1
|
Akhmetov TM, Safina NY, Alimov AM, Varlamova MI. Genetic parameters of milk productivity for three lactations of Holstein cattle with different genotypes of LEP gene. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The research presents the findings of DNA testing of allelic polymorphism by the AC-PCR method of the LEP gene. The research was conducted among 172 Holstein cows at Integrated Agricultural Production Centre “Stud farm named after Lenin” in Atninsky district of the Republic of Tatarstan in 2017–2018. All genotypes of the LEP gene were identified through the research. Associations of the leptin gene polymorphism with dynamics of milk production during three lactations of Holstein cows were established. The best indicators for all three lactations were found in a group of animals with the TT genotype of the LEP gene. These individuals are characterized by increased milk yield, a high yield index, and tend to increase the average daily milk yield during three lactations. These individuals are characterized by increased milk yield, a high milk yield index, and tend to increase the average daily milk yield during three lactations.
Collapse
|
2
|
Yuan X, Caron A, Wu H, Gautron L. Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Front Neuroanat 2018; 12:4. [PMID: 29410615 PMCID: PMC5787097 DOI: 10.3389/fnana.2018.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022] Open
Abstract
Past studies have suggested that non-neuronal brain cells express the leptin receptor. However, the identity and distribution of these leptin receptor-expressing non-neuronal brain cells remain debated. This study assessed the distribution of the long form of the leptin receptor (LepRb) in non-neuronal brain cells using a reporter mouse model in which LepRb-expressing cells are permanently marked by tdTomato fluorescent protein (LepRb-CretdTomato). Double immunohistochemistry revealed that, in agreement with the literature, the vast majority of tdTomato-tagged cells across the mouse brain were neurons (i.e., based on immunoreactivity for NeuN). Non-neuronal structures also contained tdTomato-positive cells, including the choroid plexus and the perivascular space of the meninges and, to a lesser extent, the brain. Based on morphological criteria and immunohistochemistry, perivascular cells were deduced to be mainly pericytes. Notably, tdTomato-positive cells were immunoreactive for vitronectin and platelet derived growth factor receptor beta (PDGFBR). In situ hybridization studies confirmed that most tdTomato-tagged perivascular cells were enriched in leptin receptor mRNA (all isoforms). Using qPCR studies, we confirmed that the mouse meninges were enriched in Leprb and, to a greater extent, the short isoforms of the leptin receptor. Interestingly, qPCR studies further demonstrated significantly altered expression for Vtn and Pdgfrb in the meninges and hypothalamus of LepRb-deficient mice. Collectively, our data demonstrate that the only intracranial non-neuronal cells that express LepRb in the adult mouse are cells that form the blood-brain barrier, including, most notably, meningeal perivascular cells. Our data suggest that pericytic leptin signaling plays a role in the integrity of the intracranial perivascular space and, consequently, may provide a link between obesity and numerous brain diseases.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Piya MK, Harte AL, Sivakumar K, Tripathi G, Voyias PD, James S, Sabico S, Al-Daghri NM, Saravanan P, Barber TM, Kumar S, Vatish M, McTernan PG. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes. Am J Physiol Endocrinol Metab 2014; 306:E512-8. [PMID: 24398403 DOI: 10.1152/ajpendo.00308.2013] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peripheral action of irisin improves glucose homeostasis and increases energy expenditure, with no data on a central role of irisin in metabolism. These studies sought to examine 1) presence of irisin in human cerebrospinal fluid (CSF) and banked human hypothalamic tissue, 2) serum irisin in maternal subjects across varying adiposities with or without gestational diabetes (GDM), and 3) their respective neonate offspring. CSF, serum, and neonatal cord serum were collected from 91 pregnant women with and without GDM attending for an elective cesarean section [body mass index (BMI): 37.7 ± 7.6 kg/m(2); age: 32 ± 8.3 yr]. Irisin was assessed by ELISA and correlated with biochemical and anthropometric data. Irisin expression was examined in human hypothalamus by immunohistochemical staining. Serum irisin in pregnant women was significantly lower in nonobese compared with obese and GDM subjects, after adjusting for BMI, lipids, and glucose. Irisin was present in neonatal cord serum (237 ± 8 ng/ml) and maternal CSF (32 ± 1.5 ng/ml). CSF irisin correlated positively with serum irisin levels from nonobese and obese pregnant women (P < 0.01), with CSF irisin significantly raised in GDM subjects (P < 0.05). Irisin was present in human hypothalamic sections in the paraventricular neurons, colocalized with neuropeptide Y. Irisin was detectable in CSF and in paraventricular neurons. Maternal serum irisin was lower in nonobese pregnant women after adjusting for BMI and a number of metabolic parameters. These studies indicate that irisin may have a central role in metabolism in addition to the known peripheral role. Further studies investigating the central action of irisin in human metabolic disease are required.
Collapse
Affiliation(s)
- Milan K Piya
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, Coventry, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mercer AJ, Hentges ST, Meshul CK, Low MJ. Unraveling the central proopiomelanocortin neural circuits. Front Neurosci 2013; 7:19. [PMID: 23440036 PMCID: PMC3579188 DOI: 10.3389/fnins.2013.00019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/04/2013] [Indexed: 11/16/2022] Open
Abstract
Central proopiomelanocortin (POMC) neurons form a potent anorexigenic network, but our understanding of the integration of this hypothalamic circuit throughout the central nervous system (CNS) remains incomplete. POMC neurons extend projections along the rostrocaudal axis of the brain, and can signal with both POMC-derived peptides and fast amino acid neurotransmitters. Although recent experimental advances in circuit-level manipulation have been applied to POMC neurons, many pivotal questions still remain: how and where do POMC neurons integrate metabolic information? Under what conditions do POMC neurons release bioactive molecules throughout the CNS? Are GABA and glutamate or neuropeptides released from POMC neurons more crucial for modulating feeding and metabolism? Resolving the exact stoichiometry of signals evoked from POMC neurons under different metabolic conditions therefore remains an ongoing endeavor. In this review, we analyze the anatomical atlas of this network juxtaposed to the physiological signaling of POMC neurons both in vitro and in vivo. We also consider novel genetic tools to further characterize the function of the POMC circuit in vivo. Our goal is to synthesize a global view of the POMC network, and to highlight gaps that require further research to expand our knowledge on how these neurons modulate energy balance.
Collapse
Affiliation(s)
- Aaron J Mercer
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.
Collapse
|
6
|
Tosi G, Badiali L, Ruozi B, Vergoni AV, Bondioli L, Ferrari A, Rivasi F, Forni F, Vandelli MA. Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine (Lond) 2012; 7:365-82. [DOI: 10.2217/nnm.11.98] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: In order to increase the knowledge on the use of nanoparticles (NPs) in brain targeting, this article describes the conjugation of the sequence 12–32 (g21) of leptin to poly-lactide-co-glycolide NPs. The capability of these modified NPs to reach the brain was evaluated in rats after intravenous administration. Materials & Methods: The g21 was linked on the surface of NPs labeled with tetramethylrhodamine by means of the Avidin-Biotin technology. The g21-labeled NPs were injected into the tail vein of rats and, after animal sacrifice, the brain localization was evaluated by confocal microscopy, fluorescence microscopy and electron microscopy. Studies to evaluate the biodistribution of the g21-modified NPs in comparison to the unmodified NPs were also carried out. Moreover, to confirm the absence of any anorectic effect of g21 linked on the surface of NPs, appropriate studies were used to assess the rats. Results: After intravenous administration, the g21-modified NPs were able to cross the blood–brain barrier and to enter the brain parenchyma. The biodistribution studies of both unmodified and modified NPs pointed out an uptake at liver and spleen level, whereas only the g21-modified NPs showed brain localization. The food-intake experiments pointed out that the intravenous administration of g21 conjugated to the NP surface did not produce any anorectic effect in the rats. Conclusion: g21-modified NPs were able to cross the blood–brain barrier. These new modified NPs could be effectively considered as useful carrier systems for brain drug delivery. Original submitted: 27/11/2010; Revised submitted: 09/03/2011
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Luca Badiali
- Department of Biomedical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Barbara Ruozi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Anna Valeria Vergoni
- Department of Biomedical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Lucia Bondioli
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Anna Ferrari
- Department of Diagnostic Services, Division of Clinical Pharmacology, University of Modena & Reggio Emilia, Via del Pozzo, 41100 Modena, Italy
| | - Francesco Rivasi
- Department of Morphological Sciences & Forensic Medicine, Section of Pathological Anatomy, University of Modena & Reggio Emilia, 41000 Modena, Italy
| | - Flavio Forni
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| | - Maria Angela Vandelli
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, Via Campi, 41100 Modena, Italy
| |
Collapse
|
7
|
Rummel C, Inoue W, Sachot C, Poole S, Hübschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol 2008; 511:373-95. [DOI: 10.1002/cne.21850] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Kos K, Harte AL, da Silva NF, Tonchev A, Chaldakov G, James S, Snead DR, Hoggart B, O'Hare JP, McTernan PG, Kumar S. Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 2007; 92:1129-36. [PMID: 17213280 DOI: 10.1210/jc.2006-1841] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT The adipokine leptin has critical importance in central appetite regulation. In contrast to some suggestion of adiponectin influencing energy homeostasis in rodents, there is no evidence for adiponectin or resistin entering the human blood-brain barrier. OBJECTIVE The objective was to establish the presence of adiponectin or resistin in human cerebrospinal fluid (CSF) and to compare their distribution with leptin. Furthermore, we wished to examine the expression of the adiponectin receptors 1 and 2 (AdipR1, AdipR2) in the human hypothalamus. METHODS For this purpose, serum and CSF samples were collected from 20 men and 19 women matched for age [men, 69.8 +/- 8.6 yr (mean +/- SD); women, 69.4 +/- 4.3 yr] and BMI (men, 29.4 +/- 3.4 kg/m(2); women, 27.3 +/- 4.8 kg/m(2)) undergoing elective surgery under spinal anesthesia. RESULTS Adiponectin was identified in CSF with levels 1000-fold less than serum, whereas resistin and leptin levels were 100-fold less. Unlike their serum levels, adiponectin CSF levels showed no gender difference or correlation with insulin resistance, which is similar to resistin CSF levels. The adiponectin and leptin CSF/serum ratios in our study exhibit the same pattern of gender-specific BMI association with inverse correlation in women (r = -0.61; P = 0.02) and no correlation in men (r = 0.026; P = not significant). Furthermore, immunostaining established AdipR1 and -2 in the hypothalamus and increased AdipR2 expression in the paraventricular nucleus, which is involved in energy regulation. CONCLUSION In summary, our findings show both the presence of adiponectin and resistin in human CSF, with no effect of insulin resistance on CSF levels. The CSF entry of adiponectin and leptin in women appears to be impaired in obesity.
Collapse
Affiliation(s)
- Katarina Kos
- University of Warwick, Clinical Sciences Research Institute, University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Since the discovery of the protein product of the ob/ob gene, leptin, knowledge of the neurochemical pathways involved in the regulation of feeding has increased enormously. Our understanding of the mechanisms regulating food intake in man has also progressed greatly over a similar time span. Previous research into the regulation of food intake has largely proceeded through a reductionist approach, defining ever-smaller components of these mechanisms. This research strategy has been very productive and instructive, and has yielded a great deal of information on the specific putative components linking energy status and food intake. However, to fully understand the regulation of feeding it is important that these components are systematically reconstructed to investigate relevant interactions. In the present review recent data relating to interactions between systems proposed to be involved in feeding regulation will be highlighted. The review will be directed predominantly (but not exclusively) towards the regulation of human feeding.
Collapse
Affiliation(s)
- Stephen French
- Masterfoods (a division of Mars UK Ltd), Dundee Road, Slough SL1 4JX, UK.
| | | |
Collapse
|
10
|
Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes (Lond) 2002; 26:1407-33. [PMID: 12439643 DOI: 10.1038/sj.ijo.0802142] [Citation(s) in RCA: 625] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 04/02/2002] [Accepted: 05/27/2002] [Indexed: 12/11/2022]
Abstract
Following the discovery of leptin in 1994, the scientific and clinical communities have held great hope that manipulation of the leptin axis may lead to the successful treatment of obesity. This hope is not yet dashed; however the role of the leptin axis is now being shown to be ever more complex than was first envisaged. It is now well established that leptin interacts with pathways in the central nervous system and through direct peripheral mechanisms. In this review, we consider the tissues in which leptin is synthesized and the mechanisms which mediate leptin synthesis, the structure of leptin and the knowledge gained from cloning leptin genes in aiding our understanding of the role of leptin in the periphery. The discoveries of expression of leptin receptor isotypes in a wide range of tissues in the body have encouraged investigation of leptin interactions in the periphery. Many of these interactions appear to be direct, however many are also centrally mediated. Discovery of the relative importance of the centrally mediated and peripheral interactions of leptin under different physiological states and the variations between species is beginning to show the complexity of the leptin axis. Leptin appears to have a range of roles as a growth factor in a range of cell types: as be a mediator of energy expenditure; as a permissive factor for puberty; as a signal of metabolic status and modulation between the foetus and the maternal metabolism; and perhaps importantly in all of these interactions, to also interact with other hormonal mediators and regulators of energy status and metabolism such as insulin, glucagon, the insulin-like growth factors, growth hormone and glucocorticoids. Surely, more interactions are yet to be discovered. Leptin appears to act as an endocrine and a paracrine factor and perhaps also as an autocrine factor. Although the complexity of the leptin axis indicates that it is unlikely that effective treatments for obesity will be simply derived, our improving knowledge and understanding of these complex interactions may point the way to the underlying physiology which predisposes some individuals to apparently unregulated weight gain.
Collapse
Affiliation(s)
- S Margetic
- Central Queensland University, School of Chemical and Biomedical Sciences, Queensland, Australia
| | | | | | | |
Collapse
|
11
|
Abstract
The interactions of leptin with its receptor and other leptin binding sites is not well described or understood. We have used Scatchard analysis of saturation binding data to characterize the affinity of leptin for binding sites in bovine kidney membranes. 125I-Leptin was used in saturation studies, over a range of concentrations from 50 pM to 9 nM. 125I-Leptin differentiated a high affinity binding site from an abundant low affinity site. The high affinity/low density binding site (putative leptin receptor) had K(d)=0.098 nM and B(max)=46.2f mol/mg protein. An additional class of low affinity, highly abundant sites with an apparent K(d)=175 nM, and B(max)=574 fmol/mg protein was characterized. The association and dissociation kinetics for 125I-leptin binding were also studied. Dissociation of the leptin-receptor complex was very rapid, and this necessitated the use of a specially developed separation method for radioligand binding studies (precipitation with PEG and filtration). Competitive displacement of 125I-leptin by mouse and human leptin and polyclonal anti-bovine leptin antibodies was dose-dependent. Specificity of binding was shown as bound 125I-leptin was not displaced by insulin or control antibodies. These data indicate that leptin binds the bovine leptin receptor with high affinity and that a pool of leptin is bound to abundant cell membrane-associated proteins. These observations are consistent with the plasma concentration range for leptin and imply that free leptin concentration in the tissues may be partially buffered by cell-associated and bound forms in plasma. Thus, acute changes in leptin secretion may have little effect at the leptin receptor. The development of leptin agonists/antagonists should facilitate further characterization of leptin binding and clarify the role of abundant low affinity binding sites at the leptin axis.
Collapse
Affiliation(s)
- S Margetic
- School of Chemical and Biomedical Sciences, Central Queensland University, Box 5545, 4702, Qld, Rockhampton, Australia
| | | | | | | |
Collapse
|
12
|
Gündüz B. Daily rhythm in serum melatonin and leptin levels in the Syrian hamster (Mesocricetus auratus). Comp Biochem Physiol A Mol Integr Physiol 2002; 132:393-401. [PMID: 12020655 DOI: 10.1016/s1095-6433(02)00041-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melatonin is produced and secreted by the pineal gland in a rhythmic manner; circulating levels are high at night and low in the day. Leptin is a hormone secreted by adipocytes as a product of the obese gene and plays an important role in regulating body energy homeostasis and reproductive function in rodents and humans. The present study was conducted to examine daily fluctuations in serum levels of melatonin and leptin in Syrian hamster. We measured serum leptin and melatonin levels by ELISA in (a) intact and pinealectomized (pinx) male hamsters kept under long daylight conditions [14 h of light (14L)]; (b) intact and pinx hamsters under short daylight (10L); and (c) intact hamsters in constant light (24L). Blood samples were obtained every 2 h throughout a 24-h period. Statistically significant circadian variations were found in both melatonin and leptin profiles. Their relationship was inverse, i.e. when melatonin was high in the serum, leptin was comparably low. These results suggest that there is a rhythm in leptin levels in the adult male Syrian hamster and this rhythm is pineal gland (melatonin) and/or photoperiod dependent.
Collapse
Affiliation(s)
- Bülent Gündüz
- Department of Biology, Faculty of Arts and Sciences, Abant Izzet Baysal University, Bolu, 14280, Turkey.
| |
Collapse
|
13
|
Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 2002; 143:239-46. [PMID: 11751615 DOI: 10.1210/endo.143.1.8589] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three experiments were performed to investigate the hypothesis that leptin action within the caudal brain stem (CBS) contributes to its intake inhibitory effects. The first experiment evaluated the anatomical distribution of leptin receptor mRNA in rat CBS using a sensitive fluorescence in situ hybridization method with a riboprobe specific for the long form of the leptin receptor (Ob-Rb). An Ob-Rb mRNA hybridization signal was detected in neurons of several CBS nuclei involved in the control of food intake, including the dorsal vagal complex and parabrachial nucleus. A strong hybridization signal was also obtained from neuronal cell bodies of a number of other structures including the hypoglossal, trigeminal, lateral reticular, and cochlear nuclei; locus ceruleus; and inferior olive. The anatomical profile revealed by fluorescence in situ hybridization was in good agreement with immunocytochemical analysis with an antibody specific to Ob-Rb. In a second experiment, exploring the relevance of CBS Ob-Rb to feeding behavior, rats were given a fourth intracerebroventricular (i.c.v.) injection of leptin (0.1, 0.83, or 5.0 microg; n = 9-11/group) or vehicle 30 min before lights-out on three consecutive days. The two higher doses reduced food intake significantly at 2, 4, and 24 h after injection and caused significant reductions of body weight. The dose-response profiles for fourth i.c.v. administration were indistinguishable from those obtained from separate groups of rats that received leptin via a lateral i.c.v. cannula. In the last experiment, a ventricle-subthreshold dose of leptin (0.1 microg) microinjected unilaterally into the dorsal vagal complex suppressed food intake at 2, 4, and 24 h. The results indicate that the CBS contains neurons that are potentially direct targets for the action of leptin in the control of energy homeostasis.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Group of Psychology, Dept. of Psychology, University of Pennsylvania, 3815 Walnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Park JH, Na SY, Lee HH, Lee YJ, Kim KL. Detection of pET-vector encoded, recombinant S-tagged proteins using the monoclonal antibody ATOM-2. Hybridoma (Larchmt) 2001; 20:17-23. [PMID: 11289223 DOI: 10.1089/027245701300060364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The 15-meric S-tag is a truncated form of the S-peptide, which builds together with the 103 amino acid large S-protein the whole ribonuclease S-protein. Its small size and excessive solubility have made the S-tag an excellent fusion partner in the production of recombinant proteins, and a large variety of applications have been reported using the S-tag as a carrier. While S-tagged proteins were mostly detected and analyzed so far by use of their affinity to S-proteins, monoclonal antibodies (MAbs) for this tag have been not available. The generation of antibodies specific for S-tagged proteins is expected to broaden the range of applications of such S-tag fused recombinant proteins, and in this context, a novel MAb termed ATOM-2 was generated that specifically binds S-tagged proteins, which have been expressed using pET-vectors. Antigen specificity of ATOM-2 was confirmed in Western blot and enzyme-linked immunoadsorbent assay analysis, and using a series of amino acid deletion mutants, the binding epitope of ATOM-2 was precisely mapped. This showed that ATOM-2 recognizes the C-terminal part of the 15-meric S-tag in context with a few residues of vector encoded sequences. The core sequence for ATOM-2 binding epitope is "His-Met-Asp-Ser-Pro-Asp-Leu-Gly-Thr," which is present in all pET-expression vectors encoding S-tag fusion proteins. Because the ATOM-2 binding region does not overlap with the S-protein binding sequence, a convenient tool is provided for the simultaneous or alternative detection, purification, and analysis of recombinant S-tagged proteins to conventional S-proteins.
Collapse
Affiliation(s)
- J H Park
- Protein Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, Taejon
| | | | | | | | | |
Collapse
|
15
|
Abstract
Choroid plexus (CP) is an important target organ for polypeptides. The fenestrated phenotype of choroidal endothelium facilitates the penetration of blood-borne polypeptides across the capillary walls. Thus, both circulating and cerebrospinal fluid (CSF)-borne polypeptides can reach their receptors on choroidal epithelium. Several polypeptides have been demonstrated to regulate CSF formation by controlling blood flow to choroid plexus and/or the activity of ion transport in choroidal epithelium. However, many ligand-receptor interactions occurring in the CP are not involved in the regulation of fluid secretion. Increasing evidence suggests that the choroidal epithelium plays an important role in hormonal signaling via a receptor-mediated transport into the brain (e.g., leptin) and helps to clear certain CSF-borne polypeptides (e.g., soluble amyloid beta-protein). Thus, impaired choroidal transport or insufficient clearance of polypeptides may contribute to pathogenesis of systemic or central nervous system (CNS) disorders, such as obesity or Alzheimer's disease. CP epithelium is not only a target but is also a source of neuropeptides, growth factors, and cytokines in the CNS. These polypeptides following their release into the CSF may exert distal, endocrine-like effects on target cells in the brain due to bulk flow of this fluid. Distinct temporal patterns of choroidal expression of several polypeptides are observed during brain development and in various CNS disorders, including traumatic brain injury and ischemia. Therefore, it is proposed that the CP plays an integral role not only in normal brain functioning, but also in the recovery from the injury. This review attempts to critically analyze the available data to support the above hypothesis.
Collapse
Affiliation(s)
- A Chodobski
- Department of Clinical Neurosciences, Brown University Medical School, Providence, Rhode Island 02903, USA.
| | | |
Collapse
|
16
|
Baskin DG, Breininger JF, Schwartz MW. SOCS-3 expression in leptin-sensitive neurons of the hypothalamus of fed and fasted rats. REGULATORY PEPTIDES 2000; 92:9-15. [PMID: 11024559 DOI: 10.1016/s0167-0115(00)00143-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Treatment of rodents with exogenous leptin increases SOCS-3 mRNA levels in the arcuate nucleus (ARC) and dorsomedial nucleus (DMN) of the hypothalamus. To determine if SOCS-3 gene activity in the hypothalamus could be influenced by changes in physiological levels of circulating leptin, we performed in situ hybridization (ISH) and immunostaining for SOCS-3 expression in fed vs. fasted (48 h) rats. The ARC and DMN were the only regions of the diencephalon that showed SOCS-3 ISH and the autoradiographic ISH signal for SOCS-3 mRNA was visibly less in the ARC and DMN of fasted rats. The ISH signal for SOCS-3 mRNA was decreased 70% in the ARC and 90% in the DMN (to background levels) when animals were fasted (P<0.01), consistent with decreased immunostaining for SOCS-3 protein observed in the fasted rats. Double fluorescence ISH (FISH) analyses showed colocalization of SOCS-3 mRNA with mRNAs for NPY and POMC in the ARC. These findings are consistent with increased leptin signaling to the NPY and POMC neurons in the ARC by physiological levels of circulating leptin during normal feeding. Therefore, changes in SOCS-3 mRNA levels in the ARC and DMN can be viewed as an indicator of relative physiological leptin signaling to the hypothalamus and also identify cells responding directly to leptin signaling through its cognate receptor.
Collapse
Affiliation(s)
- D G Baskin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, 98185, Seattle, WA, USA.
| | | | | |
Collapse
|
17
|
Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology 2000; 141:1434-41. [PMID: 10746647 DOI: 10.1210/endo.141.4.7435] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is a circulating hormone that controls food intake and energy homeostasis. Little is known about leptin entry into the central nervous system (CNS). The blood-cerebrospinal fluid (CSF) barrier at the choroid plexus and the blood-brain barrier (BBB) at the cerebral endothelium are two major controlling sites for entry of circulating proteins into the brain. In the present study, we characterized leptin transport across the blood-CSF barrier and the BBB by using a brain perfusion model in lean rats. Rapid, high-affinity transport systems mediated leptin uptake by the hypothalamus (KM = 0.2 ng/ml) and across the blood-CSF barrier (KM = 1.1 ng/ml). High affinity in vivo binding of leptin was also detected in the choroid plexus (KD = 2.6 ng/ml). In contrast, low affinity carriers for leptin (KM = 88 to 345 ng/ml) were found at the BBB in the CNS regions outside the hypothalamus (e.g. cerebral cortex, caudate nucleus, hippocampus). Our findings suggest a key role of high affinity leptin transporters in the hypothalamus and choroid plexus in regulating leptin entry into the CNS and CSF under physiological conditions. Low affinity transporters at the BBB outside the hypothalamus could potentially contribute to overall neuropharmacological effects of exogenous leptin.
Collapse
Affiliation(s)
- B V Zlokovic
- Department of Neurological Surgery, University of Southern California School of Medicine, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Dal Farra C, Zsürger N, Vincent JP, Cupo A. Binding of a pure 125I-monoiodoleptin analog to mouse tissues: a developmental study. Peptides 2000; 21:577-87. [PMID: 10822115 DOI: 10.1016/s0196-9781(00)00182-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The preparation of a pure 125I-labeled monoiododerivative of mouse leptin is described. This radiolabeled analog has been used to characterize and localize central and peripheral leptin binding sites (Ob-R) of the mouse at different stages of its development. The affinity values found in membrane homogenates of various mouse tissues are similar and range between 0.1 and 0.3 nM, indicating that all the Ob-R isoforms have a similar affinity. Leptin binding sites are highly expressed at the membrane level in lung, intestine, kidney, liver, and skin and to a lesser degree in stomach, heart, and spleen. Brain, thymus, and pancreas homogenates are devoid of any specific binding. The distribution of mouse Ob-R has also been explored by autoradiography and dipping techniques on whole mouse sections. In lung, leptin binding sites are located at the pulmonary parenchyma and at the bronchiolar epithelial level. Binding sites are expressed all along the digestive tract from the tongue to the rectum (esophagus, stomach, intestine, colon, and rectum). In muscular visceral structures (stomach, intestine, and bladder) the binding is mainly present in the lamina propria. During development, leptin receptors are early expressed in the liver, kidney, and bone. In the lung, the Ob-R level increased gradually from birth to adulthood where the expression is maximal. By contrast, leptin receptors located in the medulla of the kidney remain remarkably constant all along the development. A broad signal is present in cartilage and bone particularly in vertebrae, limb, and ribs. Interestingly, leptin receptors are barely detectable in the mouse brain except in the choroid plexus and leptomeninges, whereas in the rat brain leptin binding sites are located in the thalamus, the piriform cortex, the cerebellum (at the granular and molecular cell layer), and the pineal gland.
Collapse
Affiliation(s)
- C Dal Farra
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, 660 Route des Lucioles 06560, Université de Nice-Sophia Antipolis, Valbonne, France
| | | | | | | |
Collapse
|
19
|
|
20
|
Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D, Schwartz MW. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res 1999; 848:114-23. [PMID: 10612703 DOI: 10.1016/s0006-8993(99)01974-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin and leptin are hypothesized to be 'adiposity signals' for the long-term regulation of body weight by the brain. Accordingly, a change in the plasma levels of leptin or insulin indicates a state of altered energy homeostasis and adiposity, and the brain responds by adjusting food intake to restore adipose tissue mass to a regulated level. The candidate site for the brain's detection of leptin adiposity signaling is the hypothalamic arcuate nucleus, where leptin inhibits expression neuropeptide Y and increases expression of the pro-opiomelanocortin (POMC) precursor of alphaMSH. Insulin also inhibits arcuate nucleus expression of neuropeptide Y but its effects on other hypothalamic signaling systems are not known. Leptin-responsive neurons in the arcuate nucleus are hypothesized to project to the paraventricular nucleus and lateral hypothalamic area where they are proposed to influence the expression of peptides that regulate food intake. Future development of this model will incorporate brain pathways for integration of leptin and insulin adiposity signaling to the hypothalamus with meal-related signals that act in the caudal brainstem. Recent research showing that leptin and insulin enhance the satiety action of peripheral CCK, thereby causing meals to be terminated earlier and reducing cumulative food intake, suggests that hypothalamic pathways that are sensitive to leptin and insulin adiposity signals have anatomical connections with caudal brainstem neurons that respond to meal-related signals and regulate meal size. The recent findings that insulin alters the expression and function of neural transporters for dopamine and norepinephrine indicate that adiposity signals may influence food intake by acting on non-peptide neurotransmitter systems.
Collapse
Affiliation(s)
- D G Baskin
- Division of Endocrinology/Metabolism, VA Puget Sound Health Care System Medical Center, Seattle, WA 98108, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Baskin DG, Breininger JF, Bonigut S, Miller MA. Leptin binding in the arcuate nucleus is increased during fasting. Brain Res 1999; 828:154-8. [PMID: 10320735 DOI: 10.1016/s0006-8993(99)01252-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arcuate nucleus (ARC) mediates the anorexic effects of leptin and expresses the long form (Ob-Rb) of the leptin receptor. To determine whether ARC leptin binding increases when plasma leptin levels are low during fasting, [125I]-leptin specific binding to rat brain slices was measured by quantitative autoradiography. [125I]-leptin specific binding was dense in the ARC and increased 2-fold after a 48-h fast (P<0.001). These findings suggest that leptin receptor binding in the ARC is upregulated during fasting and that fasting changes the sensitivity of the ARC to leptin.
Collapse
Affiliation(s)
- D G Baskin
- VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | |
Collapse
|
22
|
Baskin DG, Schwartz MW, Seeley RJ, Woods SC, Porte D, Breininger JF, Jonak Z, Schaefer J, Krouse M, Burghardt C, Campfield LA, Burn P, Kochan JP. Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem 1999; 47:353-62. [PMID: 10026237 DOI: 10.1177/002215549904700309] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Reduced leptin (Ob protein) signaling is proposed to be a stimulus for the activation of neuropeptide Y (NPY) gene activity and increased expression of mRNA for the long form of the leptin receptor (Ob-Rb) in the hypothalamic arcuate nucleus. To determine if Ob-Rb protein is expressed in arcuate nucleus NPY neurons, we developed an affinity-purified polyclonal antibody against amino acids 956-1102 of human Ob-Rb. This antibody specifically recognizes the cytoplasmic tail of Ob-Rb and does not react with shorter leptin-receptor variants. Western immunoblots of Ob-Rb-transfected COS cells showed a single 150-kD band, and immunofluorescence revealed intense perinuclear staining in the cytoplasm. A 150-kD band was also present in Western immunoblots of hypothalamus. Immunocytochemical staining of brain slices revealed immunoreactive Ob-Rb protein concentrated in many neuronal cell bodies in the same regions of the forebrain that also express Ob-Rb mRNA. In the hypothalamus, Ob-Rb-positive cell bodies were abundant in the arcuate nucleus and ventromedial nucleus, with lesser numbers in the dorsomedial nucleus and paraventricular nucleus. Immunostaining was also detected in cell bodies of pyramidal cell neurons of the pyriform cortex and cerebral cortex, in neurons of the thalamus, and on the surface of ependymal cells lining the third ventricle. The choroid plexus, which expresses the short Ob-Ra form, was negative. Combined immunocytochemistry for Ob-Rb protein and fluorescence in situ hybridization for NPY mRNA identified arcuate nucleus neurons containing both NPY mRNA and Ob-Rb protein. The present finding of Ob-Rb protein in neurons that express NPY mRNA supports the hypothesis that arcuate nucleus NPY neurons are direct targets of leptin and play an important role in regulation of food intake and body weight.
Collapse
Affiliation(s)
- D G Baskin
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|