1
|
Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E 2 EP 3 receptor in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H867-H882. [PMID: 32142358 DOI: 10.1152/ajpheart.00538.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (ANG II) plays a key role in regulating blood pressure and inflammation. Prostaglandin E2 (PGE2) signals through four different G protein-coupled receptors, eliciting a variety of effects. We reported that activation of the EP3 receptor reduces cardiac contractility. More recently, we have shown that overexpression of the EP4 receptor is protective in a mouse myocardial infarction model. We hypothesize in this study that the relative abundance of EP3 and EP4 receptors is a major determinant of end-organ damage in the diseased heart. Thus EP3 is detrimental to cardiac function and promotes inflammation, whereas antagonism of the EP3 receptor is protective in an ANG II hypertension (HTN) model. To test our hypothesis, male 10- to 12-wk-old C57BL/6 mice were anesthetized with isoflurane and osmotic minipumps containing ANG II were implanted subcutaneously for 2 wk. We found that antagonism of the EP3 receptor using L798,106 significantly attenuated the increase in blood pressure with ANG II infusion. Moreover, antagonism of the EP3 receptor prevented a decline in cardiac function after ANG II treatment. We also found that 10- to 12-wk-old EP3-transgenic mice, which overexpress EP3 in the cardiomyocytes, have worsened cardiac function. In conclusion, activation or overexpression of EP3 exacerbates end-organ damage in ANG II HTN. In contrast, antagonism of the EP3 receptor is beneficial and reduces cardiac dysfunction, inflammation, and HTN.NEW & NOTEWORTHY This study is the first to show that systemic treatment with an EP3 receptor antagonist (L798,106) attenuates the angiotensin II-induced increase in blood pressure in mice. The results from this project could complement existing hypertension therapies by combining blockade of the EP3 receptor with antihypertensive drugs.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Teja S Pandrangi
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Safa Z Khan
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Tengis S Pavlov
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
2
|
Saavedra JM, Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell Mol Neurobiol 2018; 38:85-108. [PMID: 28884431 PMCID: PMC6668356 DOI: 10.1007/s10571-017-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.
Collapse
Affiliation(s)
- J M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, Bldg. D, Room 287, Washington, DC, 20007, USA.
| | - I Armando
- The George Washington University School of Medicine and Health Sciences, Ross Hall Suite 738 2300 Eye Street, Washington, DC, USA
| |
Collapse
|
3
|
Saavedra JM, Pavel J. The discovery of a novel macrophage binding site. Cell Mol Neurobiol 2006; 26:509-26. [PMID: 16633892 PMCID: PMC11520620 DOI: 10.1007/s10571-006-9044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 02/28/2006] [Indexed: 01/24/2023]
Abstract
1. During the course of studies directed to determine the transport of Angiotensin II AT(2) receptors in the rat brain, we found that stab wounds to the brain revealed a binding site recognized by the AT(2) receptor ligand CGP42112 but not by Angiotensin II. 2. We localized this novel site to macrophages/microglia associated with physical or chemical injuries of the brain. 3. The non-Angiotensin II site was also highly localized to inflammatory lesions of peripheral arteries. 4. In rodent tissues, high binding expression was limited to the spleen and to circulating monocytes. A high-affinity binding site was also characterized in human monocytes. 5. Lack of affinity for many ligands binding to known macrophage receptors indicated the possibility that the non-Angiotensin II CGP42112 binding corresponds to a novel site.6. CGP42112 enhanced cell attachment to fibronectin and collagen and metalloproteinase-9 secretion from human monocytes incubated in serum-free medium but did not promote cytokine secretion. 7. When added in the presence of lipopolysaccharide, CGP42112 reduced the lipopolysaccharide-stimulated secretion of the pro-inflammatory cytokines TNF-alpha, IL-1, IL-1 beta, and IL-6, and increased protein kinase A. 8. Molecular modeling revealed that a CGP42112 derivative was selective for the novel macrophage site and did not recognize the Angiotensin II AT(2) receptor. 9. These results demonstrate that CGP42112, previously considered as a selective Angiotensin II AT(2) ligand, recognizes an additional non-Angiotensin II site different from AT(2) receptors. 10. Our observations indicate that CGP42112 or related molecules could be considered of interest as potential anti-inflammatory compounds.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda 20892, USA.
| | | |
Collapse
|
4
|
Roulston CL, Lawrence AJ, Widdop RE, Jarrott B. Minocycline treatment attenuates microglia activation and non-angiotensin II [125I] CGP42112 binding in brainstem following nodose ganglionectomy. Neuroscience 2005; 135:1241-53. [PMID: 16165304 DOI: 10.1016/j.neuroscience.2005.06.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 01/11/2023]
Abstract
We have previously shown that following unilateral nodose ganglionectomy, [125I] CGP42112 binds to a non-angiotensin II (Ang II) related binding site in rat dorsal motor nucleus of the vagus nerve, ambiguus nucleus and nucleus of the solitary tract. Furthermore, this up-regulated binding site localizes with activated microglia. Given that some tetracyclines may inhibit microglia activation in brain, we examined the effect of minocycline treatment on the binding of [125I] CGP42112 and [3H] PK11195 (an established radioligand for microglia), as well as OX-42 immunoreactivity (an immunomarker for activated microglia), following nodose ganglionectomy. Male Wistar Kyoto rats underwent unilateral nodose ganglionectomy or sham operation and were treated with saline or minocycline (50 mg/kg i.p.) 12 h before surgery and twice daily after surgery (each 50mg/kg i.p.) for 3 days. Subsequent to nodose ganglionectomy, [125I] CGP42112 binding (insensitive to PD123319 or Ang II) was increased approximately two-fold in the ipsilateral nucleus of the solitary tract and was also induced in the ipsilateral dorsal motor nucleus of the vagus nerve and ambiguus nucleus of saline-treated rats. Treatment with minocycline reduced this non-angiotensin II [125I] CGP42112 binding (40-50% reduction) in the nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve and ambiguus nucleus. Analogous experiments using [3H] PK11195 also revealed up-regulated binding in the ipsilateral nucleus of the solitary tract ( approximately 205%), dorsal motor nucleus of the vagus nerve (approximately 80%) and ambiguus nucleus (approximately 210%) of saline-treated rats following nodose ganglionectomy, which was reduced by 40-100% with minocycline treatment. Immunoreactivity to OX-42 confirmed an increase in microglia activation and accumulation of macrophages in these brain stem nuclei following nodose ganglionectomy, which was also attenuated following treatment with minocycline. These data demonstrate that non-Ang II [125I] CGP42112 binding following nodose ganglionectomy is attenuated by minocycline treatment. This minocycline-induced effect was associated with reduced activation of microglia and an apparent reduction in the number of macrophages in the abovementioned nuclei. This evidence suggests that a non-Ang II [125I] CGP42112 binding site is located on, or associated with, activated microglia and macrophages, providing a useful tool with which to quantitate the neuroprotective effects of centrally acting anti-inflammatory compounds.
Collapse
Affiliation(s)
- C L Roulston
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
5
|
Roulston CL, Lawrence AJ, Jarrott B, Widdop RE. Non-angiotensin II [125I] CGP42112 binding is a sensitive marker of neuronal injury in brainstem following unilateral nodose ganglionectomy: Comparison with markers for activated microglia. Neuroscience 2004; 127:753-67. [PMID: 15283972 DOI: 10.1016/j.neuroscience.2004.04.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2004] [Indexed: 11/22/2022]
Abstract
Previously we reported that a non-angiotensin II [(125)I] CGP42112 binding site is up-regulated in rat brainstem nuclei as a result of unilateral nodose ganglionectomy. In the present study, we compared non-angiotensin II [(125)I] CGP42112 binding with microglia/macrophage activation following nodose ganglionectomy, using both in vitro autoradiography and immunohistochemistry. Specific [(125)I] CGP42112 binding was observed in the nucleus of the solitary tract (NTS) and revealed an AT(2) receptor component as well as a non-angiotensin II receptor component. Subsequent to unilateral nodose ganglionectomy, [(125)I] CGP42112 binding in the ipsilateral NTS was increased approximately two-fold and was also induced in the ipsilateral dorsal motor nucleus (DMX) and the nucleus ambiguus (n.amb). This non-angiotensin II [(125)I] CGP42112 binding site was displaced by CGP42112 but not other ligands. Increased [(3)H] PK11195 binding (a known marker of reactive gliosis) was also observed in the same brainstem nuclei as non-angiotensin II [(125)I] CGP42112 binding after nodose ganglionectomy. The similarity in binding patterns between [(125)I] CGP42112 and [(3)H] PK11195 was shown to be primarily due to retrograde degeneration in the ipsilateral NTS, DMX and n.amb, as both radioligands were localized to similar cellular targets within the interstial space and over cellular debris. Immunohistochemical data confirmed reactive gliosis within the ipsilateral NTS, DMX and n.amb, following nodose ganglionectomy, which was predominantly characterized by an increase in OX-42 immunoreactivity (a marker for activated microglia/macrophages), with only a small increase in glial fibrillary acidic protein immunoreactivity (a marker of astrogliosis) detected. These data demonstrate for the first time that non-angiotensin II [(125)I] CGP42112 binding is associated with activated microglia, as well as macrophages, following unilateral nodose ganglionectomy. Furthermore, these studies also demonstrate the potential use of non-angiotensin II [(125)I] CGP42112 binding as a marker for quantitating inflammatory events which occur as a result of damage to the CNS.
Collapse
Affiliation(s)
- C L Roulston
- Department of Pharmacology, Clayton Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
6
|
Roulston CL, Lawrence AJ, Jarrott B, Widdop RE. Localization of AT(2) receptors in the nucleus of the solitary tract of spontaneously hypertensive and Wistar Kyoto rats using [125I] CGP42112: upregulation of a non-angiotensin II binding site following unilateral nodose ganglionectomy. Brain Res 2003; 968:139-55. [PMID: 12644272 DOI: 10.1016/s0006-8993(03)02231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have examined the binding distribution of a selective AT(2) receptor ligand [125I] CGP42112 in the brain of adult Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). AT(2) receptor localization was also examined in the rat brainstem following unilateral nodose ganglionectomy. Specific [125I] CGP42112 binding was observed in discrete brain regions from both rat strains, including the nucleus of the solitary tract (NTS), and did not differ between WKY and SHR. [125I] CGP42112 binding in the NTS revealed an AT(2) receptor component that was displaceable by PD 123319 and Ang II (50-58%), as well as a non-angiotensin II receptor component (42-49%). Following unilateral nodose ganglionectomy, [125I] CGP42112 binding density on the denervated side of the NTS was increased approximately two-fold in both WKY and SHR. This increased [125I] CGP42112 binding density in the ipsilateral NTS was comprised of a greater non-angiotensin II component than that observed in the sham groups, since only approximately 30% was displaced by PD123319 and angiotensin II. Furthermore, [125I] CGP42112 also revealed high binding density on the denervated side in the dorsal motor nucleus and the nucleus ambiguus in both WKY and SHR. AT(2) receptor immunoreactivity was also visualised in the NTS of sham operated rats, but was not observed in the dorsal motor nucleus or the nucleus ambiguus, nor was it up-regulated following nodose ganglionectomy. These results demonstrate, for the first time, an AT(2) receptor binding site in the NTS, as well as a non-angiotensin II [125I] CGP42112 binding site. These studies also demonstrate that nodose ganglionectomy represents a useful model in which to study a non-angiotensin II [125I] CGP42112 binding site that is up-regulated following degeneration of afferent vagal nerves.
Collapse
Affiliation(s)
- Carli L Roulston
- Department of Pharmacology, Monash University, 3800, Victoria, Australia
| | | | | | | |
Collapse
|
7
|
Baranov D, Armstead WM. Prostaglandins contribute to impaired angiotensin II-induced cerebral vasodilation after brain injury. J Neurotrauma 2002; 19:1457-66. [PMID: 12490010 DOI: 10.1089/089771502320914688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study characterized the effects of fluid percussion brain injury (FPI) on angiotensin II (AII)-induced cerebral vasodilation, determined the role of prostaglandins in such changes and evaluated the contribution of two subtypes of AII receptors (AT(1) and AT(2)) to the effects of AII on cerebrovascular regulation. Topical AII (10(-8), 10(-6), 10(-4) M) elicited vasodilation, which was attenuated by FPI (10 +/- 1; 18 +/- 2; 27 +/- 1% vs. 2 +/- 1; 4 +/- 1; 7 +/- 1%). Such changes in diameter were associated with increases in CSF 6-keto-PGF(1alpha), the stable breakdown product of PGI(2) (1.5 +/- 0.1; 2.1 +/- 0.1; 4.0 +/- 0.3 fold) and TXB(2), the stable breakdown product of TXA(2) (1.2 +/- 0.1; 1.4 +/- 0.1; 1.6 +/- 0.1 fold). However, after FPI, increases in 6-keto PGF(1alpha) were blocked (1.0 +/- 0.1; 1.0 +/- 0.1; 1.1 +/- 0.1 fold) whereas TXB(2) release was enhanced (1.5 +/- 0.1; 1.8 +/- 0.1; 1.9 +/- 0.1 fold). Pretreatment with the cyclooxygenase inhibitor indomethacin (5 mg/kg i.v.) in FPI animals partially protected AII vasodilation (8 +/- 1; 14 +/- 2; 19 +/- 3%). CGP 42112A, a putative AT(2) agonist, elicited vasodilation, which was also blunted by FPI. Such dilation was not associated with CSF prostaglandin changes, and indomethacin did not protect responses altered by FPI. Vasodilatation caused by low concentrations of AII was blunted by an AT(1) antagonist ZD 7155 but unchanged by an AT(2) antagonist PD 123,319. The high AII concentration produced dilation that was blunted by both antagonists. These data show that FPI impairs AII-mediated vasodilation. These data suggest that FPI causes these changes via alteration in an AT(1)-mediated production of prostaglandins. These data additionally suggest that FPI induced impairment of AT(2) mediated vasodilation is independent of an altered production of prostaglandins.
Collapse
Affiliation(s)
- Dimitry Baranov
- Department of Anesthesia and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
8
|
Bonnet F, Candido R, Carey RM, Casley D, Russo LM, Osicka TM, Cooper ME, Cao Z. Renal expression of angiotensin receptors in long-term diabetes and the effects of angiotensin type 1 receptor blockade. J Hypertens 2002; 20:1615-24. [PMID: 12172324 DOI: 10.1097/00004872-200208000-00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aims of this study were to assess the renal expression of angiotensin type 1 (AT1) and type 2 (AT2) receptors in diabetic spontaneously hypertensive rats (SHR) and the effect of AT1 receptor blockade on the expression of these receptors. DESIGN Diabetes was induced by injection of streptozotocin in SHRs. Irbesartan, an AT1 receptor antagonist, was given to diabetic SHRs for 32 weeks (15 mg/kg per day, n = 10). Diabetic (n = 10) and non-diabetic SHRs (n = 10) were studied concurrently. A separate group of control and diabetic Wistar-Kyoto (WKY) rats were also evaluated. METHODS Gene and protein expressions of the AT1 and AT2 receptor were assessed by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry with specific antibodies andin vitro autoradiography with [125I]Sar(1), Ile(8) angiotensin II or [125I]CGP42112B. RESULTS Both AT1 and AT2 receptor mRNA levels in the kidney were reduced in diabetic SHRs compared to non-diabetic SHRs. Immunohistochemistry staining with specific antibodies showed a similar reduction in glomerular and tubulo-interstitial staining for both AT1 and AT2 receptors. Reduced binding for the AT1 and AT2 receptor was found in the kidney of diabetic SHRs. Diabetic SHRs developed albuminuria and had glomerular and tubulo-interstitial injury, which were prevented by treatment with irbesartan. Reduced expression of the AT1 receptor, but not the AT2 receptor, in diabetic SHRs was prevented by treatment with irbesartan. In diabetic WKY rats no such reduction in AT1 expression was observed, although there was a trend for reduced AT2 receptor expression. CONCLUSIONS These findings demonstrated that renal expression of both AT1 and AT2 receptor was reduced in long-term diabetic SHRs and that blockade of the AT1 receptor had disparate effects on expression of angiotensin II receptor subtypes.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Animals
- Biphenyl Compounds/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Gene Expression/drug effects
- Irbesartan
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Tetrazoles/therapeutic use
Collapse
Affiliation(s)
- Fabrice Bonnet
- Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, Heidelberg West, Victoria 3081, Australia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sandmann S, Unger T. Implications physiopathologiques et cliniques des r??cepteurs AT1/AT2 de l??angiotensine II dans l??insuffisance cardiaque, coronaire et r??nale. Drugs 2002. [DOI: 10.2165/00003495-200262991-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Achard J, Fournier A, Mazouz H, Caride VJ, Penar PL, Fernandez LA. Protection against ischemia: a physiological function of the renin-angiotensin system. Biochem Pharmacol 2001; 62:261-71. [PMID: 11434899 DOI: 10.1016/s0006-2952(01)00687-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin system (RAS) is involved in a complex mechanism that serves to preserve the blood supply to organs so that they can maintain cellular function. Angiotensin II exerts this effect, independently of the blood pressure generated, through two time-related events: a fast opening of the reserve collateral circulation and a much slower response of new vessel formation or angiogenesis. This effect is observed in rats with ligation of the abdominal aorta and in gerbils with abrupt or progressive unilateral carotid artery ligation. Inhibition of the angiotensin-converting enzyme (ACE) or the angiotensin II receptor represses this effect, and it appears that it is mediated through a non-AT1 receptor site of angiotensin II. Many tumors, both benign and malignant, express renin and angiotensin. It seems that the stimulating action of angiotensin II on angiogenesis could also be involved in preserving the blood supply to tumor cells. Administration of converting enzyme inhibitors increases survival and decreases tumor size in tumor-bearing rats. These observations support the hypothesis that the RAS, directly or indirectly, is involved in situations in which the restoration of blood supply is critical for the viability of cells and that it is present not only in normal but also in pathological conditions such as tumors. In view of the ubiquitous presence of renins and angiotensins, it is also likely to be involved in other conditions, such as inflammation, arthritis, diabetic retinopathy, and retrolental fibroplasia, among others in which angiogenesis is prominent. In addition, angiotensin II could be involved, through the counterbalance of the AT1 and AT2 receptors, in the rarefaction of blood vessels as an etiologic component of essential hypertension.
Collapse
Affiliation(s)
- J Achard
- Department of Physiology, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | | | | | | | | | | |
Collapse
|
11
|
Stoll M, Unger T. Angiotensin and its AT2 receptor: new insights into an old system. REGULATORY PEPTIDES 2001; 99:175-82. [PMID: 11384780 DOI: 10.1016/s0167-0115(01)00246-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The AT2 receptor represents a true receptor, but signals and functions in unexpected ways compared to the respective features of the 'classical' AT1 receptor. Moreover, some of the actions of the AT2 receptor are even directly opposed to those of the AT1 receptor, especially concerning the growth- and differentiation-modulating actions of ANG II. The regulation of the AT2 receptor itself by its agonist, as well as by growth factors during ontogenesis, and its acknowledged effects on the regulation of cell growth, differentiation and apoptosis, points towards a role of a program modulator in embryonic development and regeneration.
Collapse
Affiliation(s)
- M Stoll
- Institute of Pharmacology, Christian-Albrechts-University of Kiel, Hospitalstrasse 4, D-24105, Kiel, Germany
| | | |
Collapse
|
12
|
Bonnet F, Cooper ME, Carey RM, Casley D, Cao Z. Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. J Hypertens 2001; 19:1075-81. [PMID: 11403356 DOI: 10.1097/00004872-200106000-00012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the relative role of the angiotensin type 1 (AT1) and type 2 (AT2) receptors in mediating angiotensin II-induced regulation of AT2 receptor in mesenteric artery. DESIGN Sprague-Dawley rats were infused with either angiotensin II or vehicle for 14 days at a dose of 58.3 ng/min. Ang II-infused rats were allocated to receive either an AT1 antagonist, valsartan at a dose of 30 mg/kg per day or the AT2 receptor antagonist PD123319 at a dose of 830 ng/min. METHODS Gene and protein expression of the AT2 receptor in the mesenteric vasculature was assessed by quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry and by in vitro autoradiography with a specific radioligand, 1251-CGP 42112B. RESULTS The AT2 receptor mRNA and protein were detected in the mesenteric artery from adult rats. Both nuclear emulsion and immunohistochemical staining showed expression of the AT2 receptor in the adventitial and medial layers. Compared to control rats, angiotensin II infusion was associated with a significant increase in the AT2 receptor expression. Valsartan treatment significantly reduced AT2 receptor gene expression, with no significant effect of PD123319 on this parameter. CONCLUSIONS This study confirms that the presence of the AT2 receptor in mesenteric arteries in adult rats, shows an up-regulation of the AT2 receptor following angiotensin II infusion and suggests a role for the AT1 receptor in this regulation. In view of the recently demonstrated effects of the AT2 receptor, these findings may be relevant to the role of the AT2 receptor in the pathophysiology of vascular remodeling.
Collapse
Affiliation(s)
- F Bonnet
- Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, Heidelberg West, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Abstract
Since its discovery and molecular characterization, the angiotensin AT2.receptor has been enigmatic with respect to signalling pathways and function. Evidence now emerges that angiotensin II exerts actions through the AT2 receptor which are directly opposed to those mediated by the AT1 receptor. This can be exemplified e.g. by mutually antagonizing effects on cell growth. Upregulated by the endogenous agonist itself, as well as by several growth- and differentiating factors in development and tissue injury, the AT2 receptor appears to act as a modulator of complex biological programmes involved in embryonic development, cell differentiation, tissue protection and regeneration, as well as in programmed cell death. Research on the AT2 receptor has thus unveiled hitherto unknown functions of the renin-angiotensin system extending far beyond the classical role of this old hormonal system in cardiovascular control.
Collapse
Affiliation(s)
- T Unger
- Institute of Pharmacology, Christian-Albrechts-University of Kiel, Germany.
| |
Collapse
|
14
|
Abstract
In mammalian brain, angiotensin II AT1 and AT2 receptor subtypes are apparently expressed only in neurons and not in glia. AT1 and AT2 receptor subtypes are sometimes closely associated, but apparently expressed in different neurons. Brain AT1/AT2 interactions may occur in selective cases as inter-neuron cross talk. There are two AT1 isoforms in rodents. AT1A, which predominates, and AT1B. There are also important inter-species differences in receptor expression. Relative lack of amino acid conservation in the gerbil gAT1A receptor substantially decreases affinity for the AT1 antagonists. AT1 receptors are expressed in brain areas regulating autonomic and hormonal responses. AT1A receptors are heterogeneously regulated in a number of experimental conditions. In specific areas, AT1A receptors are not normally expressed, but are induced under influence of reproductive hormones in dopaminergic neurons. There are AT1 and AT2 receptors also in areas related to limbic, sensory and motor functions and their expression is developmentally regulated. A picture is emerging of widespread, neuronally localized, heterogeneously regulated, closely associated brain angiotensin receptor subtypes, modulating multiple functions including neuroendocrine and autonomic responses, stress, cerebrovascular flow, and perhaps brain maturation, neuronal plasticity, memory and behavior.
Collapse
Affiliation(s)
- J M Saavedra
- Section on Pharmacology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Abstract
The renin-angiotensin system (RAS) plays an important role in blood pressure control and in water and salt homeostasis. It is involved in the pathophysiology of hypertension and structural alterations of the vasculature, kidney, and heart, including neointima formation, nephrosclerosis, postinfarction remodeling, and cardiac left ventricular hypertrophy (LVH). Recently, an increased knowledge of the effector peptides of the RAS, their receptors, and their respective functions has led to a new principle of treatment for hypertension: the inhibition of angiotensin (Ang) II via angiotensin-converting enzyme inhibitors or Ang II-receptor antagonists. In this review, the Ang receptors AT1 and AT2 and the potential roles of shorter angiotensin fragments, including Ang III(2-8), Ang IV(3-8), and Ang(1-7), are discussed.
Collapse
Affiliation(s)
- U Stroth
- Department of Pharmacology, Christian Albrechts University, Kiel, Germany
| | | |
Collapse
|
16
|
Merabet L, de Gasparo M, Casanova C. Dose-dependent inhibitory effects of angiotensin II on visual responses of the rat superior colliculus: AT1 and AT2 receptor contributions. Neuropeptides 1997; 31:469-81. [PMID: 9413025 DOI: 10.1016/s0143-4179(97)90042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II (Ang II) has traditionally been regarded as a peripherally circulating and acting hormone involved in fluid homeostasis and blood pressure regulation. With the rather recent localization of Ang II receptors within the mammalian brain, renewed interest has emerged in the hope of elucidating the central impact and function of this hormone. One region that has been clearly demonstrated to express Ang II receptors is the superior colliculus (SC). This mesencephalic structure plays an important role in sensory visuomotor integration. Receptors for Ang II (of both the AT1 and AT2 subtypes) have been localized within the superficial layers of this structure, i.e. the areas that are visually responsive. In the hopes of characterizing the role of Ang II in the SC, we have attempted to physiologically activate these receptors in vivo and observe the effects of Ang II on visually evoked responses. In the attempt to identify the receptor subtype(s) responsible in mediating these effects, Ang II was injected concomitantly with selective receptor ligands. Experiments were performed on adult rats prepared in classical fashion for electrophysiological studies. Through microinjection of Ang II, and the simultaneous recording of visually evoked potentials to flash stimulation, we have observed that this peptide yields a strong suppressive effect on visual neuronal activity. By injecting Ang II at various concentrations (10(-3)-10(-10) M), we have further observed that the effects of this peptide express a dose-related dependency. Injection of Ang II in progressively more ventral layers yielded less pronounced effects, demonstrating physiologically the discrete localization of these receptors in the stratum griseum superficiale. Coinjection of Ang II with Losartan yielded a near complete blockade of Ang II suppressive effects, suggesting that AT1 receptors play a prominent role in mediating these responses. However, coinjection of Ang II with PD 123,319 yielded a slight, yet significant partial blockade. Coinjection of Ang II with both the AT1 and AT2 receptor antagonists yielded a complete blockade of the Ang II effect. Finally, some of the results suggest that the AT2 receptor ligand CGP 42,112 may possess agonist properties. Taken together, these findings suggest that the AT1 receptor is predominantly involved in mediating Ang II responses in the SC and there also appears to be some indication of AT2 receptor involvement. However, the underlying mechanisms (such as receptor interactions), the exact specificity of the ligands used, and the possibility of other receptor subtype implication have yet to be explored fully.
Collapse
Affiliation(s)
- L Merabet
- Département d'ophtalmologie, Faculté de médecine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
17
|
Gallinat S, Csikos T, Meffert S, Herdegen T, Stoll M, Unger T. The angiotensin AT2 receptor down-regulates neurofilament M in PC12W cells. Neurosci Lett 1997; 227:29-32. [PMID: 9178851 DOI: 10.1016/s0304-3940(97)00291-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The angiotensin (ANG II) AT2 receptor mediates antiproliferative effects and induces neurite outgrowth in PC12W cells. To further investigate the molecular events following AT2 receptor stimulation in these cells, we determined the expression pattern of the middle-sized neurofilament subunit (NF-M) using Western and Northern blot analysis and reverse-transcription polymerase chain reaction. On both, the protein and the mRNA level, ANG II via AT2 receptors not only counteracted nerve growth factor (NGF)-mediated NF-M up-regulation but also reduced NF-M levels in the absence of NGF by maximally 72%. The ANG II-induced effects were completely abolished by pretreatment with the AT2 receptor antagonist, PD123177. In view of previous findings of decreased NF levels in regenerating neurons and in neuronal cultures undergoing apoptosis, our observation suggests a new role of AT2 receptors in either of these processes.
Collapse
Affiliation(s)
- S Gallinat
- Department of Pharmacology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996; 122:59-67. [PMID: 8898348 DOI: 10.1016/0303-7207(96)03873-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiotensin II (ANG II) has been implicated in cell growth and differentiation. We investigated the effect of AT2 receptor stimulation on proliferation and morphological differentiation in cells of neuronal origin by using the pheochromocytoma derived cell line, PC12W. ANG II (10(-8)-10(-6) M) inhibited fetal calf serum (FCS)-induced cell proliferation in a concentration dependent manner. In half of the experiments, the epidermal growth factor (EGF) exerted a mitogenic action which was concentration-dependently inhibited by ANG II. In the other half of the experiments, EGF had an antimitogenic effect which was further enhanced by ANG II (maximally at 10(-6) M). Treatment with nerve growth factor (NGF) induced an inhibition of [3H]thymidine incorporation, which was enhanced by ANG II, maximally 25% at the highest concentration. The effects of ANG II on [3H]thymidine incorporation were reflected by those on cell number and were prevented by the AT2 receptor antagonist, PD123177, but not influenced by the AT1 receptor antagonist, losartan. The ANG II-induced inhibition of cell proliferation was paralleled by morphological differentiation in response to daily treatment with ANG II. ANG II also enhanced low-dose NGF-induced neurite formation. Again, these effects of ANG II were abolished by the AT2 receptor antagonist, PD123177. Our data in PC12W cells show that the AT2 receptor not only inhibits growth factor-induced proliferation and enhances the NGF-mediated growth arrest but also induces morphological differentiation in cells of neuronal origin. These findings strongly support the hypothesis that the AT2 receptor promotes differentiation in neuronal cells.
Collapse
Affiliation(s)
- S Meffert
- Department of Pharmacology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
19
|
Viswanathan M, Jöhren O, de Oliveira M, Saavedra JM. Increased non-angiotensin II [125I]CGP 42112 binding in rat carotid artery after balloon injury. Peptides 1996; 17:695-9. [PMID: 8804082 DOI: 10.1016/0196-9781(96)00064-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, [125I]CGP 42112, a ligand of high affinity and selectivity for the angiotensin II AT2 receptor, was used to detect and quantify a non-angiotensin II binding site in the balloon-injured carotid artery of the rat. The amount of [125I]CGP 42112 binding was significantly enhanced in the adventitia of the injured arteries. Localization of the binding site using emulsion autoradiography and immunocytochemistry suggests that the binding sites may be expressed by macrophages in the inflamed tissue surrounding the injured artery.
Collapse
Affiliation(s)
- M Viswanathan
- Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1514, USA
| | | | | | | |
Collapse
|
20
|
Saavedra JM, de Oliveira AM, Jöhren O, Viswanathan M. Brain angiotensin II and related receptors: new developments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 396:247-52. [PMID: 8726705 DOI: 10.1007/978-1-4899-1376-0_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J M Saavedra
- Section on Pharmacology, Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland 20892-1514, USA
| | | | | | | |
Collapse
|
21
|
Jöhren O, Viswanathan M, Saavedra JM. Expression of non-angiotensin II -125I-CGP 42112 binding sites on activated microglia after kainic acid induced neurodegeneration. Brain Res 1995; 702:153-61. [PMID: 8846070 DOI: 10.1016/0006-8993(95)01035-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[125I]CGP 42112, first developed to identify angiotensin II receptor subtype 2 (AT2), was recently shown to bind to a novel non-angiotensin binding site in injured rat brain tissue. We addressed the question whether non-angiotensin [125I]CGP 42112 binding appears after kainic acid induced hippocampal neurodegeneration, a process of neuronal cell death at a distance from the toxin injection site. After intraventricular kainic acid injection, we found non-angiotensin [125I]CGP 42112 binding in the hippocampal areas CA3 (4 and 14 days after injection), CA1 and CA4 and the subiculum (14 days after injection). In addition, 14 days after kainic acid injection, [125I]CGP 42112 binding was found in 50% of the animals, in the thalamus, amygdala and piriform cortex, areas receiving projections from the hippocampus and suffering kainic acid induced delayed neurodegeneration. The loss of neurons in these regions was accompanied by an accumulation of activated microglia as demonstrated by immunostaining with the specific antibodies OX-42 and ED1. The time course and regional pattern of OX-42/ED1 positive immunostaining was identical with the appearance and distribution of the non-angiotensin [125I]CGP 42112 binding site. The non-angiotensin [125I]CGP 42112 binding was not detected in brain regions unaffected by kainic acid injection. Our findings indicate the expression of a novel [125I]CGP 42112 binding site on activated microglia. This site appears at a distance from the lesion and may be of importance in the process of neuronal death and brain tissue repair.
Collapse
Affiliation(s)
- O Jöhren
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|