1
|
Ma Y, He C, Lin W, Wang J, Xu C, Pan D, Wang Z, Yao W, Dong R, Jia D, Li K. CAMK2G Promotes Neuronal Differentiation and Inhibits Migration in Neuroblastoma. J Pediatr Surg 2025; 60:161679. [PMID: 39266386 DOI: 10.1016/j.jpedsurg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Neuroblastoma (NB) originates from differentiation arrest of sympathoadrenal progenitors in the neural crest. It is necessary to reveal the differentiation mechanism of NB. Previously, we reported that Purkinje cell protein 4 (PCP4) is a well-differentiated marker of NB tissues. Herein, we explored the underlying mechanism of PCP4 induced differentiation in order to find better treatment options for patients. METHODS We screened the interacting proteins of PCP4 by co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS). Then we investigated the relevance between expression of calmodulin-dependent protein kinase II gamma (CAMK2G) and clinical features using R2 platform. We also explored the function of CAMK2G in NB cells by knockdown and RNA sequencing. RESULTS Here, we verified the binding of PCP4 and calmodulin (CaM) by Co-IP and identified a target kinase of CaM, CAMK2G, by LC-MS/MS. PCP4 overexpression activates the autophosphorylation of CAMK2G. Patients with high CAMK2G expression had better survival while low CAMK2G was associated with unfavorable clinical features including MYCN-amplification, unfavorable histology, progression and high INSS stage. CAMK2G knockdown inhibited neurite outgrowth and down-regulated neuronal differentiation markers (NF-H, MAP2), yet promoted migration, invasion and proliferation. Gene Ontology (GO) analysis showed that knockdown of CAMK2G downregulated the expression of neuronal differentiation-related genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that knockdown of CAMK2G upregulated the expression of migration-related genes. CONCLUSION These findings indicate that CAMK2G activated by PCP4/CaM complex promotes differentiation and inhibits migration in NB cells. LEVEL OF EVIDENCE Not applicable.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 201321, China
| | - Weihong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chaoliang Xu
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Deshen Pan
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
2
|
Kaltezioti V, Foskolou IP, Lavigne MD, Ninou E, Tsampoula M, Fousteri M, Margarity M, Politis PK. Prox1 inhibits neurite outgrowth during central nervous system development. Cell Mol Life Sci 2021; 78:3443-3465. [PMID: 33247761 PMCID: PMC11072475 DOI: 10.1007/s00018-020-03709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
During central nervous system (CNS) development, proper and timely induction of neurite elongation is critical for generating functional, mature neurons, and neuronal networks. Despite the wealth of information on the action of extracellular cues, little is known about the intrinsic gene regulatory factors that control this developmental decision. Here, we report the identification of Prox1, a homeobox transcription factor, as a key player in inhibiting neurite elongation. Although Prox1 promotes acquisition of early neuronal identity and is expressed in nascent post-mitotic neurons, it is heavily down-regulated in the majority of terminally differentiated neurons, indicating a regulatory role in delaying neurite outgrowth in newly formed neurons. Consistently, we show that Prox1 is sufficient to inhibit neurite extension in mouse and human neuroblastoma cell lines. More importantly, Prox1 overexpression suppresses neurite elongation in primary neuronal cultures as well as in the developing mouse brain, while Prox1 knock-down promotes neurite outgrowth. Mechanistically, RNA-Seq analysis reveals that Prox1 affects critical pathways for neuronal maturation and neurite extension. Interestingly, Prox1 strongly inhibits many components of Ca2+ signaling pathway, an important mediator of neurite extension and neuronal maturation. In accordance, Prox1 represses Ca2+ entry upon KCl-mediated depolarization and reduces CREB phosphorylation. These observations suggest that Prox1 acts as a potent suppressor of neurite outgrowth by inhibiting Ca2+ signaling pathway. This action may provide the appropriate time window for nascent neurons to find the correct position in the CNS prior to initiation of neurites and axon elongation.
Collapse
Affiliation(s)
- Valeria Kaltezioti
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Iosifina P Foskolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matthieu D Lavigne
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece
| | - Marigoula Margarity
- Laboratory of Human and Animal Physiology, Department of Biology, School of Natural Sciences, University of Patras, 26500, Rio Achaias, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27, Athens, Greece.
| |
Collapse
|
3
|
Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, Hu X, Luo Z. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS One 2016; 11:e0162784. [PMID: 27611779 PMCID: PMC5017744 DOI: 10.1371/journal.pone.0162784] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Zhengxu Ye
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fei He
- Department of Hereditary and Development, Basic Unit, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| |
Collapse
|
4
|
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518:9-25. [PMID: 23632380 DOI: 10.1016/j.brainres.2013.04.042] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα-GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required.
Collapse
|
5
|
βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses. J Neurosci 2011; 31:10141-8. [PMID: 21752990 DOI: 10.1523/jneurosci.5105-10.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium/calmodulin-dependent kinase type II (CaMKII) holoenzyme of the forebrain predominantly consists of heteromeric complexes of the αCaMKII and βCaMKII isoforms. Yet, in contrast to αCaMKII, the role of βCaMKII in hippocampal synaptic plasticity and learning has not been investigated. Here, we compare two targeted Camk2b mouse mutants to study the role of βCaMKII in hippocampal function. Using a Camk2b(-/-) mutant, in which βCaMKII is absent, we show that both hippocampal-dependent learning and Schaffer collateral-CA1 long-term potentiation (LTP) are highly dependent upon the presence of βCaMKII. We further show that βCaMKII is required for proper targeting of αCaMKII to the synapse, indicating that βCaMKII regulates the distribution of αCaMKII between the synaptic pool and the adjacent dendritic shaft. In contrast, localization of αCaMKII, hippocampal synaptic plasticity and learning were unaffected in the Camk2b(A303R) mutant, in which the calcium/calmodulin-dependent activation of βCaMKII is prevented, while the F-actin binding and bundling property is preserved. This indicates that the calcium/calmodulin-dependent kinase activity of βCaMKII is fully dispensable for hippocampal learning, LTP, and targeting of αCaMKII, but implies a critical role for the F-actin binding and bundling properties of βCaMKII in synaptic function. Together, our data provide compelling support for a model of CaMKII function in which αCaMKII and βCaMKII act in concert, but with distinct functions, to regulate hippocampal synaptic plasticity and learning.
Collapse
|
6
|
Deguchi A, Hata M, Uhara T, Yamauchi T. Domain structure responsible for the different properties between alpha and beta Ca2+/calmodulin-dependent protein kinase II analyzed by their chimera enzymes. Brain Res 2008; 1238:1-11. [PMID: 18703025 DOI: 10.1016/j.brainres.2008.07.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 11/19/2022]
Abstract
To understand the domain structure responsible for different enzymatic properties, we constructed chimera cDNAs of the alpha and beta isoforms of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). The chimera DNAs were expressed in neuroblastoma cells, and the affinity for calmodulin and the subcellular localization of chimera enzymes were investigated. Here, we found that the region in immediately N-terminal of the calmodulin-binding site (exons 10 and 11), including the autophosphorylation site, mainly affected the affinity of each isoform for calmodulin and that the N-terminal region (exons 1 and 2), including the ATP-binding site, modified the affinity for calmodulin of each isoform. It was confirmed that the association of beta CaM kinase II with the particulate fraction was determined by beta-specific insertion, and also found that the association with the particulate fraction was modified by exons 1 and 2 of each isoform. Kinases without beta-specific insertion and chimera kinases consisting of exons 1 and 2 of beta and other regions of alpha appeared reduced in the transport of kinases to neurite. These results indicated that the structure of exons 10 and 11 and exons 1 and 2 modified the properties of CaM kinase II holoenzyme.
Collapse
Affiliation(s)
- Akiko Deguchi
- Department of Biochemistry, Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
7
|
Yamauchi T. Molecular Mechanism of Learning and Memory Based on the Research for Ca 2+/Calmodulin-dependent Protein Kinase II. YAKUGAKU ZASSHI 2007; 127:1173-97. [PMID: 17666869 DOI: 10.1248/yakushi.127.1173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the central nervous system (CNS), the synapse is a specialized junctional complex by which axons and dendrites emerging from different neuron intercommunicates. Changes in the efficiency of synaptic transmission are important for a number of aspects of neural function. Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. Thus, it is important to find and characterize "memory molecules," and "memory apparatus or memory forming apparatus." A good candidate for the storage mechanism is Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in the brain. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase open a door of the molecular basis of nerve function, especially learning and memory, and indicate one direction for the studies in the field of neuroscience. This review presents molecular structure, properties and functions of CaM kinase II, as a major component of neuron, which are mainly developed in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Institute of Health Biosciences, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|
8
|
Easley CA, Faison MO, Kirsch TL, Lee JA, Seward ME, Tombes RM. Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res 2006; 1092:59-68. [PMID: 16690036 DOI: 10.1016/j.brainres.2006.03.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 11/25/2022]
Abstract
In neurons, the interaction of laminin with its receptor, beta1 integrin, is accompanied by an increase in cytosolic Ca2+. Neuronal behavior is influenced by CaMK-II, the type II Ca2+/calmodulin-dependent protein kinase, which is enriched in axons of mouse embryonic neurons. In this study, we sought to determine whether CaMK-II is activated by laminin, and if so, how CaMK-II influences axonal growth and stability. Axons grew up to 200 microm within 1 day of plating P19 embryoid bodies on laminin-1 (EHS laminin). Activated CaMK-II was found enriched along the axon and in the growth cone as detected using a phospho-Thr(287) specific CaMK-II antibody. beta1 integrin was found in a similar pattern along the axon and in the growth cone. Direct inhibition of CaMK-II in 1-day-old neurons immediately froze growth cone dynamics, disorganized F-actin and ultimately led to axon retraction. Collapsed axonal remnants exhibited diminished phospho-CaMK-II levels. Treatment of 1-day neurons with a beta1 integrin-blocking antibody (CD29) also reduced axon length and phospho-CaMK-II levels and, like CaMK-II inhibitors, decreased CaMK-II activation. Among several CaMK-II variants detected in these cultures, the 52-kDa delta variant preferentially associated with actin and beta 3 tubulin as determined by reciprocal immunoprecipitation. Our findings indicate that persistent activation of delta CaMK-II by laminin stabilizes nascent embryonic axons through its influence on the actin cytoskeleton.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Biology and Biochemistry, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | | | | | | | | | | |
Collapse
|
9
|
Yamauchi T. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 2005; 28:1342-54. [PMID: 16079472 DOI: 10.1248/bpb.28.1342] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. A good candidate for the storage mechanism is Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in brain. Although it has been about a quarter of a century since the finding, CaM kinase II has been of the major interest in the region of brain science. It plays a multifunctional role in many intracellular events, and the expression of the enzyme is carefully regulated in brain regions and during brain development. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase have provided insight into the molecular basis of nerve functions, especially learning and memory, and indicate one direction for studies in the field of neuroscience. This review presents the molecular structure, properties and functions of CaM kinase II, as a major component of neurons, based mainly developed on findings made in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8585, Japan.
| |
Collapse
|
10
|
Donai H, Sugiura H, Ara D, Yoshimura Y, Yamagata K, Yamauchi T. Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci Res 2003; 47:399-408. [PMID: 14630344 DOI: 10.1016/j.neures.2003.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the relationship between Arc (activity-regulated cytoskeleton-associated protein) and Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). Arc and CaM kinase II were concentrated in the postsynaptic density. These proteins were accumulated after electroconvulsive treatment. Arc increased about 2.5-fold within 30 min and was maintained at this level for 8h after the stimulation. CaM kinase II also increased within 30 min and remained at this level for at least 24h. The interaction of Arc with CaM kinase II was demonstrated using GST-Arc fusion protein, and confirmed in neuroblastoma cells by immunoprecipitation. We examined the function of Arc by introducing Arc cDNA into neuroblastoma cells expressing CaM kinase II. The cells expressing both Arc and CaM kinase II had longer neurites than those expressing CaM kinase II alone. Arc itself did not promote neurite outgrowth. The growth of neurites by Arc was completely blocked by treatment with KN62, an inhibitor of CaM kinases. These results indicated that Arc potentiated the action of CaM kinase II for neurite extension.
Collapse
Affiliation(s)
- Hitomi Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Hu D, Cao K, Peterson-Wakeman R, Wang R. Altered profile of gene expression in rat hearts induced by chronic nicotine consumption. Biochem Biophys Res Commun 2002; 297:729-36. [PMID: 12359213 DOI: 10.1016/s0006-291x(02)02280-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a cDNA microarray technique, we analyzed the expression profile of 1081 genes in the whole heart tissue of rats. The expressions of three classes of genes encoding cellular energy metabolism enzymes, transmembrane receptors, and intracellular kinase network members were reduced by more than 2.5-fold in cardiac tissues from the rats fed with nicotine (3mg/kg/day) for 3 months. The down-regulated 11 genes included mitochondrial ATP synthase beta subunit, mitochondrial H(+) transporting ATP synthase F1 complex alpha subunit isoform 1, liver mitochondrial aldehyde dehydrogenase 2, glutathione-S-transferase mu type 2, corticotropin-releasing factor receptor 2, metabotropic glutamate receptor 2, N-methyl-D-aspartate receptor subtype 2B, muscarinic acetylcholine receptor M3, transmembrane receptor Unc5H1, glycogen synthase kinase 3alpha, and Ca(2+)/calmodulin-dependent protein kinase II beta subunit. It appears that chronic nicotine treatment affects cardiac function by modulating the expressions of genes involved in energy metabolism and signal transduction.
Collapse
Affiliation(s)
- Dahai Hu
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | |
Collapse
|
12
|
Sogawa Y, Yoshimura Y, Yamauchi T. Investigation of the Ca(2+)-independent form of Ca(2+)/calmodulin-dependent protein kinase II in neurite outgrowth. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:159-69. [PMID: 11733191 DOI: 10.1016/s1385-299x(01)00106-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) plays important roles in the control of nerve functions in response to intracellular Ca(2+) (for reviews [Annu. Rev. Physiol. 57 (1995) 417-445; Trends Neurosci. 17 (1994) 406-412]). Brief Ca(2+) signals activate CaM kinase II, and stimulate an autophosphorylation of Thr-286 which allows the kinase to maintain its activated state even after the Ca(2+) concentration has returned to basal levels [J. Biol. Chem. 264 (1989) 16759-16763; Neuron 3 (1989) 59-70; J. Biochem. 109 (1991) 137-143]. Autophosphorylation of CaM kinase II occurs in situ, but it occurs relatively quickly, within just a few minutes [Endocrinology 134 (1994) 2245-2250; J. Biol. Chem. 268 (1993) 7863-7867; J. Biol. Chem. 265 (1990) 18055-18058]. In the present study, we investigated the involvement of the autophosphorylated/Ca(2+)-independent form of CaM kinase II in neurite outgrowth. When neuroblastoma Neruo2a (Nb2a) cells expressing the alpha isoform of CaM kinase II (Nb2a/alpha cells) were stimulated by plating, they formed neurites. The autophosphorylation of Thr-286 and appearance of Ca(2+)-independent activity preceded the neurite formation. The effect of mutating of the kinase autophosphorylation site replacing Thr-286 with Ala (alpha T286A kinase) or Asp (alpha T286D kinase) was examined. alpha T286A kinase was not converted to a Ca(2+)-independent form, and alpha T286D kinase had Ca(2+)-independent activity significantly as an autophosphorylated kinase. Cells expressing alpha T286D kinase had much longer neurites than Nb2a/alpha cells, whereas cells with alpha T286A kinase did not form neurites. These results indicated that the Ca(2+)-independent form of CaM kinase II autophosphorylated at Thr-286 is involved in neurite outgrowth.
Collapse
Affiliation(s)
- Y Sogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | |
Collapse
|
13
|
Caran N, Johnson LD, Jenkins KJ, Tombes RM. Cytosolic targeting domains of gamma and delta calmodulin-dependent protein kinase II. J Biol Chem 2001; 276:42514-9. [PMID: 11535587 DOI: 10.1074/jbc.m103013200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) isozyme variability is the result of alternative usage of variable domain sequences. Isozyme expression is cell type-specific to transduce the appropriate Ca(2+) signals. We have determined the subcellular targeting domain of delta(E) CaMK-II, an isozyme that induces neurite outgrowth, and of a structurally similar isozyme, gamma(C) CaMK-II, which does not induce neurite outgrowth. delta(E) CaMK-II co-localizes with filamentous actin in the perinuclear region and in cellular extensions. In contrast, gamma(C) CaMK-II is uniformly cytosolic. Constitutively active delta(E) CaMK-II induces F-actin-rich extensions, thereby supporting a functional role for its localization. C-terminal constructs, which lack central variable domain sequences, can oligomerize and localize like full-length delta(E) and gamma(C) CaMK-II. Central variable domains themselves are monomeric and have no targeting capability. The C-terminal 95 residues of delta CaMK-II also has no targeting capability but can efficiently oligomerize. These findings define a targeting domain for gamma and delta CaMK-IIs that is in between the central variable and association domains. This domain is responsible for the subcellular targeting differences between gamma and delta CaMK-IIs.
Collapse
Affiliation(s)
- N Caran
- Department of Biology, Virginia Commonwealth University, Richmond Virginia 23284-2012, USA
| | | | | | | |
Collapse
|
14
|
Donai H, Morinaga H, Yamauchi T. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin dependent protein kinase II of rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:35-47. [PMID: 11597763 DOI: 10.1016/s0169-328x(01)00200-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gene encoding the beta isoform of rat Ca(2+)/calmodulin-dependent protein kinase II was cloned, and its exon-intron organization was analyzed. The gene consisted of 21 exons spanning more than 80 kilobase pairs and the coding sequence was made up of 20 exons. Each discrete functional unit, such as the ATP-binding site, the autophosphorylation site responsible for Ca(2+)-independent activity, the calmodulin binding site, and the link structure, was encoded by a single exon. All splice junction sequences flanking the introns conformed to the consensus splice junction sequence and the GT-AG splice rule. The site of transcription initiation was -78 bases from the initiation codon as determined by 5' RACE analysis. The promoter activity of the gene was analyzed using neuroblastomas, as well as non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-upstream region -66 to -35 bp from the transcription initiation site. Silence elements were found further upstream at -222 to -123 bp and -576 to -323 bp. A protein bound to the -66 to -35 region was found in the nuclear extract of rat brain, including the cerebellum, forebrain, and brainstem, by gel mobility shift assay.
Collapse
Affiliation(s)
- H Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1, 770-8505, Tokushima, Japan
| | | | | |
Collapse
|
15
|
Urushihara M, Yamauchi T. Role of beta isoform-specific insertions of Ca2+/calmodulin-dependent protein kinase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4802-8. [PMID: 11532017 DOI: 10.1046/j.1432-1327.2001.02410.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II (alpha and beta CaM kinase II, respectively) are highly conserved except for beta-specific insertions 1 and 2, located at amino acids 316-340 and 354-392, respectively. To investigate the role of these beta-specific insertions, we prepared the deletion mutants betaDelta1, betaDelta2 and betaDelta1/2, which lacked insertions 1, 2 and both, respectively. These mutant DNAs were expressed in neuroblastoma cells and compared with the wild-type enzyme. Green fluorescent protein tagged CaM kinase II was used to further explore the distribution of the kinase in living cells. Most (80%) of wild-type beta and mutant betaDelta1 were located in the particulate fraction, and distributed in the cell body and neurites, forming punctate or spot-like structures in the neurites. Mutants betaDelta2 and betaDelta1/2 were distributed in almost equal amounts in the soluble and particulate fractions. They were concentrated in the base of neurites and only partlially distributed throughout neurites, indicating that their transport to neurites was impaired. Beta(1-410), a deletion mutant of the association domain with a monomeric form, was located primarily in the soluble fraction. These results indicate that insertion 2, the association domain, and the oligomeric form of beta CaM kinase II play an important role in the cellular distribution of beta CaM kinase II.
Collapse
Affiliation(s)
- M Urushihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Japan
| | | |
Collapse
|
16
|
Donai H, Murakami T, Amano T, Sogawa Y, Yamauchi T. Induction and alternative splicing of delta isoform of Ca(2+)/calmodulin-dependent protein kinase II during neural differentiation of P19 embryonal carcinoma cells and during brain development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:189-99. [PMID: 11146121 DOI: 10.1016/s0169-328x(00)00221-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the expression of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) is regulated during brain development, the developmental change of the enzyme was investigated during the neural differentiation of murine P19 embryonal carcinoma cells. CaM kinase II activity was induced during the differentiation of P19 cells treated with retinoic acid. Expression of the enzyme was induced 2 days after the treatment and maximized at 5 days. The enzyme activity increased about approximately 8-fold. The enzyme protein was shown to differ between differentiated and undifferentiated cells. The delta isoform of CaM kinase II was found as the major isoform in P19 cells by immunoblotting and reverse transcription-polymerase chain reaction (RT-PCR). A total of four and three alternatively spliced variants of delta isoform were detected in P19 cells by RT-PCR analysis and by immunoblotting, respectively. Although multiple alternatively spliced forms have been reported, the major splice variants of delta isoform in differentiated cells were delta l and delta 9 isoforms, which were specifically detected in differentiated cells. In undifferentiated cells, the major splice variant corresponded to delta 2 isoform. These results indicated that the expression of delta isoform of CaM kinase II was induced, and the splicing pattern of the isoform changed, during neural differentiation. Cell type distinctive changes of splicing pattern of delta isoform were also observed not only during differentiation of cultured neuronal cells, but also during development of rat forebrain and cerebellum.
Collapse
Affiliation(s)
- H Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
17
|
Johnson LD, Willoughby CA, Burke SH, Paik DS, Jenkins KJ, Tombes RM. delta Ca(2+)/Calmodulin-dependent protein kinase II isozyme-specific induction of neurite outgrowth in P19 embryonal carcinoma cells. J Neurochem 2000; 75:2380-91. [PMID: 11080189 DOI: 10.1046/j.1471-4159.2000.0752380.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) has been linked to the induction of differentiation in preneuronal cells. In these cells, delta isozymes represent the majority of CaMK-IIs expressed and are activated by differentiation stimuli. To determine whether delta CaMK-IIs are causative or coincident with in vitro differentiation, we overexpressed wild-type, constitutively active, and C-terminal domains of delta and gamma CaMK-II isozymes in mouse P19 and NIH/3T3 cells using high-efficiency transfections. At 1-2 days after transfection, only constitutively active delta CaMK-II isozymes induced branched cellular extensions in both cell types. In P19 cells, retinoic acid induced neurite extensions after 3-4 days; these extensions were coincident with a fourfold increase in endogenous CaMK-II activity. Extensions induced by both retinoic acid and delta CaMK-IIs contained class III beta-tubulin in a discontinuous or beaded pattern. C-terminal CaMK-II constructs disrupted the ability of endogenous CaMK-II to autophosphorylate and blocked retinoic acid-induced differentiation. delta CaMK-II was found along extensions, whereas gamma CaMK-II exhibited a more diffuse, cytosolic localization. These data not only support an extranuclear role for CaMK-II in promoting neurite outgrowth, but also demonstrate CaMK-II isozyme specificity in these early steps of neuronal differentiation.
Collapse
Affiliation(s)
- L D Johnson
- Department of Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23284-2012, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sogawa Y, Yoshimura Y, Otaka A, Yamauchi T. Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II involved in stimulation of neurite outgrowth in neuroblastoma cells. Brain Res 2000; 881:165-75. [PMID: 11036155 DOI: 10.1016/s0006-8993(00)02838-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the involvement of Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) in stimulation of neurite outgrowth. When neuroblastoma Neruo2a (Nb2a) cells expressing the alpha isoform of CaM kinase II (Nb2a/alpha cells) were stimulated by plating, they changed shape from round to flattened, and began to form neurites within 15 min. Numbers of cells bearing neurites increased from 15 min to about 2 h. Neurite length increased markedly from 30 min to 2 h after stimulation. Ca(2+)-independent activity of CaM kinase II increased immediately after stimulation, peaked at about 30 min, and then gradually decreased. Autophosphorylation of Thr-286 followed the same time course as the increase in Ca(2+)-independent activity. The autophosphorylation and appearance of Ca(2+)-independent activity preceded the formation of neurites. The effect of mutation of the autophosphorylation site in the kinase whose Thr-286 was replaced with Ala (alphaT286A kinase) or Asp (alphaT286D kinase) was examined. alphaT286A kinase was not converted to a Ca(2+)-independent form, and alphaT286D kinase had Ca(2+)-independent activity significantly as an autophosphorylated kinase. Cells expressing alphaT286A kinase did not form neurites, and were indistinguishable from control Nb2a cells. Cells expressing alphaT286D kinase had much longer neurites than Nb2a/alpha cells expressing the wild type kinase, although the initiation of neurite outgrowth was very late. These results indicated that Ca(2+)-independent activity of the kinase autophosphorylated at Thr-286 involves for neurite outgrowth.
Collapse
Affiliation(s)
- Y Sogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, 770-8505, Tokushima, Japan
| | | | | | | |
Collapse
|
19
|
Donai H, Nakamura M, Sogawa Y, Wang JK, Urushihara M, Yamauchi T. Involvement of Ca2+/calmodulin-dependent protein kinase II in neurite outgrowth induced by cAMP treatment and serum deprivation in a central nervous system cell line, CAD derived from rat brain. Neurosci Lett 2000; 293:111-4. [PMID: 11027846 DOI: 10.1016/s0304-3940(00)01500-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A central nervous system (CNS) cell line, CAD, is known to differentiate in the absence of serum. This cell line was found to differentiate by the treatment of cAMP. Expression of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) was induced to about 2-fold or more on day 1, and was continued at a high level for 5 days after the exposure to differentiating conditions. Neurite extension was stimulated from day 1 and continued for 5 days, suggesting that CaM kinase II activity is correlated with neurite outgrowth. Of the four distinct isoforms (alpha, beta, gamma, and delta) of the kinase, the delta isoform was the major isoform in CAD cells. The splicing pattern of this isoform in the differentiated cells differed from that in undifferentiated cells, suggesting that expression of CaM kinase II is regulated during neural differentiation.
Collapse
Affiliation(s)
- H Donai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, 770-8505, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Li SH, Li H, Torre ER, Li XJ. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol Cell Neurosci 2000; 16:168-83. [PMID: 10924259 DOI: 10.1006/mcne.2000.0858] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Huntingtin-associated protein-1 (HAP1) binds more tightly to mutant huntingtin, but its function and distribution in neurites are not clear. Using PC12 cells and cultured hippocampal neurons, we found that two HAP1 isoforms, HAP1-A and HAP1-B, have different subcellular localizations. While most HAP1-B is diffusely distributed within the cytoplasm, HAP1-A is enriched in the growth cones and neuritic puncta of developing neurons. In mature neurons and adult brain neurons, however, HAP1-A is concentrated in axon terminals and associated with synaptic vesicles. Transfection of HAP1-A in PC12 cells significantly promotes neurite extension, with HAP1-A distributed in the distal regions of the growing neurites. Cotransfection of mutant huntingtin with HAP1-A in PC12 cells results in the accumulation of HAP1-A on huntingtin aggregates and the inhibition of neurite promotion by HAP1-A. This study suggests that HAP1-A has a function in neuritic development and synaptic function and that mutant huntingtin may alter this function.
Collapse
Affiliation(s)
- S H Li
- Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Generally, it is assumed that growth cones respond to a specific guidance cue with a single, specific, and stereotyped behavior. However, there is evidence to suggest that previous exposure to a given cue might alter subsequent responses to that cue (Snow and Letourneau, 1992; Shirasaki et al., 1998). We therefore tested the hypothesis that growth cone responses to stimuli are dependent on the history of previous stimulation. Growth cones of chick dorsal root ganglion neurons were exposed to well characterized stimuli: (1) contact with a laminin-coated bead, which causes growth cone turning, or (2) electrical stimulation, which causes growth cone collapse. Although the expected behavioral responses were observed after the initial stimulation, strikingly different responses to a subsequent stimulation were observed. Growth cones that had recovered from electrical stimulation-induced collapse rapidly developed insensitivity to a second identical electrical stimulation. Growth cones that previously turned in response to contact with a laminin-coated bead responded to a second bead with a "stall" or cessation in outgrowth. This stimulus history dependence of growth cone behavior could be generalized across dissimilar stimuli: after contact with a laminin-coated bead, growth cones failed to collapse in response to electrical stimulation. The calcium/calmodulin-dependent protein kinase II (CaMKII) was implicated in this history dependence by pharmacological experiments. Together, these results demonstrate that growth cones can alter their behavioral response rapidly to a given stimulus in a manner dependent on previous history and that knowledge of past events in growth cone navigation may be required to predict future growth cone behavior.
Collapse
|
22
|
Tombes RM, Mikkelsen RB, Jarvis WD, Grant S. Downregulation of delta CaM kinase II in human tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1452:1-11. [PMID: 10525155 DOI: 10.1016/s0167-4889(99)00113-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over two dozen alternative splice variants of CaMK-II, the type II Ca(2+)/CaM-dependent protein kinase, are encoded from four genes (alpha, beta, gamma and delta) in mammalian cells. Isozymes of alpha and beta CaMK-II are well characterized in brain; however, an understanding of the relative endogenous levels of CaMK-II isozymes in a wide variety of non-neuronal cells has not yet been described. In this study, we have demonstrated that CaMK-II consists primarily of the 54 kDa delta CaMK-II (delta(2) or delta(C)) isozyme in rodent fibroblasts. beta and gamma CaMK-II isozymes are minor and alpha CaMK-II was not expressed. The primary delta CaMK-II in human fibroblasts and the MCF10A mammary epithelial cell line was the 52 kDa delta(4) CaMK-II, an isozyme identical to delta(2) except for a missing 21-amino-acid C-terminal tail. delta CaMK-II levels were diminished in both human and rodent fibroblasts after SV40 transformation and in the mammary adenocarcinoma MCF7 cell line when compared to MCF10A cells. In fact, most tumor cells exhibited CaMK-II specific activities which were two- to tenfold lower than in untransformed fibroblasts. We conducted complementary CaMK-II studies on the NGF-induced differentiation of rat PC-12 cells. Although no new synthesis of CaMK-II occurs, neurite outgrowth in these cells is accompanied by a preferential activation of delta CaMK-II. Endogenous delta CaMK-II has a perinuclear distribution in fibroblasts and extends along neurites in PC-12 cells. These findings point to a role for delta CaMK-II isozymes in cellular differentiation.
Collapse
Affiliation(s)
- R M Tombes
- Massey Cancer Center and Department of Biology, Medical College of Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
23
|
Traina G, Petrucci C, Gargini C, Bagnoli P. Somatostatin enhances neurite outgrowth in PC12 cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:223-30. [PMID: 9838128 DOI: 10.1016/s0165-3806(98)00141-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rat pheochromocytoma cell line PC12 forms neurites in response to nerve growth factor (NGF), and it was also reported to extend processes in the presence of somatostatin (somatotropin release-inhibiting factor, SRIF), a neuroactive peptide that seems to act as a morphogenetic factor in the developing nervous system. In the present study, we re-evaluated the effects of SRIF on PC12 cell differentiation. Our results indicate that SRIF alone is ineffective in promoting neurite outgrowth. Instead, SRIF or its analogue, octreotide (a SRIF agonist on the receptor subtypes 2, 3 and 5), potentiates neurite extension induced by NGF. These results suggest that SRIF enhances neurite formation in PC12 cells without directly promoting neurite outgrowth. SRIF potentiation of NGF-induced neurite outgrowth persists at least in part in the presence of pertussis toxin (PTX), suggesting the involvement of PTX-insensitive G-proteins. In addition, protein kinase-dependent pathways are likely to mediate SRIF effects on NGF-induced differentiation.
Collapse
Affiliation(s)
- G Traina
- Dipartimento di Fisiologia e Biochimica 'G. Moruzzi', Università degli Studi di Pisa, Via S. Zeno, 31-56127, Pisa, Italy
| | | | | | | |
Collapse
|
24
|
Shen K, Teruel MN, Subramanian K, Meyer T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 1998; 21:593-606. [PMID: 9768845 DOI: 10.1016/s0896-6273(00)80569-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase that regulates long-term potentiation and other forms of neuronal plasticity. Functional differences between the neuronal CaMKIIalpha and CaMKIIbeta isoforms are not yet known. Here, we use green fluorescent protein-tagged (GFP-tagged) CaMKII isoforms and show that CaMKIIbeta is bound to F-actin in dendritic spines and cell cortex while CaMKIIalpha is largely a cytosolic enzyme. When expressed together, the two isoforms form large heterooligomers, and a small fraction of CaMKIIbeta is sufficient to dock the predominant CaMKIIalpha to the actin cytoskeleton. Thus, CaMKIIbeta functions as a targeting module that localizes a much larger number of CaMKIIalpha isozymes to synaptic and cytoskeletal sites of action.
Collapse
Affiliation(s)
- K Shen
- Department of Cell Biology, Duke University Medical Center Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
25
|
Yamauchi T, Yoshimura Y, Nomura T, Fujii M, Sugiura H. Neurite outgrowth of neuroblastoma cells overexpressing alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II-effects of protein kinase inhibitors. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:250-8. [PMID: 9630658 DOI: 10.1016/s1385-299x(98)00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is one of the most abundant protein kinases in the brain and has a broad substrate specificity [M.K. Bennett, N.E. Erondu, M.B. Kennedy, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258 (1983) 12735-12744 [1]; J.R. Goldenring, B. Gonzalez, J.S. McGuire, Jr., R.J. DeLorenzo, Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem. 258 (1983) 12632-12640 [4]; M.B. Kennedy, P. Greengard, Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites, Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1293-1297 [10]; T. Yamauchi, H. Fujisawa, Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain, FEBS Lett. 116 (1980) 141-144 [20]; T. Yamauchi, H. Fujisawa, Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase, Eur. J. Biochem. 132 (1983) 15-21 [21]]. The alpha and beta isoforms of CaM kinase II are known to be expressed almost exclusively in the brain [P.I. Hanson, H. Schulman, Ca2+/calmodulin-dependent protein kinases, Annu. Rev. Biochem. 61 (1992) 559-601 [7]]. To elucidate the cellular function of CaM kinase II, we introduced cDNA of wild-type CaM kinase II alpha- or beta-isoform, and of mutant alpha-isoform (Ala-286 kinase) into two different types of neuroblastoma, Neuro2a (Nb2a) and NG108-15, thus generating cell lines stably producing elevated levels of these kinases. The mutant alpha-isoform is markedly suppressed in its autophosphorylation by replacement of Thr-286 with Ala [Y.-L. Fong, W.L. Taylor, A.R. Means, T.R. Soderling, Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate, J. Biol. Chem. 264 (1989) 16759-16763 [3]; P.I. Hanson, M.S. Kapiloff, L.L. Lou, M.G. Rosenfeld, H. Schulman, Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation, Neuron 3 (1989) 59-70 [6]; S. Ohsako, H. Nakazawa, S. Sekihara, A. Ikai, T. Yamauchi, Role of Threonine-286 as autophosphorylation site for appearance of Ca2+-independent activity of calmodulin-dependent protein kinase II alpha subunit, J. Biochem. 109 (1991) 137-143 [15]]. We provided evidence that CaM kinase II played a role in regulating neurite outgrowth and growth cone motility in these cells, and that the autophosphorylation is essential for the kinase to sufficiently exert its cellular function in vivo [Y. Goshima, S. Ohsako, T. Yamauchi, Overexpression of Ca2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility, J. Neurosci. 13 (1993) 559-567 [5]]. Neurite outgrowth was further stimulated by treatment with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or chelerythrine, inhibitors of protein kinase C [T. Nomura, K. Kumatoriya, Y. Yoshimura, T. Yamauchi, Overexpression of alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase II in neuroblastoma cells-H-7 promotes neurite outgrowth, Brain Res. 766 (1997) 129-141 [14]]. The morphological change stimulated with protein kinase inhibitors was rapid and was greater in the beta than alpha cells. Some substrates of CaM kinase II related to neurite outgrowth were detected in cells overexpressing the kinase stimulated with H-7. These results suggest that CaM kinase II and protein kinase C play an important role in the control of cell change. (c) 1998 Elsevier Science B.V. All rights reserved.
Collapse
Affiliation(s)
- T Yamauchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 7708505, Japan
| | | | | | | | | |
Collapse
|
26
|
Huang YL, Ding M, Hansson HA. Dorsal root ganglion nerve cells transiently express increased immunoreactivity of the calcium-binding protein S-100beta after sciatic nerve transection. Brain Res 1998; 785:351-4. [PMID: 9518690 DOI: 10.1016/s0006-8993(97)01425-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transiently increased immunoreactivity of the calcium binding protein S-100beta was demonstrated in spinal ganglion nerve cells after sciatic nerve transection. Neuropeptide Y (NPY), normally not seen in these nerve cells, appeared concomitantly. The transiently elevated co-expression of S-100beta and NPY is proposed to reflect an increased demand of neurotrophic and neuroprotective compounds in reactive neurons, tentatively regulating calcium ions.
Collapse
Affiliation(s)
- Y L Huang
- Institute of Anatomy and Cell Biology, University of Göteborg, S-413 90, Göteborg, Sweden.
| | | | | |
Collapse
|