1
|
Ivica J, Lape R, Jazbec V, Yu J, Zhu H, Gouaux E, Gold MG, Sivilotti LG. The intracellular domain of homomeric glycine receptors modulates agonist efficacy. J Biol Chem 2021; 296:100387. [PMID: 33617876 PMCID: PMC7995613 DOI: 10.1074/jbc.ra119.012358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, β-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.
Collapse
Key Words
- 5-ht3, 5-hydroxytryptamine type 3
- dmem, dulbecco’s modified eagle’s medium
- ecd, extracellular domain
- glyr, glycine receptor
- icd, intracellular domain
- popen, open probability
- pdb, protein data bank
- plgic, pentameric ligand-gated ion channels
- tm, transmembrane
- zf, zebrafish
Collapse
Affiliation(s)
- Josip Ivica
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Gouaux
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 2020; 157:R181-R197. [PMID: 30721132 DOI: 10.1530/rep-18-0541] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hilde Nelis
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maarten Hoogewijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Breitinger U, Bahnassawy LM, Janzen D, Roemer V, Becker CM, Villmann C, Breitinger HG. PKA and PKC Modulators Affect Ion Channel Function and Internalization of Recombinant Alpha1 and Alpha1-Beta Glycine Receptors. Front Mol Neurosci 2018; 11:154. [PMID: 29867346 PMCID: PMC5961436 DOI: 10.3389/fnmol.2018.00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/23/2018] [Indexed: 01/04/2023] Open
Abstract
Glycine receptors (GlyRs) are important mediators of fast inhibitory neurotransmission in the mammalian central nervous system. Their function is controlled by multiple cellular mechanisms, including intracellular regulatory processes. Modulation of GlyR function by protein kinases has been reported for many cell types, involving different techniques, and often yielding contradictory results. Here, we studied the effects of protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) on glycine induced currents in HEK293 cells expressing human homomeric α1 and heteromeric α1-β GlyRs using whole-cell patch clamp techniques as well as internalization assays. In whole-cell patch-clamp measurements, modulators were applied in the intracellular buffer at concentrations between 0.1 μM and 0.5 μM. EC50 of glycine increased upon application of the protein kinase activators Forskolin and phorbol-12-myristate-13-acetate (PMA) but decreased in the presence of the PKC inhibitor Staurosporine aglycon and the PKA inhibitor H-89. Desensitization of recombinant α1 receptors was significantly increased in the presence of Forskolin. Staurosporine aglycon, on the other hand decreased desensitization of heteromeric α1-β GlyRs. The time course of receptor activation was determined for homomeric α1 receptors and revealed two simultaneous effects: cells showed a decrease of EC50 after 3–6 min of establishing whole-cell configuration. This effect was independent of protein kinase modulators. All modulators of PKA and PKC, however, produced an additional shift of EC50, which overlay and eventually exceeded the cells intrinsic variation of EC50. The effect of kinase activators was abolished if the corresponding inhibitors were co-applied, consistent with PKA and PKC directly mediating the modulation of GlyR function. Direct effects of PKA- and PKC-modulators on receptor expression on transfected HEK cells were monitored within 15 min of drug application, showing a significant increase of receptor internalization with PKA and PKC activators, while the corresponding inhibitors had no significant effect on receptor surface expression or internalization. Our results confirm the observation that phosphorylation via PKA and PKC has a direct effect on the GlyR ion channel complex and plays an important role in the fine-tuning of glycinergic signaling.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | | | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Cord-Michael Becker
- Department of Biochemistry, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Burgos CF, Yévenes GE, Aguayo LG. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol Pharmacol 2016; 90:318-25. [PMID: 27401877 PMCID: PMC4998662 DOI: 10.1124/mol.116.105726] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
5
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
6
|
Sun H, Lu L, Zuo Y, Wang Y, Jiao Y, Zeng WZ, Huang C, Zhu MX, Zamponi GW, Zhou T, Xu TL, Cheng J, Li Y. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nat Commun 2014; 5:4980. [PMID: 25236484 PMCID: PMC4199113 DOI: 10.1038/ncomms5980] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingfu Jiao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Zheng Zeng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary T2N 4 N1, Alberta, Canada
| | - Tong Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Tian-Le Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Long-term potentiation of glycinergic synapses triggered by interleukin 1β. Proc Natl Acad Sci U S A 2014; 111:8263-8. [PMID: 24830427 DOI: 10.1073/pnas.1401013111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP) is a persistent increase in synaptic strength required for many behavioral adaptations, including learning and memory, visual and somatosensory system functional development, and drug addiction. Recent work has suggested a role for LTP-like phenomena in the processing of nociceptive information in the dorsal horn and in the generation of central sensitization during chronic pain states. Whereas LTP of glutamatergic and GABAergic synapses has been characterized throughout the central nervous system, to our knowledge there have been no reports of LTP at mammalian glycinergic synapses. Glycine receptors (GlyRs) are structurally related to GABAA receptors and have a similar inhibitory role. Here we report that in the superficial dorsal horn of the spinal cord, glycinergic synapses on inhibitory GABAergic neurons exhibit LTP, occurring rapidly after exposure to the inflammatory cytokine interleukin-1 beta. This form of LTP (GlyR LTP) results from an increase in the number and/or change in biophysical properties of postsynaptic glycine receptors. Notably, formalin-induced peripheral inflammation in vivo potentiates glycinergic synapses on dorsal horn neurons, suggesting that GlyR LTP is triggered during inflammatory peripheral injury. Our results define a previously unidentified mechanism that could disinhibit neurons transmitting nociceptive information and may represent a useful therapeutic target for the treatment of pain.
Collapse
|
8
|
Specht CG, Grünewald N, Pascual O, Rostgaard N, Schwarz G, Triller A. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J 2011; 30:3842-53. [PMID: 21829170 DOI: 10.1038/emboj.2011.276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 07/15/2011] [Indexed: 11/09/2022] Open
Abstract
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Institut de Biologie de l'École Normale Supérieure, Inserm U, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Velázquez-Flores MÁ, Salceda R. Glycine receptor internalization by protein kinases activation. Synapse 2011; 65:1231-8. [PMID: 21656573 DOI: 10.1002/syn.20963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/06/2022]
Abstract
Although glycine-induced currents in the central nervous system have been proven to be modulated by protein kinases A (PKA) and C (PKC), the mechanism is not well understood. In order to better comprehend the mechanism involved in this phenomenon, we tested the PKA and PKC activation effect on the specific [(3) H]glycine and [(3) H]strychnine binding to postsynaptic glycine receptor (GlyR) in intact rat retina. The specific binding constituted about 20% of the total radioligand binding. Kinetic analysis of the specific binding exhibited a sigmoidal behavior with three glycine and two strychnine binding sites and affinities of 212 nM for [(3) H]glycine and 50 nM for [(3) H]strychnine. Specific radioligand binding was decreased (60-85%) by PKA and PKC activation, an effect that was blocked by specific kinases inhibitors, as well as by cytochalasin D. GlyR expressed in the plasma membrane decreased about 50% in response to kinases activation, which was consistent with an increase of the receptor in the microsomal fraction when PKA was activated. Moreover, immunoprecipitation studies indicated that these kinases lead to a time-dependent receptor phosphorylation. Our results suggest that in retina, GlyR is cross-regulated by G protein-coupled receptors, activating PKA and PKC.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F., México.
| | | |
Collapse
|
10
|
Zhao WJ, Zhang M, Miao Y, Yang XL, Wang Z. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells. J Physiol 2010; 588:2605-19. [PMID: 20519319 PMCID: PMC2916991 DOI: 10.1113/jphysiol.2010.187641] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/24/2010] [Indexed: 12/15/2022] Open
Abstract
In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner retina.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- Institutes of Brain Science and Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
11
|
Guzman L, Moraga-Cid G, Avila A, Figueroa M, Yevenes GE, Fuentealba J, Aguayo LG. Blockade of ethanol-induced potentiation of glycine receptors by a peptide that interferes with Gbetagamma binding. J Pharmacol Exp Ther 2009; 331:933-9. [PMID: 19773530 PMCID: PMC2784719 DOI: 10.1124/jpet.109.160440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/21/2009] [Indexed: 01/09/2023] Open
Abstract
The large intracellular loop (IL) of the glycine receptor (GlyR) interacts with various signaling proteins and plays a fundamental role in trafficking and regulation of several receptor properties, including a direct interaction with Gbetagamma. In the present study, we found that mutation of basic residues in the N-terminal region of the IL reduced the binding of Gbetagamma to 21 +/- 10% of control. Two basic residues in the C-terminal region, on the other hand, contributed to a smaller extent to Gbetagamma binding. Using docking analysis, we found that both basic regions of the IL bind in nearby regions to the Gbetagamma dimer, within an area of high density of amino acids having an electronegative character. Thereafter, we generated a 17-amino acid peptide with the N-terminal sequence of the wild-type IL (RQH) that was able to inhibit the in vitro binding of Gbetagamma to GlyRs to 57 +/- 5% of control in glutathione S-transferase pull-down assays using purified proteins. More interestingly, when the peptide was intracellularly applied to human embryonic kidney 293 cells, it inhibited the Gbetagamma-mediated modulations of G protein-coupled inwardly rectifying potassium channel by baclofen (24 +/- 14% of control) and attenuated the GlyR potentiation by ethanol (51 +/- 10% versus 10 +/- 3%).
Collapse
Affiliation(s)
- Leonardo Guzman
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang R, He S, Chen Z, Dillon GH, Leidenheimer NJ. Mechanisms of homomeric alpha1 glycine receptor endocytosis. Biochemistry 2007; 46:11484-93. [PMID: 17887775 PMCID: PMC2597333 DOI: 10.1021/bi701093j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known regarding the mechanism(s) by which glycine receptors are endocytosed. Here we examined the endocytosis of homomeric alpha1 glycine receptors expressed in HEK 293 cells using immunofluorescence/confocal microscopy and whole-cell patch-clamp recordings. Our studies demonstrate that constitutive endocytosis of glycine receptors is blocked by the dominant negative dynamin construct K44A and that intracellular dialysis with peptide P4, a dynamin/amphiphysin-disrupting peptide, increased whole-cell glycine-gated chloride currents. To examine whether receptor endocytosis could be regulated by PKC, experiments with the PKC activator PMA (phorbol 12-myristate 13-acetate) were performed. PMA, but not its inactive analogue PMM (phorbol 12-monomyristate), stimulated receptor endocytosis and inhibited glycine-gated chloride currents. Similar to constitutive endocytosis, PKC-stimulated endocytosis was blocked by dynamin K44A. Mutation of a putative AP2 adaptin dileucine motif (L314A, L315A) present in the receptor cytoplasmic loop blocked PMA-stimulated receptor endocytosis and also prevented PMA inhibition of glycine receptor currents. In patch-clamp experiments, intracellular dialysis of a 12-amino acid peptide corresponding to the region of the receptor containing the dileucine motif prevented PKC modulation of wild-type glycine receptors. Unlike PKC modulation of the receptor, constitutive endocytosis was not affected by mutation of this dileucine motif. These results demonstrate that PKC activation stimulates glycine receptor endocytosis, that both constitutive endocytosis and PKC-stimulated endocytosis are dynamin-dependent, and that PKC-stimulated endocytosis, but not constitutive endocytosis, occurs via the dileucine motif (L314A, L315A) within the cytoplasmic loop of the receptor.
Collapse
Affiliation(s)
- Renqi Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Shaoqing He
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Zhenglan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Glenn H. Dillon
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Nancy J. Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130. Phone (318) 675-7855. Fax: (318) 675-5180. E-mail:
| |
Collapse
|
13
|
Machu TK, Dillon GH, Huang R, Lovinger DM, Leidenheimer NJ. Temperature: an important experimental variable in studying PKC modulation of ligand-gated ion channels. Brain Res 2006; 1086:1-8. [PMID: 16626662 DOI: 10.1016/j.brainres.2006.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 12/14/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Amphibian oocyte and mammalian heterologous expression systems are often used to investigate the function of recombinant ion channels using electrophysiological techniques. Although both systems have yielded important information, the results obtained in these systems are sometimes conflicting. Oocytes and mammalian cells differ in their physiological temperature requirements. While room temperature is within the physiological temperature range for oocytes, this temperature is far below that required by mammalian cells. Since electrophysiological studies are often performed in both oocytes and mammalian cells at room temperature, we sought to determine if recording temperature could be a factor in some disparate results obtained in these cell types. For these studies, we examined phorbol ester modulation of GABA(A) and glycine receptors. Consistent with the literature, at room temperature, PMA (phorbol 12-myristate 13-acetate) produced a large reproducible decrease in the peak amplitude of GABA and glycine-gated currents in Xenopus oocytes. In contrast, PMA was ineffective in modulating these heterologously expressed receptors at room temperature in human embryonic kidney (HEK) 293 cells. However, when electrophysiological experiments were performed at 35 degrees C in HEK 293 cells, PMA decreased the function of these receptors. Our results indicate that the temperature at which electrophysiological studies are conducted is an important experimental variable. To determine the extent to which electrophysiological recordings are performed at physiological temperatures in HEK 293 cells, a PubMed search was conducted using the search terms "patch clamp" and "HEK" for the years 2003-2004. This search revealed that only 15% of the patch clamp studies were reported to have been conducted in the temperature range of 32-37 degrees C. The results of our study indicate that temperature is an important experimental variable that requires rational consideration in the design of electrophysiological experiments.
Collapse
Affiliation(s)
- Tina K Machu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Forth Worth, 76203-1067, USA
| | | | | | | | | |
Collapse
|
14
|
Wei J, Zhang M, Zhu Y, Wang JH. Ca2+–calmodulin signalling pathway up-regulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience 2004; 127:637-47. [PMID: 15283963 DOI: 10.1016/j.neuroscience.2004.05.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2004] [Indexed: 11/22/2022]
Abstract
We investigated the role of calcium (Ca(2+))/calmodulin (CaM) signaling pathways in modulating GABA synaptic transmission at CA1 pyramidal neurons in hippocampal slices. Whole-cell pipettes were used to record type A GABA receptor (GABA(A)R)-gated inhibitory postsynaptic currents (IPSCs) and to perfuse intracellularly modulators in the presence of glutamate receptor antagonists. GABA(A)R-gated IPSCs were enhanced by the postsynaptic infusions of adenophostin (1 microM), a potent agonist of inositol-1,4,5-triphosphate receptor (IP(3)R) that induces Ca(2+) release. The enhancement was blocked by co-infusing either 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10 mM) or CaM-binding peptide (100 microM). Moreover, the postsynaptic infusion of Ca(2+)-CaM (40/10 microM) enhanced both evoked and spontaneous GABA(A)R-gated IPSCs. The enhancement was attenuated by co-infusing 100 microM CaM-KII(281-301), an autoinhibitory peptide of CaM-dependent protein kinases. These results indicate that postsynaptic Ca(2+)-CaM signaling pathways essentially enhance GABAergic synaptic transmission. In the investigation of synaptic targets for the enhancement, we found that IP(3)R agonist-enhanced GABA(A)R-gated IPSCs were attenuated by co-infusing colchicine (30 microM), vincristine (3 microM) or cytochalasin D (1 microM) that inhibits tubulin or actin polymerization, implying that actin filament and microtubules are involved. We conclude that postsynaptic Ca(2+)-CaM signaling pathways strengthen the function of GABAergic synapses via a cytoskeleton-mediated mechanism, probably the recruitment of receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- J Wei
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
15
|
Graham BA, Schofield PR, Sah P, Callister RJ. Altered inhibitory synaptic transmission in superficial dorsal horn neurones in spastic and oscillator mice. J Physiol 2003; 551:905-16. [PMID: 12837931 PMCID: PMC2343288 DOI: 10.1113/jphysiol.2003.049064] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The spastic (spa) and oscillator (ot) mouse have naturally occurring mutations in the inhibitory glycine receptor (GlyR) and exhibit severe motor disturbances when exposed to unexpected sensory stimuli. We examined the effects of the spa and ot mutations on GlyR- and GABAAR-mediated synaptic transmission in the superficial dorsal horn (SFDH), a spinal cord region where inhibition is important for nociceptive processing. Spontaneous mIPSCs were recorded from visually identified neurones in parasagittal spinal cord slices. Neurones received exclusively GABAAR-mediated mIPSCs, exclusively GlyR-mediated mIPSCs or both types of mIPSCs. In control mice (wild-type and spa/+) over 40% of neurones received both types of mIPSCs, over 30% received solely GABAAR-mediated mIPSCs and the remainder received solely GlyR-mediated mIPSCs. In spa/spa animals, 97% of the neurones received exclusively GABAAergic or both types of mIPSCs. In ot/ot animals, over 80 % of the neurones received exclusively GABAAR-mediated mIPSCs. GlyR-mediated mIPSC amplitude and charge were reduced in spa/spa and ot/ot animals. GABAAR-mediated mIPSC amplitude and charge were elevated in spa/spa but unaltered in ot/ot animals. GlyR- and GABAAR-mediated mIPSC decay times were similar for all genotypes, consistent with the mutations altering receptor numbers but not kinetics. These findings suggest the spastic and oscillator mutations, traditionally considered motor disturbances, also disrupt inhibition in a sensory region associated with nociceptive transmission. Furthermore, the spastic mutation results in a compensatory increase in GABAAergic transmission in SFDH neurones, a form of inhibitory synaptic plasticity absent in the oscillator mouse.
Collapse
Affiliation(s)
- B A Graham
- School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
16
|
Lee JJ, Hahm ET, Min BI, Han SH, Cho JJ, Cho YW. Roles of protein kinase A and C in the opioid potentiation of the GABAA response in rat periaqueductal gray neuron. Neuropharmacology 2003; 44:573-83. [PMID: 12668043 DOI: 10.1016/s0028-3908(03)00039-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The periaqueductal gray (PAG) is the main target site of the opioid-induced analgesia. The present study was designed to examine the roles of protein kinase A (PKA) and C (PKC) in the opioid-induced modulation of the currents activated by an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). The PAG neurons were acutely isolated and voltage-clamped under the nystatin-perforated patch-clamp mode. The GABA-activated current was sensitively blocked by a GABA(A) receptor antagonist, bicuculline, and selectively carried by chloride ions. The GABA(A) receptor-activated Cl(-) current was potentiated by a mu-opioid receptor agonist, [D-Ala(2),N-MePhe(4),Gly(5)-ol]-enkephalin acetate (DAMGO). The GABA response was also potentiated by phorbol-12-myristate-13-acetate (PMA). Pretreatment with PMA occluded the DAMGO potentiation. However, both chelerythrine and 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X) also potentiated the GABA response. Pretreatment with chelerythrine or GF109203X also occluded the DAMGO potentiation. Meanwhile, the GABA response was potentiated by N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide (H-89), while not altered by forskolin. Pretreatment with H-89 occluded the potentiation effect of DAMGO on the GABA response. In addition, the DAMGO effect was completely blocked by pretreatment with forskolin. From the result, it can be suggested that activation of mu-opioid receptor potentiates the GABA(A) response through the mediation of PKA inhibition, and that PKC is not directly involved in the action mechanism of DAMGO.
Collapse
Affiliation(s)
- J-J Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Chesnoy-Marchais D. Potentiation of glycine responses by dideoxyforskolin and tamoxifen in rat spinal neurons. Eur J Neurosci 2003; 17:681-91. [PMID: 12603258 DOI: 10.1046/j.1460-9568.2003.02481.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dideoxyforskolin, a forskolin analogue unable to stimulate adenylate cyclase, and tamoxifen, an antioestrogen widely used against breast cancer, are both known to block some Cl- channels. Their effects on Cl- responses to glycine or GABA have been tested here by using whole-cell recording from cultured spinal neurons. Dideoxyforskolin (4 or 16 microm) and tamoxifen (0.2-5 microm) both potentiate responses to low glycine concentrations. They also induce blocking effects, predominant at high glycine concentrations. At 5 microm, tamoxifen increased responses to 15 microm glycine by a factor >4.5, reaching 20 in some neurons. Potentiation by extracellular dideoxyforskolin or tamoxifen persisted after intracellular application of the modulator and was not due to Zn2+ contamination. Potentiation by tamoxifen also persisted in a Ca2+-free extracellular solution, after intracellular Ca2+ buffering and protein kinase C blockade. Thus, the critical sites of action are not intracellular. The EC50 for glycine was lowered 6.6-fold by 5 microm tamoxifen. The kinetics and voltage-dependence of the effects of tamoxifen on glycine responses support the idea that this hydrophobic drug may act from a site located within the membrane. Tamoxifen (5 micro m) also increased responses to 2 micro m GABA by a factor of 3.5, but barely affected peak responses to 20 microm GABA. The demonstration that tamoxifen affects some of the main inhibitory receptors should be useful for better evaluating its neurological effects. Furthermore, the results identify a new class of molecules that potentiate glycine receptor function.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
18
|
Hoffpauir BK, Gleason EL. Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. J Neurophysiol 2002; 88:1766-76. [PMID: 12364505 DOI: 10.1152/jn.2002.88.4.1766] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amacrine cells in the vertebrate retina receive glutamatergic input from bipolar cells and make synapses onto bipolar cells, ganglion cells, and other amacrine cells. Recent studies indicate that amacrine cells express metabotropic glutamate receptors (mGluRs) and that signaling within the inner plexiform layer (IPL) of the retina might be modulated by mGluR activity. This study tests the hypothesis that activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. Whole cell voltage-clamp recordings were combined with pharmacology to establish the identity of the ionotropic GABA receptors expressed in primary cultures of chick amacrine cells and to determine how mGluR5 activity affected the behavior of those receptors. Application of GABA (20 microM) produced currents that reversed at -58.2 +/- 0.9 mV, near the predicted Cl(-) reversal potential of -59 mV. The GABA(A) receptor antagonist, bicuculline (50 microM), completely blocked the GABA-gated currents. cis-4-Aminocrotonic acid (CACA; 100 microM), a GABA(C) receptor agonist, produced small currents that were not blocked by the GABA(C) antagonist, (1,2,5,6-tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA; 20 microM), but were completely blocked by bicuculline. These results indicate that cultured amacrine cells express GABA(A) receptors exclusively. Activating mGluR5 with (RS)-2-chloro-5-hydroxyphenylglycine (CHPG; 300 microM) enhanced GABA-gated currents by 10.0 +/- 1.5%. Buffering internal Ca(2+) with BAPTA (10 mM) blocked the CHPG-dependent enhancement. Activation of PKC with the cell-permeable PKC activators (-)-7-octylindolactam V, phorbol 12-myristate 13 acetate (PMA), or 1-oleoyl-2-acetyl-sn-glycerol (OAG) also enhanced GABA-gated currents in a dose-dependent manner. Preactivation of PKC occluded the mGluR5-dependent enhancement, and inhibition of Ca-dependent PKC isotypes with Gö6976 (35 nM) suppressed the effects of mGluR5 activation, suggesting that mGluR5 and PKC are part of the same pathway. To determine if mGluR5-dependent enhancement occurred at synaptic GABA(A) receptors, postsynaptic currents were recorded in the presence of CHPG. On average, the mean amplitudes of the quantal events were increased by about 18% when mGluR5 was activated. These results indicate that activation of mGluR5 enhances GABA-gated current in cultured amacrine cells in a manner that is both Ca(2+)- and PKC-dependent. These results support the possibility that glutamate released from bipolar cells can modulate the function of GABAergic amacrine cells and alter signaling in the inner plexiform layer.
Collapse
Affiliation(s)
- Brian K Hoffpauir
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
19
|
Balayssac D, Richard D, Authier N, Nicolay A, Jourdan D, Eschalier A, Coudoré F. Absence of painful neuropathy after chronic oral fluoride intake in Sprague-Dawley and Lou/C rats. Neurosci Lett 2002; 327:169-72. [PMID: 12113904 DOI: 10.1016/s0304-3940(02)00421-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The possibility that chronicle oral ingestion of fluoride-rich water could modify peripheral pain sensitivity was studied in two strains of adult rats, Sprague-Dawley and Lou/C rats. Sodium fluoride was given orally in water to male Sprague-Dawley (75 and 150 ppm) and Lou rats (150 ppm) for 15 and 27 weeks, respectively. Using classical behavioural evaluation methods of pain symptoms, only slight tendencies to a thermal hyperalgia and a mechanical allodynia were observed in Sprague-Dawley rats.
Collapse
Affiliation(s)
- David Balayssac
- Laboratoire de Toxicologie, INSERM E9904, Faculté de Pharmacie, 28, place Henri Dunant, BP 38, 63001, Clermont-Ferrand Cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Tao L, Ye JH. Protein kinase C modulation of ethanol inhibition of glycine-activated current in dissociated neurons of rat ventral tegmental area. J Pharmacol Exp Ther 2002; 300:967-75. [PMID: 11861805 DOI: 10.1124/jpet.300.3.967] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is particularly sensitive to alcohol during its growth spurt period. To better understand the mechanism(s) involved, we studied the effects of ethanol on neurons freshly dissociated from the ventral tegmental area (VTA) in neonatal rats. Ethanol enhanced (35%) or depressed (45%) glycine-induced responses in VTA neurons (Ye et al., 2001a, 2001b). In this report, we investigated the role of protein kinase C (PKC) and protein kinase A (PKA) in ethanol-induced inhibition of glycine-activated current, using whole-cell patch-clamp technique. Ethanol inhibited glycine-activated current when it was coapplied with the agonist. This inhibition was enhanced when neurons were pretreated with ethanol before the subsequent coapplication of ethanol and glycine. Ethanol's inhibition of glycine-activated currents increased with the length of ethanol pretreatment time (ranging from 1 to 30 s), and reached the maximum at 30 s. However, this enhanced inhibition was not seen in the absence of internal ATP. In addition, phorbol-12-myristate-13-acetate (PMA, 100 nM), a PKC activator, markedly inhibited glycine-activated current. Blockade of PKC by chelerythrine or by PKC inhibitor peptide significantly attenuated ethanol-induced inhibition. Although partial increase of PKC activity by 1 nM PMA enhanced ethanol inhibition, pretreatment of ethanol did not increase ethanol inhibition after the neurons were treated with 100 nM PMA. These data suggest that ethanol and PKC share the same pathway to suppress glycine receptors. H-89 (1 microM), a selective PKA inhibitor, did not alter glycine-activated current or ethanol inhibition. Our observations suggest that activation of PKC (but not PKA) contributes to ethanol-induced inhibition of glycine receptors.
Collapse
Affiliation(s)
- Liang Tao
- Departments of Anesthesiology and Pharmacology and Physiology, New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | |
Collapse
|
21
|
Bray C, Son JH, Kumar P, Harris JD, Meizel S. A role for the human sperm glycine receptor/Cl(-) channel in the acrosome reaction initiated by recombinant ZP3. Biol Reprod 2002; 66:91-7. [PMID: 11751269 DOI: 10.1095/biolreprod66.1.91] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously, we have demonstrated an essential role for the neuronal glycine receptor (GlyR) in the acrosome reaction (AR) of mouse and porcine sperm initiated by the egg zona pellucida (ZP). In the present study, we have demonstrated presence of the GlyR in human sperm by immunoprecipitation and Western blot analysis, investigated the potential of a recombinant human ZP3 (rhZP3) preparation as an alternative research tool to solubilized human ZP, and shown that the human sperm GlyR is essential to the human AR initiated by rhZP3. Additionally, we have been able to demonstrate that rhZP3 possesses biological activity, because it is able to rapidly stimulate the AR in capacitated human sperm and its action is blocked by the addition of pertussis toxin. Moreover, spectrofluorometric studies using fura-2-loaded human sperm have shown that rhZP3 triggers a peak-and-plateau rise in intracellular Ca(2+) levels similar to that seen with solubilized mammalian ZP. These results suggest that the actions of rhZP3 and solubilized ZP are elicited via the same signal transduction pathways. Furthermore, incubation of human sperm with an antibody directed against the alpha1 subunit of the human spinal cord GlyR or with 50 nM strychnine caused significant inhibition in the rhZP3-initated AR. Finally, studies using fura-2-loaded human sperm showed that 50 nM strychnine was also able to inhibit the Ca(2+) influx associated with addition of rhZP3. These results further support the view that rhZP3 and the ZP work through the same mechanisms, show that the GlyR is involved in rhZP3-initiated AR, and suggest that the GlyR may also play a role in the early signal transduction cascades associated with ZP-initiated AR in vivo.
Collapse
Affiliation(s)
- Christopher Bray
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, Davis, California 95616-8643, USA
| | | | | | | | | |
Collapse
|
22
|
Yamashita M, Ueno T, Akaike N, Ikemoto Y. Modulation of miniature inhibitory postsynaptic currents by isoflurane in rat dissociated neurons with glycinergic synaptic boutons. Eur J Pharmacol 2001; 431:269-76. [PMID: 11730718 DOI: 10.1016/s0014-2999(01)01421-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of a volatile anesthetic, isoflurane, on glycinergic miniature inhibitory postsynaptic currents (IPSCs) were investigated in mechanically dissociated rat trigeminal nucleus neurons with intact glycinergic interneuronal presynaptic nerve terminals. The nystatin-perforated patch recording configuration was used to record the miniature IPSCs under voltage-clamp conditions. Isoflurane shifted in a parallel fashion the glycine (Gly) concentration-response curve of enzymatically dissociated neurons to the left without changing the maximum response. Isoflurane reversibly increased the frequency of the miniature IPSCs and prolonged the decay time constant without affecting the mean amplitude. The increase in the frequency of miniature IPSCs in the presence of isoflurane was also observed in Ca(2+)-free external solution. Thapsigargin prohibited the facilitatory effect of isoflurane on the miniature IPSC frequency. It is concluded that isoflurane increases the Ca(2+) concentration in the glycinergic presynaptic nerve terminal by enhancing the release and/or suppressing the uptake of Ca(2+) into stores.
Collapse
Affiliation(s)
- M Yamashita
- Department of Dental Anesthesiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
23
|
Albarran FA, Roa JP, Navarrete R, Castillo R, Nualart F, Aguayo LG. Effect of protein kinase C activation on the glycine evoked Cl− current in spinal cord neurons. Brain Res 2001; 902:1-10. [PMID: 11376589 DOI: 10.1016/s0006-8993(01)02255-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated whether the effect of phorbol-12-myristate-13-acetate (PMA) was altered by a kinase inhibitor and by down-regulation of protein kinase C (PKC) in order to determine if glycine receptors in mouse spinal neurons, unlike those in hippocampal and trigeminal neurons, can be inhibited by PKC. To examine the above, electrophysiological and immunofluorescence studies were carried out in mouse spinal neurons kept in culture for up to 3 weeks. The inhibition of the glycine activated current by PMA (1 microM) increased from 12+/-3% during week 1 to 27+/-6% during week 3. The effect of PMA was completely blocked by the PKC selective inhibitor RO 31-8220 (1 microM). After culturing the cells with 1 microM PMA for 24 h, the inhibitory effect of acute application of PMA disappeared altogether, suggesting that the effect of PMA was via PKC. Immunofluorescence studies showed that a short stimulation with PMA translocated the enzyme to the periphery whereas longer term stimulation (24 h) down regulated the PKC signal. These results indicate that activation of PKC by PMA inhibits the glycine receptor in cultured spinal neurons and that its sensitivity changes during neuronal development.
Collapse
Affiliation(s)
- F A Albarran
- Laboratory of Neurophysiology, Department of Physiology, P.O. Box 160-C, University of Concepcion, Chile
| | | | | | | | | | | |
Collapse
|
24
|
Fucile S, De Saint Jan D, de Carvalho LP, Bregestovski P. Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells. Neuron 2000; 28:571-83. [PMID: 11144365 DOI: 10.1016/s0896-6273(00)00134-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibitory glycine receptors (GlyRs) are mainly expressed in the spinal cord and in the midbrain, where they control motor and sensory pathways. We describe here a fast potentiation of GlyR by intracellular Ca2+. This phenomenon was observed in rat spinal cord neurons and in transfected human cell lines. Potentiation develops in <100 ms, is proportional to Ca2+ influx, and is characterized by an increase in GlyR apparent affinity for glycine. Phosphorylation and G protein pathways appear not to be involved in the potentiation mechanism. Single-channel recordings in cell-attached and excised patches, as well as whole-cell data suggest the presence of a diffusible cytoplasmic factor that modulates the GlyR channel gating properties. Ca2+-induced potentiation may be important for rapid modulation of glycinergic synapses.
Collapse
Affiliation(s)
- S Fucile
- Laboratoire de Biologie Cellulaire et Moléculaire du Neurone, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
25
|
Tapia R, Peña F, Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem Res 1999; 24:1423-30. [PMID: 10555783 DOI: 10.1023/a:1022588808260] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein phosphorylation and dephosphorylation reactions, catalyzed by kinases and phosphatases, are involved in the regulation of a wide variety of physiological processes. In the nervous system, such reactions seem to modulate the function of several proteins crucial in synaptic transmission, including voltage-gated and ligand-gated channels, neurotransmitter release, and neurotransmitter transporters. On the other hand, hyperphosphorylation of certain cytoskeletal proteins or receptors may lead to neuronal death. In the present work we review the neurotoxic effect of okadaic acid (OKA), a potent and specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, as well as its action on synaptic function. We analyze recent findings demonstrating that the microinjection of OKA in rat hippocampus induces neuronal stress, hyperexcitation and neurodegeneration, and discuss their possible relationships to alterations of protein phosphorylation-dephosphorylation observed in Alzheimer's disease brain. These results suggest that protein hyperphosphorylation due to inhibition of phosphatases in vivo induces neuronal stress and subsequent neurodegeneration.
Collapse
Affiliation(s)
- R Tapia
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, DF, México.
| | | | | |
Collapse
|
26
|
Xu TL, Li JS, Jin YH, Akaike N. Modulation of the glycine response by Ca2+-permeable AMPA receptors in rat spinal neurones. J Physiol 1999; 514 ( Pt 3):701-11. [PMID: 9882741 PMCID: PMC2269109 DOI: 10.1111/j.1469-7793.1999.701ad.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. In acutely isolated rat sacral dorsal commisural nucleus (SDCN) neurones, application of kainate (KA) reversibly potentiated glycine-evoked Cl- currents (IGly) in a concentration-dependent manner. 2. The cellular events underlying the interaction between non-NMDA receptors and glycine receptors were studied by using nystatin-perforated patch and cell-attached single-channel recording modes. 3. The action of KA was not accompanied by a shift in the reversal potential for IGly. In dose-response curves, KA potentiated IGly without significantly changing glycine binding affinity. 4. GYKI 52466 blocked while NS-102 had no effect on the KA-induced potentiation of IGly. 5. The potentiation was reduced when KA was applied in a Ca2+-free extracellular solution or in the presence of BAPTA AM, and was independent of the activation of voltage-dependent Ca2+ channels. 6. Pretreatment with KN-62, a selective Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the action of KA. Inhibition of calcineurin converted the KA-induced potentiation to a sustained one. 7. Single-channel recordings revealed that KA decreased the mean closing time of glycine-gated single-channel activity, resulting in an increase in the probability of channel opening. 8. It is proposed that Ca2+ entry through AMPA receptors modulates the glycine receptor function via coactivation of CaMKII and calcineurin in SDCN neurones. This interaction may provide a new postsynaptic mechanism for control of inhibitory synaptic signalling and represent one of the important regulatory mechanisms of spinal nociception.
Collapse
Affiliation(s)
- T L Xu
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
27
|
Ren J, Ye JH, McArdle JJ. cAMP-dependent protein kinase modulation of glycine-activated chloride current in neurons freshly isolated from rat ventral tegmental area. Brain Res 1998; 811:71-8. [PMID: 9804898 DOI: 10.1016/s0006-8993(98)00959-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Adenosine 3',5'cyclic monophosphate-(cAMP)-dependent protein kinase (PKA) modulation of glycine-activated Cl- currents (IGly) in single neurons freshly isolated from the rat ventral tegmental area (VTA) was studied using whole-cell patch-clamp technique. In the majority of cells tested with Mg-ATP in the internal solution, IGly induced by 3-10 microM glycine increased spontaneously (ran up). In the absence of internal ATP, IGly remained stable in six of seven cells. External perfusion of 8-Br-cAMP, a PKA activator, potentiated IGly only in cells showing run-up. 8-Br-cAMP potentiated IGly induced by low concentrations of glycine, but had no effect on the maximal current. When added to the pipette solution, H-89, a PKA inhibitor, blocked ATP and 8-Br-cAMP induced run-up of IGly. In contrast, dialysis with chelerythrine, a PKC inhibitor, did not alter the run-up of IGly. These results suggest that the PKA pathway modulates the activity of the glycine receptor/channel complex via enhancing the affinity of the receptor for glycine.
Collapse
Affiliation(s)
- J Ren
- Departments of Anesthesiology and Pharmacology and Physiology, New Jersey Medical School (UMDNJ), 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | |
Collapse
|