1
|
Simjee SU, Shaheen F, Choudhary MI, Rahman AU, Jamall S, Shah SUA, Khan N, Kabir N, Ashraf N. Suppression of c-Fos protein and mRNA expression in pentylenetetrazole-induced kindled mouse brain by isoxylitones. J Mol Neurosci 2011; 47:559-70. [PMID: 22170037 DOI: 10.1007/s12031-011-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
An early immediate gene c-fos has been proposed as the gene responsible for turning on molecular events that might underlie the long-term neural changes occurring during kindling. We have evaluated the effects of novel anticonvulsant isomeric compounds isoxylitones [(E/Z)-2-propanone-1,3,5,5-trimethyl-2-cyclohexen-1-ylidine] on the c-Fos protein and mRNA expression in the brain samples of kindled mice and compared it with the normal and untreated kindled groups. Kindling was induced in male NMRI mice by repeated administration of sub-convulsive dose (50 mg/kg) of pentylenetetrazole (PTZ) until a seizure score of 4-5 was achieved. The c-Fos expression was quantified by combination of immunohistochemistry and RT-PCR protocols. Both the immunohistochemical and RT-PCR analysis revealed a marked increase in the expression of c-fos mRNA and protein in the brain regions tested in case of PTZ-kindled control group compared to normal control. In contrast, the isoxylitone (30 mg/kg)-treated group demonstrated significant reduction of c-Fos expression compared to PTZ-kindled control animals. However, low expression of c-fos mRNA was only detected in the thalamus of the isoxylitone-treated brain samples. Based on these observations, we suggest that isoxylitones may have the capacity to control the seizure pattern by mechanism such as the suppression of c-Fos protein and mRNA levels in different regions of the brain. Further investigations to explore the mechanism of action of these compounds are under process.
Collapse
Affiliation(s)
- Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Furuse T, Wada Y, Hattori K, Yamada I, Kushida T, Shibukawa Y, Masuya H, Kaneda H, Miura I, Seno N, Kanda T, Hirose R, Toki S, Nakanishi K, Kobayashi K, Sezutsu H, Gondo Y, Noda T, Yuasa S, Wakana S. Phenotypic characterization of a newGrin1mutant mouse generated by ENU mutagenesis. Eur J Neurosci 2010; 31:1281-91. [DOI: 10.1111/j.1460-9568.2010.07164.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kai N, Iwase K, Imai K, Nakahira E, Soma M, Ohtsuka S, Yagi T, Kobayashi K, Koga H, Takiguchi M, Yuasa S. Altered gene expression in the subdivisions of the amygdala of Fyn-deficient mice as revealed by laser capture microdissection and mKIAA cDNA array analysis. Brain Res 2006; 1073-1074:60-70. [PMID: 16427614 DOI: 10.1016/j.brainres.2005.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 11/18/2005] [Accepted: 12/11/2005] [Indexed: 11/20/2022]
Abstract
Fyn-tyrosine-kinase-deficient mice exhibit increased fearfulness and display enhanced excitability in the amygdala. To gain insight into the molecular changes associated with the increased excitability of the amygdala, we used a newly developed cDNA array system comprising mouse KIAA cDNA clones to identify novel genes differentially expressed in the amygdala of fyn(-/-) and fyn(+/-) mice following administration of N-methyl-D-aspartate (NMDA). Laser capture microdissection in combination with PCR-based cDNA amplification allowed us to analyze gene expression in each amygdalar subdivision. The statistical significance of the differential expressions was tested by one-way analysis of variance (ANOVA) by the false discovery rate controlling approach. Among the 805 mKIAA cDNA clones tested, only the expression level of mKIAA1577 (Zinc finger SWIM domain containing protein 6; gene name, Zswim6) showed statistically significant change in regard to the genotype and amygdalar subdivision. Namely, only the lowered expression of mKIAA1577 in the central nucleus of fyn(-/-) mice 1 h after NMDA administration (2.1-fold lower relative to fyn(+/-) mice) was statistically significant. In situ hybridization analysis confirmed the downregulation of the mRNA in the central nucleus of the fyn(-/-) mice 1 h after NMDA administration (3.2-fold lower relative to fyn(+/-) mice). The NMDA-induced change in gene expression was partially blocked by the NMDA antagonist D-AP-5. These results suggest that Fyn deficiency was responsible for the NMDA-induced downregulation of a specific gene in the amygdalar central nucleus.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S. Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci U S A 2004; 101:16345-50. [PMID: 15522965 PMCID: PMC528975 DOI: 10.1073/pnas.0407355101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress-induced plasticity in the brain requires a precisely orchestrated sequence of cellular events involving novel as well as well known mediators. We have previously demonstrated that tissue plasminogen activator (tPA) in the amygdala promotes stress-induced synaptic plasticity and anxiety-like behavior. Here, we show that tPA activity in the amygdala is up-regulated by a major stress neuromodulator, corticotropin-releasing factor (CRF), acting on CRF type-1 receptors. Compared with WT, tPA-deficient mice responded to CRF treatment with attenuated expression of c-fos (an indicator of neuronal activation) in the central and medial amygdala but had normal c-fos responses in paraventricular nuclei. They exhibited reduced anxiety-like behavior to CRF but had a sustained corticosterone response after CRF administration. This effect of tPA deficiency was not mediated by plasminogen, because plasminogen-deficient mice demonstrated normal behavioral and hormonal changes to CRF. These studies establish tPA as an important mediator of cellular, behavioral, and hormonal responses to CRF.
Collapse
Affiliation(s)
- Tomasz Matys
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Robert Pawlak
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Elzbieta Matys
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Constantine Pavlides
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Bruce S. McEwen
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics and Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Kubota O, Hattori K, Hashimoto K, Yagi T, Sato T, Iyo M, Yuasa S. Auditory-conditioned-fear-dependent c-Fos expression is altered in the emotion-related brain structures of Fyn-deficient mice. ACTA ACUST UNITED AC 2004; 130:149-60. [PMID: 15519685 DOI: 10.1016/j.molbrainres.2004.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/18/2022]
Abstract
Fyn-tyrosine-kinase-deficient mice exhibit increased fearfulness. To elucidate the neural mechanisms of their emotional defects, we compared fyn(-/-) and fyn(+/-) mice by behavioral analysis of conditioned fear and by functional neuroanatomical analysis of the distribution of highly responsive neurons associated with conditioned fear. The mice were exposed to the auditory conditioned stimulus paired with electric shock as the unconditioned stimulus. After the fear conditioning, auditory stimulus-induced freezing behavior was enhanced in fyn(-/-) mice. When the occurrence of c-Fos-immunoreactive neurons in the brain of fear-conditioned mice was examined following exposure to the auditory stimulus, a significant increase in immunoreactive neurons was found in the amygdala, hypothalamus, and midbrain of both genotypes. The occurrence of conditioned-fear-dependent c-Fos-immunoreactive neurons was enhanced in the central, medial, cortical, and basomedial amygdaloid subdivisions, the hypothalamic nuclei, and the midbrain periaqueductal gray of the fyn(-/-) mice in comparison with the fyn(+/-) mice. However, remarkably, the occurrence of conditioned-fear-dependent c-Fos-immunoreactive neurons was very low in the basolateral and lateral amygdaloid subdivisions of the fyn(-/-) mice, in striking contrast to a significant increase in c-Fos-immunoreactive neurons in these subdivisions in the fyn(+/-) mice. These findings suggest that the increased excitability of the specific amygdaloid subdivisions including the central nucleus, and of the projection targets such as the hypothalamus and midbrain in fyn(-/-) mice, is directly related to the enhanced fear response, and that the decreased excitability in the basolateral and lateral amygdaloid subdivisions is involved in the defective control of the neural circuit for emotional expression in this mutant.
Collapse
Affiliation(s)
- Osamu Kubota
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Semba J, Wakuta M, Suhara T. Long-term suppression of methamphetamine-induced c-Fos expression in rat striatum by the injection of c-fos antisense oligodeoxynucleotides absorbed in water-absorbent polymer. Psychiatry Clin Neurosci 2004; 58:531-5. [PMID: 15482585 DOI: 10.1111/j.1440-1819.2004.01296.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of water-absorbent polymer (WAP) as a hydrogel carrier for the slow delivery of antisense oligodeoxynucleotides (ODN) in the brain, was recently developed. In this experiment, 15-mer phosphorothioate ODN, complementary to c-fos gene absorbed in WAP, was injected in the rat striatum. The expression of c-Fos-immunoreactivity induced by methamphetamine (6 mg/kg, intraperitoneally) around the injection site was suppressed until 5 days after injection. Using this method, it was observed that unilateral injection with c-fos antisense ODN into the rat striatum caused robust ipsilateral rotations after methamphetamine challenge 4 days post injection. This method is simple, and the biological and behavioral effects of antisense ODN in WAP can be maintained for several days even after a single injection into the brain.
Collapse
Affiliation(s)
- Jun'ichi Semba
- Division of Health Sciences, University of the Air, Chiba, Japan.
| | | | | |
Collapse
|
7
|
Yanahashi S, Hashimoto K, Hattori K, Yuasa S, Iyo M. Role of NMDA receptor subtypes in the induction of catalepsy and increase in Fos protein expression after administration of haloperidol. Brain Res 2004; 1011:84-93. [PMID: 15140647 DOI: 10.1016/j.brainres.2003.12.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2003] [Indexed: 11/17/2022]
Abstract
The increase of Fos expression in the striatum induced by haloperidol, an antagonist of the dopamine D2 receptor, might be related to the activation of glutamatergic neurotransmission, especially that of N-methyl-D-aspartate (NMDA) receptors. In this study, using behavioral and immunohistochemical techniques, we examined the effects of a noncompetitive NMDA antagonist, (+)-MK-801, and an NMDA receptor NR2B subunit antagonist, ifenprodil, on catalepsy, an extrapyramidal symptom; in this context, we also considered the expression of Fos protein in the forebrain after the administration of haloperidol. Catalepsy in mice, induced by the administration of haloperidol (1 mg/kg), was inhibited by pretreatment with (+)-MK-801 (0.2 mg/kg) or ifenprodil (10 mg/kg). Furthermore, pretreatment with (+)-MK-801 (0.2 mg/kg) significantly attenuated the induction of Fos-immunoreactive (IR) cells in the dorsomedial, dorsolateral, and ventrolateral striatum, but not in the shell region of the nucleus accumbens after the administration of haloperidol, whereas pretreatment with ifenprodil (10 mg/kg) significantly attenuated the induction of Fos-IR cells in all of these areas. It is known that ifenprodil binds sigma receptors and alpha-1 adrenergic receptors with high affinity. Pretreatment with the sigma receptor antagonist BD-1407 (3 mg/kg) or the alpha-1 adrenergic receptor antagonist prazosin (3 mg/kg) affected neither catalepsy nor the expression of Fos-IR cells after the administration of haloperidol. However, pretreatment with CP-101,606 (1 mg/kg), a selective antagonist for the NR2B subunit of the NMDA receptor, significantly attenuated catalepsy and the expression of Fos-IR cells in the forebrain after the administration of haloperidol. These results suggest that the NMDA receptor antagonists attenuated the induction of catalepsy and Fos-IR cells in forebrain after the administration of haloperidol. It was also suggested that haloperidol-induced expression of Fos-IR cells in the shell region of the nucleus accumbens might be differentially regulated by NMDA receptor subunits. Therefore, it appears that selective antagonists for the NR2B subunit of the NMDA receptor (e.g., CP-101,606) might be useful drugs for the treatment of extrapyramidal side effects (EPS) associated with the chronic use of typical antipsychotics such as haloperidol.
Collapse
Affiliation(s)
- Satoshi Yanahashi
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|
8
|
Yamamoto T, Sakakibara S, Mikoshiba K, Terashima T. Ectopic corticospinal tract and corticothalamic tract neurons in the cerebral cortex of yotari and reeler mice. J Comp Neurol 2003; 461:61-75. [PMID: 12722105 DOI: 10.1002/cne.10678] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reeler and yotari mice, which are mutant for Reelin or Dab1, respectively, show disorders of cerebral cortical lamination. We injected horseradish peroxidase (HRP) into the upper lumbar enlargement to label corticospinal tract (CST) neurons and wheat germ agglutinin-conjugated HRP (WGA-HRP) into the ventral lateral nucleus of the thalamus to label corticothalamic tract (CTT) neurons in both 19-day-old yotari and reeler mice with the aim of discovering whether or not they show differences in the distribution pattern of layer V or layer VI neurons. Similar injections of tracers were made in normal controls. HRP-labeled CST neurons, which were exclusively distributed in layer V of the normal cortex, were radially scattered in the cortex of both mutants, but those in reeler were more deeply distributed than in yotari. WGA-labeled CTT neurons, which were mainly located in layer VI in the normal cortex, were superficially distributed just beneath the pia mater in both reeler and yotari cortex. The present quantitative study shows that the distribution pattern of layer V neurons, but not layer VI neurons, differs between reeler and yotari mice, suggesting that the Reelin and Dab1 proteins may play different roles in the migration and cell positioning of layer V neurons.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Division of Anatomy and Developmental Neurobiology, Department of Neuroscience, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
9
|
Kai N, Niki H. Altered tone-induced Fos expression in the mouse inferior colliculus after early exposure to intense noise. Neurosci Res 2002; 44:305-13. [PMID: 12413659 DOI: 10.1016/s0168-0102(02)00152-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mice become highly susceptible to audiogenic seizures (AGS) after being exposed to intense, high-frequency noise during a critical period of early life (priming). To determine the critical site for AGS priming in the auditory brainstem, animals in the experimental group were primed at 21 days, and the tone-induced Fos immunoreactivity was examined 1, 7, and 14 days after priming as an index of excitability of neurons. Enhanced Fos immunoreactivity was observed in the inferior colliculus (IC) of the primed mice 7 and 14 days after priming as compared to that of non-primed mice and attenuated Fos expression was observed 1 day after priming. No significant elevation of Fos expression was observed in the cochlear nucleus and the deep layer of the superior colliculus of either type of mice. These results strongly suggest that the IC is the target site of AGS priming.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Laboratory for Neurobiology of Emotion, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-City, 351-0198, Saitama, Japan.
| | | |
Collapse
|
10
|
Hironaka N, Yagi T, Niki H. Light-potentiation of acoustic startle response (ASR) and monoamine efflux related to fearfulness in Fyn-deficient mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:102-10. [PMID: 11834300 DOI: 10.1016/s0169-328x(01)00329-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fyn tyrosine kinase deficient mice are known to show increased fearfulness. We investigated the fear response of these mice using the light-potentiation of the acoustic startle response (ASR) and examined its neurochemical correlates using in vivo microdialysis. Female homozygous Fyn-deficient mice showed an enhancement of the startle amplitude under a bright light while heterozygotes and wild-types did not show such a change. Along with these behavioral findings, the homozygous Fyn-deficient mice showed an increase in extracellular serotonin (5-HT) and dopamine (DA) in the prefrontal cortex and 5-HT in the hippocampus when they were exposed to bright light, while heterozygous and wild-type mice did not show such changes. These results suggest that the increased fearfulness of Fyn-deficient mice is related to enhanced serotonergic and dopaminergic activity in the prefrontal cortex and limbic system.
Collapse
Affiliation(s)
- Naoyuki Hironaka
- Laboratory for Neurobiology of Emotion, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198, Saitama-ken, Japan.
| | | | | |
Collapse
|