparable to that observed between different cycles of individual spindles, between spindles from a given site, or from different sites within a region. Further, we show that spindles vary on other dimensions such as duration, amplitude, spread, primacy and consistency, and that these multiple dimensions vary continuously and largely independently across cortical regions. These findings suggest that multiple continuous variables rather than a strict frequency dichotomy may be more useful biomarkers for memory consolidation or psychiatric disorders.
Collapse
Affiliation(s)
- Christopher Gonzalez
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System/University of California San Diego, San Diego, California 92161
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio 44106
- Epilepsy and Movement Disorders Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Radiology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
22
|
Petzka M, Chatburn A, Charest I, Balanos GM, Staresina BP. Sleep spindles track cortical learning patterns for memory consolidation. Curr Biol 2022; 32:2349-2356.e4. [PMID: 35561681 DOI: 10.1016/j.cub.2022.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Memory consolidation-the transformation of labile memory traces into stable long-term representations-is facilitated by post-learning sleep. Computational and biophysical models suggest that sleep spindles may play a key mechanistic role for consolidation, igniting structural changes at cortical sites involved in prior learning. Here, we tested the resulting prediction that spindles are most pronounced over learning-related cortical areas and that the extent of this learning-spindle overlap predicts behavioral measures of memory consolidation. Using high-density scalp electroencephalography (EEG) and polysomnography (PSG) in healthy volunteers, we first identified cortical areas engaged during a temporospatial associative memory task (power decreases in the alpha/beta frequency range, 6-20 Hz). Critically, we found that participant-specific topographies (i.e., spatial distributions) of post-learning sleep spindle amplitude correlated with participant-specific learning topographies. Importantly, the extent to which spindles tracked learning patterns further predicted memory consolidation across participants. Our results provide empirical evidence for a role of post-learning sleep spindles in tracking learning networks, thereby facilitating memory consolidation.
Collapse
Affiliation(s)
- Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Alex Chatburn
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Ian Charest
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation, University of Birmingham, Birmingham, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Li S, Tang L, Zhou J, Anchouche S, Li D, Yang Y, Liu Z, Wu J, Hu J, Zhou Y, Yin J, Liu Z, Li W. Sleep deprivation induces corneal epithelial progenitor cell over-expansion through disruption of redox homeostasis in the tear film. Stem Cell Reports 2022; 17:1105-1119. [PMID: 35487212 PMCID: PMC9133657 DOI: 10.1016/j.stemcr.2022.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Sleep deficiency, a common public health problem, causes ocular discomfort and affects ocular surface health. However, the underlying mechanism remains unclear. Herein, we identified that short-term sleep deprivation (SD) resulted in hyperproliferation of corneal epithelial progenitor cells (CEPCs) in mice. The expression levels of p63 and Keratin 14, the biomarkers of CEPCs, were upregulated in the corneal epithelium after short-term SD. In addition, SD led to elevated levels of reactive oxygen species (ROS), and subsequent decrease in antioxidant capacity, in the tear film. Exogenous hydrogen peroxide (H2O2) could directly stimulate the proliferation of CEPCs in vivo and in vitro. Topical treatment of antioxidant L-glutathione preserved the over-proliferation of CEPCs and attenuated corneal epithelial defects in SD mice. Moreover, the activation of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is essential to ROS-stimulated cell proliferation in CEPCs. However, long-term SD ultimately led to early manifestation of limbal stem cell deficiency. Sleep deprivation induces the over-expansion of corneal epithelial progenitor cells (CEPCs) Sleep deprivation disrupts redox homeostasis in the tear film PI3K/AKT signaling pathway activation is essential to ROS-stimulated CEPC over-proliferation Topical L-glutathione treatment attenuates CEPC over-proliferation
Collapse
Affiliation(s)
- Sanming Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Liying Tang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Department of Ophthalmology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Jing Zhou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Sonia Anchouche
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario 027399, Canada
| | - Dian Li
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Yiran Yang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Zhaolin Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Jieli Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Yueping Zhou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China
| | - Jia Yin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Ophthalmology, the First Affiliated Hospital of University South China, Hengyang, Hunan 421200, China.
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361104, China; Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China.
| |
Collapse
|
24
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Zhang X, Landsness EC, Chen W, Miao H, Tang M, Brier LM, Culver JP, Lee JM, Anastasio MA. Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning. J Neurosci Methods 2022; 366:109421. [PMID: 34822945 PMCID: PMC9006179 DOI: 10.1016/j.jneumeth.2021.109421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming and often suffers from low inter- and intra-rater reliability and invasiveness. Therefore, an automated sleep state classification method that operates on WFCI data alone is needed. NEW METHOD A hybrid, two-step method is proposed. In the first step, spatial-temporal WFCI data is mapped to multiplex visibility graphs (MVGs). Subsequently, a two-dimensional convolutional neural network (2D CNN) is employed on the MVGs to be classified as wakefulness, NREM and REM. RESULTS Sleep states were classified with an accuracy of 84% and Cohen's κ of 0.67. The method was also effectively applied on a binary classification of wakefulness/sleep (accuracy=0.82, κ = 0.62) and a four-class wakefulness/sleep/anesthesia/movement classification (accuracy=0.74, κ = 0.66). Gradient-weighted class activation maps revealed that the CNN focused on short- and long-term temporal connections of MVGs in a sleep state-specific manner. Sleep state classification performance when using individual brain regions was highest for the posterior area of the cortex and when cortex-wide activity was considered. COMPARISON WITH EXISTING METHOD On a 3-hour WFCI recording, the MVG-CNN achieved a κ of 0.65, comparable to a κ of 0.60 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS The hybrid MVG-CNN method accurately classifies sleep states from WFCI data and will enable future sleep-focused studies with WFCI.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric C Landsness
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hanyang Miao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Tang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsey M Brier
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA; Department of Electrical and Systems Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA; Department of Physics, Washington University School of Arts and Science, St. Louis, MO 63130, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering, St. Louis, MO 63130, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Whitmore NW, Bassard AM, Paller KA. Targeted memory reactivation of face-name learning depends on ample and undisturbed slow-wave sleep. NPJ SCIENCE OF LEARNING 2022; 7:1. [PMID: 35022449 PMCID: PMC8755782 DOI: 10.1038/s41539-021-00119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Face memory, including the ability to recall a person's name, is of major importance in social contexts. Like many other memory functions, it may rely on sleep. We investigated whether targeted memory reactivation during sleep could improve associative and perceptual aspects of face memory. Participants studied 80 face-name pairs, and then a subset of spoken names with associated background music was presented unobtrusively during a daytime nap. This manipulation preferentially improved name recall and face recognition for those reactivated face-name pairs, as modulated by two factors related to sleep quality; memory benefits were positively correlated with the duration of stage N3 sleep (slow-wave sleep) and negatively correlated with measures of sleep disruption. We conclude that (a) reactivation of specific face-name memories during sleep can strengthen these associations and the constituent memories, and that (b) the effectiveness of this reactivation depends on uninterrupted N3 sleep.
Collapse
Affiliation(s)
- Nathan W Whitmore
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Adrianna M Bassard
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Ken A Paller
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA.
| |
Collapse
|
27
|
Merten JE, Villarrubia SA, Holly KS, Kemp AS, Kumler AC, Larson-Prior LJ, Murray TA. The use of rodent models to better characterize the relationship among epilepsy, sleep, and memory. Epilepsia 2022; 63:525-536. [PMID: 34985784 DOI: 10.1111/epi.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, is known to be associated with impaired sleep and memory. Although the specific mechanisms underlying these impairments are uncertain, the known role of sleep in memory consolidation suggests a potential relationship may exist between seizure activity, disrupted sleep, and memory impairment. A possible mediator in this relationship is the sleep spindle, the characteristic electroencephalographic (EEG) feature of non-rapid-eye-movement (NREM) sleep in humans and other mammals. Growing evidence supports the idea that sleep spindles, having thalamic origin, may mediate the process of long-term memory storage and plasticity by generating neuronal conditions that favor these processes. To study this potential relationship, a single model in which memory, sleep, and epilepsy can be simultaneously observed is of necessity. Rodent models of epilepsy appear to fulfill this requirement. Not only do rodents express both sleep spindles and seizure-induced sleep disruptions, but they also allow researchers to invasively study neurobiological processes both pre- and post- epileptic onset via the artificial induction of epilepsy (a practice that cannot be carried out in human subjects). However, the degree to which sleep architecture differs between rodents and humans makes direct comparisons between the two challenging. This review addresses these challenges and concludes that rodent sleep studies are useful in observing the functional roles of sleep and how they are affected by epilepsy.
Collapse
Affiliation(s)
- John E Merten
- College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
| | | | - Kevin S Holly
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Aaron S Kemp
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA
| | - Allison C Kumler
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Linda J Larson-Prior
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA.,Departments of Neurology, Neurobiology & Developmental Sciences, Pediatrics, UAMS, Little Rock, Arkansas, USA
| | - Teresa A Murray
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| |
Collapse
|
28
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
29
|
Sleep affects the motor memory of basketball shooting skills in young amateurs. J Clin Neurosci 2021; 96:187-193. [PMID: 34844844 DOI: 10.1016/j.jocn.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
Sleep has long been shown as important for memory processing and retention, and has recently been implicated in motor memory consolidation. However, it is not known whether sports skills, including basketball shooting skills, are also affected by sleep in young, healthy individuals. Therefore, we investigated whether sleep before and after basketball shooting skill training affected the acquisition and retention of shooting skills. This study included 19 healthy male subjects who participated in a basketball shooting skill training session (100 shots) and a retention test performed 2 days later (30 shots). The learning and retention indices were calculated using performance scores that evaluated each subject's shooting skills. A wearable activity tracker was used to measure sleep parameters for 4 consecutive days, 2 days before and 2 days after training. We discovered the relationship between sleep duration before and after training and retention of shooting skills (sleep duration before training; p = 0.044, r = 0.467, sleep duration after training; p = 0.006, r = 0.606). The retention index for the subgroup with long sleep duration before and after training was significantly higher than that for the subgroup with short sleep duration before and after training, respectively (p = 0.021 for both). There was no significant relationship between learning index and each sleep parameter. Our results demonstrated that sleep duration before and after training was related to retention of shooting skills following basketball shooting skills training.
Collapse
|
30
|
|
31
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat Commun 2021; 12:3112. [PMID: 34035303 PMCID: PMC8149676 DOI: 10.1038/s41467-021-23520-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Sleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
32
|
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020; 11:5247. [PMID: 33067436 PMCID: PMC7567828 DOI: 10.1038/s41467-020-19076-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep. During NREM sleep, spindles emerge from thalamocortical interactions. Here the authors carry out multisite thalamic and cortical recordings in freely behaving mice, to investigate the role of other non-classical thalamic sites in sleep spindle generation.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas C Gent
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Sandrini M, Manenti R, Sahin H, Cotelli M. Effects of transcranial electrical stimulation on episodic memory in physiological and pathological ageing. Ageing Res Rev 2020; 61:101065. [PMID: 32275953 DOI: 10.1016/j.arr.2020.101065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
Memory for personally-relevant past events (episodic memory) is critical for activities of daily living. Decline in this type of declarative long-term memory is a common characteristic of healthy ageing, a process accelerated in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Transcranial electrical stimulation (tES) has been used as a strategy to ameliorate episodic memory. Here, we critically review studies investigating whether tES may improve episodic memory in physiological and pathological ageing. Most of the studies suggest that tES over the prefrontal or temporoparietal cortices can have a positive effect on episodic memory, but the transfer to improvement of execution of daily living activities is still unknown. Further work is needed to better understand the mechanisms underlying the effects of stimulation, combine tES with neuroimaging and optimizing the dosing of stimulation. Future studies should also investigate the optimal timing of stimulation and the combination with medications to induce long-lasting beneficial effects in pathological ageing. More open science efforts should be done to improve rigor and reliability of tES in ageing research.
Collapse
|
34
|
Ngo HV, Fell J, Staresina B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. eLife 2020; 9:57011. [PMID: 32657268 PMCID: PMC7363445 DOI: 10.7554/elife.57011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Sleep is pivotal for memory consolidation. According to two-stage accounts, memory traces are gradually translocated from hippocampus to neocortex during non-rapid-eye-movement (NREM) sleep. Mechanistically, this information transfer is thought to rely on interactions between thalamocortical spindles and hippocampal ripples. To test this hypothesis, we analyzed intracranial and scalp Electroencephalography sleep recordings from pre-surgical epilepsy patients. We first observed a concurrent spindle power increase in hippocampus (HIPP) and neocortex (NC) time-locked to individual hippocampal ripple events. Coherence analysis confirmed elevated levels of hippocampal-neocortical spindle coupling around ripples, with directionality analyses indicating an influence from NC to HIPP. Importantly, these hippocampal-neocortical dynamics were particularly pronounced during long-duration compared to short-duration ripples. Together, our findings reveal a potential mechanism underlying active consolidation, comprising a neocortical-hippocampal-neocortical reactivation loop initiated by the neocortex. This hippocampal-cortical dialogue is mediated by sleep spindles and is enhanced during long-duration hippocampal ripples.
Collapse
Affiliation(s)
- Hong-Viet Ngo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Bernhard Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Manoach DS, Mylonas D, Baxter B. Targeting sleep oscillations to improve memory in schizophrenia. Schizophr Res 2020; 221:63-70. [PMID: 32014359 PMCID: PMC7316628 DOI: 10.1016/j.schres.2020.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Although schizophrenia is defined by waking phenomena, a growing literature documents a deficit in sleep spindles, a defining oscillation of stage 2 non-rapid eye movement sleep. Compelling evidence supports an important role for spindles in cognition, and particularly memory. In schizophrenia, although the spindle deficit correlates with impaired sleep-dependent memory consolidation, recent clinical trials find that increasing spindles does not improve memory. This may reflect that sleep-dependent memory consolidation relies not on spindles alone, but also on their precise temporal coordination with cortical slow oscillations and hippocampal sharp-wave ripples. Consequently, interventions to improve memory in schizophrenia must not only increase spindles, but also preserve or enhance slow oscillations, hippocampal ripples and their temporal relations. Because hippocampal ripples and the activity of the thalamic spindle generator are difficult to measure noninvasively, screening potential interventions requires complementary animal and human studies. In this review we (i) propose that sleep oscillations are novel pathophysiological targets for therapy to improve cognition in schizophrenia; (ii) summarize our understanding of how these oscillations interact to consolidate memory; (iii) suggest that a systems neuroscience strategy is essential to selecting and evaluating effective treatments, and illustrate this with findings from clinical trials; and (iv) selectively review the interventional literature relevant to sleep and cognition, covering both pharmacological and noninvasive brain stimulation approaches. We conclude that coordinated sleep oscillations are promising targets for improving cognition in schizophrenia and that effective therapies will need to preserve or enhance sleep oscillatory dynamics and restore function at the network level.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Dimitrios Mylonas
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bryan Baxter
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
36
|
Menicucci D, Piarulli A, Laurino M, Zaccaro A, Agrimi J, Gemignani A. Sleep slow oscillations favour local cortical plasticity underlying the consolidation of reinforced procedural learning in human sleep. J Sleep Res 2020; 29:e13117. [PMID: 32592318 DOI: 10.1111/jsr.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
We investigated changes of slow-wave activity and sleep slow oscillations in the night following procedural learning boosted by reinforcement learning, and how these changes correlate with behavioural output. In the Task session, participants had to reach a visual target adapting cursor's movements to compensate an angular deviation introduced experimentally, while in the Control session no deviation was applied. The task was repeated at 13:00 hours, 17:00 hours and 23:00 hours before sleep, and at 08:00 hours after sleep. The deviation angle was set at 15° (13:00 hours and 17:00 hours) and increased to 45° (reinforcement) at 23:00 hours and 08:00 hours. Both for Task and Control nights, high-density electroencephalogram sleep recordings were carried out (23:30-19:30 hours). The Task night as compared with the Control night showed increases of: (a) slow-wave activity (absolute power) over the whole scalp; (b) slow-wave activity (relative power) in left centro-parietal areas; (c) sleep slow oscillations rate in sensorimotor and premotor areas; (d) amplitude of pre-down and up states in premotor regions, left sensorimotor and right parietal regions; (e) sigma crowning the up state in right parietal regions. After Task night, we found an improvement of task performance showing correlations with sleep slow oscillations rate in right premotor, sensorimotor and parietal regions. These findings suggest a key role of sleep slow oscillations in procedural memories consolidation. The diverse components of sleep slow oscillations selectively reflect the network activations related to the reinforced learning of a procedural visuomotor task. Indeed, areas specifically involved in the task stand out as those with a significant association between sleep slow oscillations rate and overnight improvement in task performance.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy.,Coma Science Group, GIGA-Consciousness, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Andrea Zaccaro
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
37
|
Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting. Cell 2020; 179:514-526.e13. [PMID: 31585085 DOI: 10.1016/j.cell.2019.08.040] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 01/23/2023]
Abstract
Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.
Collapse
|
38
|
Laufer O, Geva A, Ellis JD, Barber Foss K, Ettinger M, Stern Y, Arthur T, Kutcher J, Myer G, Reches A. Prospective longitudinal investigation shows correlation of event-related potential to mild traumatic brain injury in adolescents. Brain Inj 2020; 34:871-880. [PMID: 32508153 DOI: 10.1080/02699052.2020.1763459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
STUDY DESIGN Prospective longitudinal cohort study. BACKGROUND Adolescent athletes may be more susceptible to the long-term effects of mild traumatic brain injury (mTBI). A diagnostic and prognostic neuromarker may optimize management and return-to-activity decision-making in athletes who experience mTBI. OBJECTIVE Measure an event-related potential (ERP) component captured with electroencephalography (EEG), called processing negativity (PN), at baseline and post-injury in adolescents who suffered mTBI and determine their longitudinal response relative to healthy controls. METHODS Thirty adolescents had EEG recorded during an auditory oddball task at a pre-mTBI baseline session and subsequent post-mTBI sessions. Longitudinal EEG data from patients and healthy controls (n= 77) were obtained from up to four sessions in total and processed using Brain Network Analysis algorithms. RESULTS The average PN amplitude in healthy controls significantly decreased over sessions 2 and 3; however, it remained steady in the mTBI group's 2nd (post-mTBI) session and decreased only in sessions 3 and 4. Pre- to post-mTBI amplitude changes correlated with the time interval between sessions. CONCLUSION These results demonstrate that PN amplitude changes may be associated with mTBI exposure and subsequent recovery in adolescent athletes. Further study of PN may lead to it becoming a neuromarker for mTBI prognosis and return-to-activity decision-making in adolescents.
Collapse
Affiliation(s)
| | | | - Jonathan D Ellis
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA.,University of Cincinnati College of Medicine , Cincinnati, Ohio, USA
| | - Kim Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA
| | | | | | - Todd Arthur
- University of Cincinnati College of Medicine , Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | | | - Gregory Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati , Cincinnati, Ohio, USA.,The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts, USA.,Department of Orthopaedics, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
39
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
40
|
Woo J, Lee CJ. Sleep-enhancing Effects of Phytoncide Via Behavioral, Electrophysiological, and Molecular Modeling Approaches. Exp Neurobiol 2020; 29:120-129. [PMID: 32408402 PMCID: PMC7237266 DOI: 10.5607/en20013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep is indispensable for living animals to live and maintain a normal life. Due to the growing number of people suffering from sleep disorders such as insomnia, there have been increasing interests in environmentally friendly therapeutic approaches for sleep disorders to avoid any side effects of pharmacological treatment using synthetic hypnotics. It has been widely accepted that the various beneficial effects of forest, such as relieving stress and anxiety and enhancing immune system function, are caused by plant-derived products, also known as phytoncide. Recently, it has been reported that the sleep-enhancing effects of phytoncide are derived from pine trees such as (-)-α-pinene and 3-carene. These are the major constituents of pine tree that potentiate the inhibitory synaptic responses by acting as a positive modulator for GABAA-BZD receptor. In this review, we discuss the effects of phytoncide on sleep and review the latest approaches of sleep-related behavioral assay, electrophysiological recording, and molecular modeling technique.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Cell and Gene Th erapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
41
|
Sritharan SY, Contreras-Hernández E, Richardson AG, Lucas TH. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations. J Neurophysiol 2019; 123:300-307. [PMID: 31800329 DOI: 10.1152/jn.00471.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7-16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate.NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.
Collapse
Affiliation(s)
- Srihari Y Sritharan
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrique Contreras-Hernández
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew G Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Hao X, Yang S, Wang J, Deng B, Wei X, Yi G. Efficient Implementation of Cerebellar Purkinje Cell With the CORDIC Algorithm on LaCSNN. Front Neurosci 2019; 13:1078. [PMID: 31680818 PMCID: PMC6803503 DOI: 10.3389/fnins.2019.01078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purkinje cell is an important neuron for the cerebellar information processing. In this work, we present an efficient implementation of a cerebellar Purkinje model using the Coordinate Rotation Digital Computer (CORDIC) algorithm and implement it on a Large-Scale Conductance-Based Spiking Neural Networks (LaCSNN) system with cost-efficient multiplier-less methods, which are more suitable for large-scale neural networks. The CORDIC-based Purkinje model has been compared with the original model in terms of the voltage activities, dynamic mechanisms, precision, and hardware resource utilization. The results show that the CORDIC-based Purkinje model can reproduce the same biological activities and dynamical mechanisms as the original model with slight deviation. In the aspect of the hardware implementation, it can use only logic resources, so it provides an efficient way for maximizing the FPGA resource utilization, thereby expanding the scale of neural networks that can be implemented on FPGAs.
Collapse
Affiliation(s)
- Xinyu Hao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Laurino M, Piarulli A, Menicucci D, Gemignani A. Local Gamma Activity During Non-REM Sleep in the Context of Sensory Evoked K-Complexes. Front Neurosci 2019; 13:1094. [PMID: 31680829 PMCID: PMC6803494 DOI: 10.3389/fnins.2019.01094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
K-complexes (KCs) and Sleep Slow Oscillations (SSOs) are the EEG expression of neuronal bistability during deeper stages Non-REM sleep. They are characterized by a deep negative deflection lasting about half-a-second, sustained, at the cortical level, by a widespread and synchronized neuronal hyperpolarization (i.e., electrical silence). The phase of hyperpolarization is followed by a period of intense and synchronized neuronal firing (i.e., depolarization phase) resulting at the EEG level, in a large positive deflection (lasting about 0.5 s) and a concurrent high frequency activity (i.e., spindles). Both KCs and SSOs rather than being “local” phenomena, propagate over large sections of the cortex. These features suggest that bistability is a large-scale network phenomenon, possibly driven by a propagating excitatory activity and involving wide populations of synchronized neurons. We have recently shown that KCs and SSOs include a positive bump preceding the negative peak and that for sensory-evoked KCs this bump coincides with the P200 wave. We demonstrated that the P200 has a sensory-modality specific localization, as it is firstly elicited in the primary sensory areas related to the stimulus, which in turn receive projections from the thalamic core. We observed that the P200 acts as a propagating excitatory activity and hypothesized that it could play a key role in inducing the opening of K+ channels, and hence the cortical hyperpolarization. Here we demonstrate that the P200 is sustained by a high-frequency excitation bringing further support to its role in triggering bistability. We show that the P200 has a higher power density in gamma band as compared to the P900 coherently for all sensory modalities, and we confirm that the latter wave is crowned by higher activity in sigma-beta bands. Finally, we characterize the P200 gamma activity at the cortical level in terms of spatial localization and temporal dynamics, demonstrating that it emerges in sensory stimulus-specific primary areas and travels over the cortical mantle spreading toward fronto-central associative areas and fading concurrently with the N550 onset.
Collapse
Affiliation(s)
- Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Tamaki M, Wang Z, Watanabe T, Sasaki Y. Trained-feature-specific offline learning by sleep in an orientation detection task. J Vis 2019; 19:12. [PMID: 31622472 PMCID: PMC6797476 DOI: 10.1167/19.12.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
Training-induced performance gains in a visual perceptual learning (VPL) task that take place during sleep are termed "offline performance gains." Offline performance gains of VPL so far have been reported in the texture discrimination task and other discrimination tasks. This raises the question as to whether offline performance gains on VPL occur exclusively in discrimination tasks. The present study examined whether offline performance gains occur in detection tasks. In Experiment 1, subjects were trained on a Gabor orientation detection task. They were retested after a 12-hr interval, which included either nightly sleep or only wakefulness. Offline performance gains occurred only after sleep on the trained orientation, not on an untrained orientation. In Experiment 2, we tested whether offline performance gains in the detection task occur over a nap using polysomnography. Moreover, we tested whether sigma activity during non-rapid eye movement (NREM) sleep recorded from occipital electrodes, previously implicated in offline performance gains of the texture discrimination task, was associated with the degree of offline performance gains of the Gabor orientation detection task. We replicated offline performance gains on the trained orientation in the detection task over the nap. Sigma activity during NREM sleep was significantly larger in the occipital electrodes relative to control electrodes in correlation with offline performance gains. The results suggest that offline performance gains occur over the sleep period generally in VPL. Moreover, sigma activity in the occipital region during NREM sleep may play an important role in offline performance gains of VPL.
Collapse
Affiliation(s)
- Masako Tamaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
Cluster burst synchronization in a scale-free network of inhibitory bursting neurons. Cogn Neurodyn 2019; 14:69-94. [PMID: 32015768 DOI: 10.1007/s11571-019-09546-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022] Open
Abstract
We consider a scale-free network of inhibitory Hindmarsh-Rose (HR) bursting neurons, and make a computational study on coupling-induced cluster burst synchronization by varying the average coupling strength J 0 . For sufficiently small J 0 , non-cluster desynchronized states exist. However, when passing a critical point J c ∗ ( ≃ 0.16 ) , the whole population is segregated into 3 clusters via a constructive role of synaptic inhibition to stimulate dynamical clustering between individual burstings, and thus 3-cluster desynchronized states appear. As J 0 is further increased and passes a lower threshold J l ∗ ( ≃ 0.78 ) , a transition to 3-cluster burst synchronization occurs due to another constructive role of synaptic inhibition to favor population synchronization. In this case, HR neurons in each cluster make burstings every 3rd cycle of the instantaneous burst rate R w ( t ) of the whole population, and exhibit burst synchronization. However, as J 0 passes an intermediate threshold J m ∗ ( ≃ 5.2 ) , HR neurons fire burstings intermittently at a 4th cycle of R w ( t ) via burst skipping rather than at its 3rd cycle, and hence they begin to make intermittent hoppings between the 3 clusters. Due to such intermittent intercluster hoppings via burst skippings, the 3 clusters become broken up (i.e., the 3 clusters are integrated into a single one). However, in spite of such break-up (i.e., disappearance) of the 3-cluster states, (non-cluster) burst synchronization persists in the whole population, which is well visualized in the raster plot of burst onset times where bursting stripes (composed of burst onset times and indicating burst synchronization) appear successively. With further increase in J 0 , intercluster hoppings are intensified, and bursting stripes also become dispersed more and more due to a destructive role of synaptic inhibition to spoil the burst synchronization. Eventually, when passing a higher threshold J h ∗ ( ≃ 17.8 ) a transition to desynchronization occurs via complete overlap between the bursting stripes. Finally, we also investigate the effects of stochastic noise on both 3-cluster burst synchronization and intercluster hoppings.
Collapse
|
46
|
Increased Thalamocortical Connectivity in Schizophrenia Correlates With Sleep Spindle Deficits: Evidence for a Common Pathophysiology. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:706-714. [PMID: 31262708 DOI: 10.1016/j.bpsc.2019.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing necessary for spindle initiation during sleep. METHODS Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus to the cortex during wakeful rest. RESULTS As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely correlated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis. CONCLUSIONS These findings link two biomarkers of schizophrenia-the sleep spindle density deficit and abnormally increased thalamocortical functional connectivity-and point to deficient TRN inhibition as a plausible mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its manifestations, understanding its mechanism could guide the development of targeted interventions.
Collapse
|
47
|
Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem 2019; 160:21-31. [DOI: 10.1016/j.nlm.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
48
|
Rosen BQ, Krishnan GP, Sanda P, Komarov M, Sejnowski T, Rulkov N, Ulbert I, Eross L, Madsen J, Devinsky O, Doyle W, Fabo D, Cash S, Bazhenov M, Halgren E. Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics. J Neurosci Methods 2019; 316:46-57. [PMID: 30300700 PMCID: PMC6380919 DOI: 10.1016/j.jneumeth.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects' MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. COMPARISON WITH EXISTING METHODS Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling; the framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.
Collapse
Affiliation(s)
- B Q Rosen
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States.
| | - G P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - P Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States; Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.
| | - M Komarov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - T Sejnowski
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; The Salk Institute, La Jolla, CA, United States.
| | - N Rulkov
- BioCiruits Institute, University of California, San Diego, La Jolla, CA, United States.
| | - I Ulbert
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Science, Budapest, Hungary; Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, Budapest, Hungary.
| | - L Eross
- Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, Budapest, Hungary; Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - J Madsen
- Departments of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| | - O Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States.
| | - W Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States.
| | - D Fabo
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - S Cash
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Medicine, University of California, San Diego, La Jolla, CA, United States; Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - M Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - E Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, United States; Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
49
|
Abstract
There is overwhelming evidence that sleep is crucial for memory consolidation. Patients with schizophrenia and their unaffected relatives have a specific deficit in sleep spindles, a defining oscillation of non-rapid eye movement (NREM) Stage 2 sleep that, in coordination with other NREM oscillations, mediate memory consolidation. In schizophrenia, the spindle deficit correlates with impaired sleep-dependent memory consolidation, positive symptoms, and abnormal thalamocortical connectivity. These relations point to dysfunction of the thalamic reticular nucleus (TRN), which generates spindles, gates the relay of sensory information to the cortex, and modulates thalamocortical communication. Genetic studies are beginning to provide clues to possible neurodevelopmental origins of TRN-mediated thalamocortical circuit dysfunction and to identify novel targets for treating the related memory deficits and symptoms. By forging empirical links in causal chains from risk genes to thalamocortical circuit dysfunction, spindle deficits, memory impairment, symptoms, and diagnosis, future research can advance our mechanistic understanding, treatment, and prevention of schizophrenia.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215;
| |
Collapse
|
50
|
Sampson AL, Lainscsek C, Gonzalez CE, Ulbert I, Devinsky O, Fabó D, Madsen JR, Halgren E, Cash SS, Sejnowski TJ. Delay differential analysis for dynamical sleep spindle detection. J Neurosci Methods 2019; 316:12-21. [PMID: 30707917 DOI: 10.1016/j.jneumeth.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sleep spindles are involved in memory consolidation and other cognitive functions. Numerous automated methods for detection of spindles have been proposed; most of these rely on spectral analysis in some form. However, none of these approaches are ideal, and novel approaches to the problem could provide additional insights. NEW METHOD Here, we apply delay differential analysis (DDA), a time-domain technique based on nonlinear dynamics to detect sleep spindles in human intracranial sleep data, including laminar electrode, stereoelectroencephalogram (sEEG), and electrocorticogram (ECoG) recordings. RESULTS We show that this approach is computationally fast, generalizable, requires minimal preprocessing, and provides excellent agreement with human scoring. COMPARISON WITH EXISTING METHODS We compared the method with established methods on a set of intracranial recordings and this method provided the highest agreement with human expert scoring when evaluated with F1 score while being the second-fastest to run. We also compared the results on the DREAMS surface EEG data, where the method produced a higher average F1 score than all other tested methods except the automated detections published with the DREAMS data. Further, in addition to being a fast and reliable method for spindle detection, DDA also provides a novel characterization of spindle activity based on nonlinear dynamical content of the data. CONCLUSIONS This additional, non-frequency-based perspective could prove particularly useful for certain atypical spindles, or identifying spindles of different types.
Collapse
Affiliation(s)
- Aaron L Sampson
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - Claudia Lainscsek
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher E Gonzalez
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Orrin Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Dániel Fabó
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Joseph R Madsen
- Departments of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|