1
|
NamKoong C, Kim B, Yu JH, Youn BS, Kim H, Kim E, Gil SY, Kang GM, Lee CH, Kim YB, Park KH, Kim MS, Kwon O. Stomach clusterin as a gut-derived feeding regulator. BMB Rep 2024; 57:149-154. [PMID: 37817436 PMCID: PMC10979347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].
Collapse
Affiliation(s)
- Cherl NamKoong
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bohye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byung Soo Youn
- Osteoneurogen, Inc., Seoul 08501, Korea, Chuncheon 24341, Korea
| | - Hanbin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Evonne Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA, Chuncheon 24341, Korea
| | - Kyeong-Han Park
- Department of Anatomy and Cell Biology, Kangwon National University College of Medicine, Chuncheon 24341, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
2
|
Sanchez MR, Wang Y, Cho TS, Schnapp WI, Schmit MB, Fang C, Cai H. Dissecting a disynaptic central amygdala-parasubthalamic nucleus neural circuit that mediates cholecystokinin-induced eating suppression. Mol Metab 2022; 58:101443. [PMID: 35066159 PMCID: PMC8844644 DOI: 10.1016/j.molmet.2022.101443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Cholecystokinin (CCK) plays a critical role in regulating eating and metabolism. Previous studies have mapped a multi-synapse neural pathway from the vagus nerve to the central nucleus of the amygdala (CEA) that mediates the anorexigenic effect of CCK. However, the neural circuit downstream of the CEA is still unknown due to the complexity of the neurons in the CEA. Here we sought to determine this circuit using a novel approach. METHODS It has been established that a specific population of CEA neurons, marked by protein kinase C-delta (PKC-δ), mediates the anorexigenic effect of CCK by inhibiting other CEA inhibitory neurons. Taking advantage of this circuit, we dissected the neural circuit using a unique approach based on the idea that neurons downstream of the CEA should be disinhibited by CEAPKC-δ+ neurons while being activated by CCK. We also used optogenetic assisted electrophysiology circuit mapping and in vivo chemogenetic manipulation methods to determine the circuit structure and function. RESULTS We found that neurons in the parasubthalamic nucleus (PSTh) are activated by the activation of CEAPKC-δ+ neurons and by the peripheral administration of CCK. We demonstrated that CEAPKC-δ+ neurons inhibit the PSTh-projecting CEA neurons; accordingly, the PSTh neurons can be disynaptically disinhibited or "activated" by CEAPKC-δ+ neurons. Finally, we showed that chemogenetic silencing of the PSTh neurons effectively attenuates the eating suppression induced by CCK. CONCLUSIONS Our results identified a disynaptic CEA-PSTh neural circuit that mediates the anorexigenic effect of CCK and thus provide an important neural mechanism of how CCK suppresses eating.
Collapse
Affiliation(s)
| | - Yong Wang
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, PR China
| | - Tiffany S Cho
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Wesley I Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Matthew B Schmit
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
4
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond) 2020; 45:348-357. [PMID: 32917985 PMCID: PMC7854885 DOI: 10.1038/s41366-020-00678-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
Objective: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. Methods: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. Results: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. Conclusions: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Michael L Goodson
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Wendie Vang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Maniscalco JW, Edwards CM, Rinaman L. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1014-R1023. [PMID: 32292065 DOI: 10.1152/ajpregu.00346.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In rats, overnight fasting reduces the ability of systemic cholecystokinin-8 (CCK) to suppress food intake and to activate cFos in the caudal nucleus of the solitary tract (cNTS), specifically within glucagon-like peptide-1 (GLP-1) and noradrenergic (NA) neurons of the A2 cell group. Systemic CCK increases vagal sensory signaling to the cNTS, an effect that is amplified by leptin and reduced by ghrelin. Since fasting reduces plasma leptin and increases plasma ghrelin levels, we hypothesized that peripheral leptin administration and/or antagonism of ghrelin receptors in fasted rats would rescue the ability of CCK to activate GLP-1 neurons and a caudal subset of A2 neurons that coexpress prolactin-releasing peptide (PrRP). To test this, cFos expression was examined in ad libitum-fed and overnight food-deprived (DEP) rats after intraperitoneal CCK, after coadministration of leptin and CCK, or after intraperitoneal injection of a ghrelin receptor antagonist (GRA) before CCK. In fed rats, CCK activated cFos in ~60% of GLP-1 and PrRP neurons. Few or no GLP-1 or PrRP neurons expressed cFos in DEP rats treated with CCK alone, CCK combined with leptin, or GRA alone. However, GRA pretreatment increased the ability of CCK to activate GLP-1 and PrRP neurons and also enhanced the hypophagic effect of CCK in DEP rats. Considered together, these new findings suggest that reduced behavioral sensitivity to CCK in fasted rats is at least partially due to ghrelin-mediated suppression of hindbrain GLP-1 and PrRP neural responsiveness to CCK.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Psychology and Neuroscience, Regis University, Denver, Colorado
| | - Caitlyn M Edwards
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
7
|
Short-term fasting decreases excitatory synaptic inputs to ventromedial tuberoinfundibular dopaminergic neurons and attenuates their activity in male mice. Neurosci Lett 2018; 671:70-75. [DOI: 10.1016/j.neulet.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 01/03/2023]
|
8
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
9
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
10
|
Systemic administration of anorexic gut peptide hormones impairs hedonic-driven sucrose consumption in mice. Physiol Behav 2016; 171:158-164. [PMID: 28040488 DOI: 10.1016/j.physbeh.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
A number of reports suggest that gut hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY(3-36) (PYY3-36), which are released postprandially, suppress homeostatic food intake and result in satiety and the termination of feeding. However, it remains unclear whether these peptide hormones also suppress non-homeostatic consumption of palatable foods or fluids. To examine whether gut hormones reduce hedonically motivated sugar consumption, we assessed the effects of intraperitoneal administration of these gut hormones on the consumption of a highly palatable sucrose solution, using a mouse model we previously established for binge-like sucrose overconsumption (Yasoshima and Shimura, 2015). To reduce homeostatic hunger, chow was available at nighttime prior to testing. After a limited-access training procedure for 10days, during which access to both sucrose and chow were controlled, on the test day, control mice injected with saline consumed significantly more sucrose than during the pre-training period. In contrast, sucrose consumption on the test day in the mice injected with CCK-8 (2 and 4μg/kg), GLP-1 (500 and 1000nmol/kg), or PYY3-36 (12.5 and 25nmol/kg) was significantly less than that in saline-injected mice. In a separate cohort of mice, the higher doses of CCK-8 and GLP-1 and a greater dose of PYY3-36 (50nmol/kg) did not produce conditioned taste aversion to saccharin, suggesting that the doses of exogenous hormones in the present study do not cause aversive visceral distress. The present findings suggest that the systemic administration of these three gut hormones suppresses hedonic-driven sugar consumption due to the anorexic, but not aversive-visceral, effects of these hormones.
Collapse
|
11
|
Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia. Neuroscience 2015; 310:430-41. [DOI: 10.1016/j.neuroscience.2015.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022]
|
12
|
Wang L, Mogami S, Yakabi S, Karasawa H, Yamada C, Yakabi K, Hattori T, Taché Y. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito. PLoS One 2015; 10:e0139325. [PMID: 26421719 PMCID: PMC4589401 DOI: 10.1371/journal.pone.0139325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022] Open
Abstract
Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT), a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6–7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation) was performed 1–2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir) 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92–86% suppression of food intake at 2–24 h post-surgery compared with control group (no surgery). RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON), paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W), lateral periaqueduct gray (PAG), lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS). RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration) and satiety (meal interval) and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition. RKT improves food consumption post-surgically that may involve modulation of pain pathway.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
- * E-mail:
| | - Sachiko Mogami
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Yakabi
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Hiroshi Karasawa
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Chihiro Yamada
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Yvette Taché
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Fujitani M, Mizushige T, Bhattarai K, Iwahara A, Aida R, Kishida T. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats. Biosci Biotechnol Biochem 2015; 79:1164-71. [DOI: 10.1080/09168451.2015.1018123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R− rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb− rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb− rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.
Collapse
Affiliation(s)
- Mina Fujitani
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
| | - Takafumi Mizushige
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
- Faculty of Agriculture, Department of Applied Biological Chemistry, Utsunomiya University, 350 Minemachi, Utsunomiya Tochigi 321–8505, Japan
| | - Keshab Bhattarai
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
| | - Asami Iwahara
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
| | - Ryojiro Aida
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Faculty of Agriculture, Department of Biological Resources, Ehime University, Matsuyama, Japan
| |
Collapse
|
14
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
15
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
16
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
17
|
Messenger SA, Moreau JM, Ciriello J. Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 2013; 1513:51-60. [DOI: 10.1016/j.brainres.2013.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
|
18
|
Bannai M, Torii K. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Detection of dietary glutamate via gut–brain axis12. J Anim Sci 2013; 91:1974-81. [DOI: 10.2527/jas.2012-6021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- M. Bannai
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan 210-8681
| | - K. Torii
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan 210-8681
| |
Collapse
|
19
|
Schwartz GJ, Zeltser LM. Functional organization of neuronal and humoral signals regulating feeding behavior. Annu Rev Nutr 2013; 33:1-21. [PMID: 23642202 DOI: 10.1146/annurev-nutr-071812-161125] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Energy homeostasis--ensuring that energy availability matches energy requirements--is essential for survival. One way that energy balance is achieved is through coordinated action of neural and neuroendocrine feeding circuits, which promote energy intake when energy supply is limited. Feeding behavior engages multiple somatic and visceral tissues distributed throughout the body--contraction of skeletal and smooth muscles in the head and along the upper digestive tract required to consume and digest food, as well as stimulation of endocrine and exocrine secretions from a wide range of organs. Accordingly, neurons that contribute to feeding behaviors are localized to central, peripheral, and enteric nervous systems. To promote energy balance, feeding circuits must be able to identify and respond to energy requirements, as well as the amount of energy available from internal and external sources, and then direct appropriate coordinated responses throughout the body.
Collapse
Affiliation(s)
- Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
20
|
Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol 2013; 48:442-51. [PMID: 23463402 PMCID: PMC3698427 DOI: 10.1007/s00535-013-0778-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 02/04/2023]
Abstract
Dietary glutamate (Glu) stimulates to evoke the umami taste, one of the five basic tastes, enhancing food palatability. But it is also the main gut energy source for the absorption and metabolism for each nutrient, thus, only a trace amount of Glu reaches the general circulation. Recently, we demonstrated a unique gut sensing system for free Glu (glutamate signaling). Glu is the only nutrient among amino acids, sugars and electrolytes that activates rat gastric vagal afferents from the luminal side specifically via metabotropic Glu receptors type 1 on mucosal cells releasing mucin and nitrite mono-oxide (NO), then NO stimulates serotonin (5HT) release at the enterochromaffin cell. Finally released 5HT stimulates 5HT3 receptor at the nerve end of the vagal afferent fiber. Functional magnetic resonance imaging (f-MRI, 4.7 T) analysis revealed that luminal sensing with 1 % (w/v) monosodium L-glutamate (MSG) in rat stomach activates both the medial preoptic area (body temperature controller) and the dorsomedial hypothalamus (basic metabolic regulator), resulting in diet-induced thermogenesis during mealing without changes of appetite for food. Interestingly, rats were forced to eat a high fat and high sugar diet with free access to 1 % (w/w) MSG and water in a choice paradigm and showed the strong preference for the MSG solution and subsequently, they displayed lower fat deposition, weight gain and blood leptin. On the other hand, these brain functional changes by the f-MRI signal after 60 mM MSG intubation into the stomach was abolished in the case of total vagotomized rats, suggesting that luminal glutamate signaling contributes to control digestion and thermogenesis without obesity.
Collapse
Affiliation(s)
- Kunio Torii
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan ,Torii Nutrient-Stasis Institute, Inc., Miyuki Building, 5-6-12 Ginza, Chuo-ku, Tokyo, 104-0061 Japan
| | - Hisayuki Uneyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan
| | - Eiji Nakamura
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan
| |
Collapse
|
21
|
Maniscalco JW, Rinaman L. Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav 2013; 121:35-42. [PMID: 23391574 DOI: 10.1016/j.physbeh.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/17/2023]
Abstract
Systemic administration of sulfated cholecystokinin-8 (CCK) activates neurons within the hindbrain nucleus of the solitary tract (NTS) that project directly to the paraventricular nucleus of the hypothalamus (PVN), and these projections underlie the ability of exogenous CCK to activate the hypothalamic-pituitary-adrenal (HPA) stress axis. CCK inhibits food intake, increases NTS neuronal cFos expression, and activates the HPA axis in a dose-dependent manner. While the hypophagic effects of exogenous CCK are attenuated in food-deprived rats, CCK dose-response relationships for NTS and hypothalamic activation in fed and fasted rats are unknown. Within the NTS, noradrenergic A2 and glucagon-like peptide-1 (GLP-1) neurons express cFos after high doses of CCK, and both neuronal populations project directly to the medial parvocellular (mp)PVN. We hypothesized that increasing and correlated proportions of A2, GLP-1, and mpPVN neurons would express cFos in rats after increasing doses of CCK, and that food deprivation would attenuate both hindbrain and hypothalamic neural activation. To test these hypotheses, ad libitum-fed (ad lib) and overnight food-deprived (DEP) rats were anesthetized and perfused with fixative 90min after i.p. injection of 1.0ml saline vehicle containing CCK at doses of 0, 3, or 10μg/kg BW. Additional ad lib and DEP rats served as non-handled (NH) controls. Brain tissue sections were processed for dual immunocytochemical localization of cFos and dopamine-β-hydroxylase to identify A2 neurons, or cFos and GLP-1. Compared to negligible A2 cFos activation in NH control rats, i.p. vehicle and CCK dose-dependently increased A2 activation, and this was significantly attenuated by DEP. DEP also attenuated mpPVN cFos expression across all treatment groups, and A2 activation was strongly correlated with mpPVN activation in both ad lib and DEP rats. In ad lib rats, large and similar numbers of GLP-1 neurons expressed cFos across all i.p. treatment groups, regardless of CCK dose. Surprisingly, DEP nearly abolished baseline GLP-1 cFos expression in NH controls, and also in rats after i.p. injection of vehicle or CCK. We conclude that CCK-induced hypothalamic cFos activation is strongly associated with A2 activation, whereas the relationship between mpPVN and GLP-1 activation is less clear. Furthermore, activation of A2, GLP-1, and mpPVN neurons is significantly modulated by feeding status, suggesting a mechanism through which food intake and metabolic state might impact hypothalamic neuroendocrine responses to homeostatic challenge.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
22
|
Abstract
Analysis of the interactive effects of combinations of hormones or other manipulations with qualitatively similar individual effects is an important topic in basic and clinical endocrinology as well as other branches of basic and clinical research related to integrative physiology. Functional, as opposed to mechanistic, analyses of interactions rely on the concept of synergy, which can be defined qualitatively as a cooperative action or quantitatively as a supra-additive effect according to some metric for the addition of different dose-effect curves. Unfortunately, dose-effect curve addition is far from straightforward; rather, it requires the development of an axiomatic mathematical theory. I review the mathematical soundness, face validity, and utility of the most frequently used approaches to supra-additive synergy. These criteria highlight serious problems in the two most common synergy approaches, response additivity and Loewe additivity, which is the basis of the isobole and related response surface approaches. I conclude that there is no adequate, generally applicable, supra-additive synergy metric appropriate for endocrinology or any other field of basic and clinical integrative physiology. I recommend that these metrics be abandoned in favor of the simpler definition of synergy as a cooperative, i.e., nonantagonistic, effect. This simple definition avoids mathematical difficulties, is easily applicable, meets regulatory requirements for combination therapy development, and suffices to advance phenomenological basic research to mechanistic studies of interactions and clinical combination therapy research.
Collapse
|
23
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Abstract
Glomus cells in the carotid body are responsible for detecting changes in the partial pressure of blood oxygen (PO₂). These glomus cells have recently been found to express leptin receptors and are activated by intermittent hypoxia (IH) and systemic leptin injections, although the function of leptin within the carotid body remains unknown. The present study was done to investigate whether IH activates leptin signalling pathways within leptin-expressing carotid body glomus cells. Rats were subjected to IH (120-s normoxia, 80-s hypoxia for 8 h) or normoxia (8 h). Exposure to IH increased plasma leptin levels almost sixfold compared to normoxic controls. Additionally, IH was found to increase leptin, ERK1/2 and Fra-1/2 immunoreactivity within glomus cells. Systemic leptin injections evoked similar effects on leptin, ERK1/2 and Fra-1/2 immunoreactivity within the glomus cells. Furthermore, using Western blot analysis, IH was found to increase protein expression of leptin, the short form of the leptin receptor (Ob-R₁₀₀ kDa) and suppressor of cytokine signalling 3. On the other hand, IH induced a decrease in long form of leptin receptors (Ob-Rb) protein expression. Taken together, these data suggest that the increased levels of leptin within the circulation and those within the glomus cells induced by IH may alter carotid bodies chemosensitivity to hypoxic stimuli.
Collapse
Affiliation(s)
- S A Messenger
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - J Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
25
|
Fekete C, Zséli G, Singru PS, Kádár A, Wittmann G, Füzesi T, El-Bermani W, Lechan RM. Activation of anorexigenic pro-opiomelanocortin neurones during refeeding is independent of vagal and brainstem inputs. J Neuroendocrinol 2012; 24:1423-31. [PMID: 22734660 DOI: 10.1111/j.1365-2826.2012.02354.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
After fasting, satiety is observed within 2 h after reintroducing food, accompanied by activation of anorexigenic, pro-opiomelanocortin (POMC)-synthesising neurones in the arcuate nucleus (ARC), indicative of the critical role that α-melanocyte-stimulating hormone has in the regulation of meal size during refeeding. To determine whether refeeding-induced activation of POMC neurones in the arcuate is dependent upon the vagus nerve and/or ascending brainstem pathways, bilateral subdiaphragmatic vagotomy or transection of the afferent brainstem input to one side of the ARC was performed. One day after vagotomy or 2 weeks after brain surgery, animals were fasted and then refed for 2 h. Sections containing the ARC from vagotomised animals or animals with effective transection were immunostained for c-Fos and POMC to detect refeeding-induced activation of POMC neurones. Quantitative analyses of double-labelled preparations demonstrated that sham-operated and vagotomised animals markedly increased the number of c-Fos-immunoreactive (-IR) POMC neurones with refeeding. Furthermore, transection of the ascending brainstem pathway had no effect on diminishing c-Fos-immunoreactivity in POMC neurones on either side of the ARC, although it did diminish activation in a separate, subpopulation of neurones in the dorsomedial posterior ARC (dmpARC) on the transected side. We conclude that inputs mediated via the vagus nerve and/or arising from the brainstem do not have a primary role in refeeding-induced activation of POMC neurones in the ARC, and propose that these neurones may be activated solely by direct effects of circulating hormones/metabolites during refeeding. Activation of the dmpARC by refeeding indicates a previously unrecognised role for these neurones in appetite regulation in the rat.
Collapse
Affiliation(s)
- C Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Blevins JE, Moralejo DH, Wolden-Hanson TH, Thatcher BS, Ho JM, Kaiyala KJ, Matsumoto K. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1231-40. [PMID: 23115121 DOI: 10.1152/ajpregu.00393.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Adebakin A, Bradley J, Gümüsgöz S, Waters EJ, Lawrence CB. Impaired satiation and increased feeding behaviour in the triple-transgenic Alzheimer's disease mouse model. PLoS One 2012; 7:e45179. [PMID: 23056194 PMCID: PMC3464300 DOI: 10.1371/journal.pone.0045179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/17/2012] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is associated with non-cognitive symptoms such as changes in feeding behaviour that are often characterised by an increase in appetite. Increased food intake is observed in several mouse models of AD including the triple transgenic (3×TgAD) mouse, but the mechanisms underlying this hyperphagia are unknown. We therefore examined feeding behaviour in 3×TgAD mice and tested their sensitivity to exogenous and endogenous satiety factors by assessing food intake and activation of key brain regions. In the behavioural satiety sequence (BSS), 3×TgAD mice consumed more food after a fast compared to Non-Tg controls. Feeding and drinking behaviours were increased and rest decreased in 3×TgAD mice, but the overall sequence of behaviours in the BSS was maintained. Exogenous administration of the satiety factor cholecystokinin (CCK; 8–30 µg/kg, i.p.) dose-dependently reduced food intake in Non-Tg controls and increased inactive behaviour, but had no effect on food intake or behaviour in 3×TgAD mice. CCK (15 µg/kg, i.p.) increased c-Fos protein expression in the supraoptic nucleus of the hypothalamus, and the nucleus tractus solitarius (NTS) and area postrema of the brainstem to the same extent in Non-Tg and 3×TgAD mice, but less c-Fos positive cells were detected in the paraventricular hypothalamic nucleus of CCK-treated 3×TgAD compared to Non-Tg mice. In response to a fast or a period of re-feeding, there was no difference in the number of c-Fos-positive cells detected in the arcuate nucleus of the hypothalamus, NTS and area postrema of 3×TgAD compared to Non-Tg mice. The degree of c-Fos expression in the NTS was positively correlated to food intake in Non-Tg mice, however, this relationship was absent in 3×TgAD mice. These data demonstrate that 3×TgAD mice show increased feeding behaviour and insensitivity to satiation, which is possibly due to defective gut-brain signalling in response to endogenous satiety factors released by food ingestion.
Collapse
Affiliation(s)
| | | | | | | | - Catherine B. Lawrence
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
The receptive function of hypothalamic and brainstem centres to hormonal and nutrient signals affecting energy balance. Proc Nutr Soc 2012; 71:463-77. [PMID: 22931748 DOI: 10.1017/s0029665112000778] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothalamic arcuate nucleus (ARC) and the area postrema (AP) represent targets for hormonal and metabolic signals involved in energy homoeostasis, e.g. glucose, amylin, insulin, leptin, peptide YY (PYY), glucagon-like peptide 1 (GLP-1) and ghrelin. Orexigenic neuropeptide Y expressing ARC neurons are activated by food deprivation and inhibited by feeding in a nutrient-dependent manner. PYY and leptin also reverse or prevent fasting-induced activation of the ARC. Interestingly, hypothalamic responses to fasting are blunted in different models of obesity (e.g. diet-induced obesity (DIO) or late-onset obesity). The AP also responds to feeding-related signals. The pancreatic hormone amylin acts via the AP to control energy intake. Amylin-sensitive AP neurons are also glucose-responsive. Furthermore, diet-derived protein attenuates amylin responsiveness suggesting a modulation of AP sensitivity by macronutrient supply. This review gives an overview of the receptive function of the ARC and the AP to hormonal and nutritional stimuli involved in the control of energy balance and the possible implications in the context of obesity. Collectively, there is consistency between the neurophysiological actions of these stimuli and their effects on energy homoeostasis under experimental conditions. However, surprisingly little progress has been made in the development of effective pharmacological approaches against obesity. A promising way to improve effectiveness involves combination treatments (e.g. amylin/leptin agonists). Hormonal alterations (e.g. GLP-1 and PYY) are also considered to mediate body weight loss observed in obese patients receiving bariatric surgery. The effects of hormonal and nutritional signals and their interactions might hold the potential to develop poly-mechanistic therapeutic strategies against obesity.
Collapse
|
29
|
Torii K. Brain activation by the umami taste substance monosodium L-glutamate via gustatory and visceral signaling pathways, and its physiological significance due to homeostasis after a meal. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Res 2012; 1446:56-70. [DOI: 10.1016/j.brainres.2012.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/28/2012] [Indexed: 12/16/2022]
|
31
|
Torii K, Uematsu A, Tsurugizawa T. Brain Response to the Luminal Nutrient Stimulation. CHEMOSENS PERCEPT 2012. [DOI: 10.1007/s12078-011-9113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Abstract
During pregnancy, food intake and fat mass are increased to meet the energy demands of the growing conceptus and to prepare for the subsequent demands of lactation. A state of leptin resistance develops during pregnancy in the rat, which can facilitate the increase in food intake despite pregnancy-induced increases in leptin concentrations. Cholecystokinin (CCK) is a satiety factor that is released from the gut during feeding and acts to terminate short-term food intake. Circulating leptin concentrations can modulate the anorexic response to CCK; low leptin concentrations decrease the potency of CCK to reduce food intake. Because rats are leptin resistant by day 14 of pregnancy, it was hypothesised that the feeding response to CCK would be attenuated at that time. Nonpregnant and day 14 pregnant rats received an i.p. injection of CCK-8 (3 μg/kg body weight) or vehicle directly before the start of the dark phase. Food intake was measured 30 min after lights out. Approximately 90 min after receiving either CCK-8 or vehicle, rats were transcardially perfused with 4% paraformaldehyde. Food intake was significantly decreased in CCK-treated nonpregnant rats, although similar treatment did not reduce food intake in day 14 pregnant rats. CCK treatment lead to significant increased in c-Fos expression in the nucleus of the solitary tract (NTS) in both nonpregnant and pregnant rats compared to vehicle treatment, although the number of CCK-induced c-Fos positive cells was significantly less in pregnant rat compared to nonpregnant rats. Although CCK treatment increased the number of c-Fos positive cells in the hypothalamic paraventricular nucleus and supraoptic nucleus in nonpregnant rats, no significant increase was observed in these areas during pregnancy. These results indicate that pregnant rats are no longer responsive to the actions of CCK on short-term food intake and that CCK action in the NTS is reduced during pregnancy.
Collapse
Affiliation(s)
- S R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
33
|
Otis JP, Raybould HE, Carey HV. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator. Gen Comp Endocrinol 2011; 171:269-74. [PMID: 21362421 PMCID: PMC4441800 DOI: 10.1016/j.ygcen.2011.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 12/24/2022]
Abstract
Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
| | - Helen E. Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, 1321 Haring Hall, Davis, CA 95616, USA
| | - Hannah V. Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
- Corresponding author: Fax: +1 608 263 3926. (H.V. Carey)
| |
Collapse
|
34
|
Goebel-Stengel M, Wang L, Stengel A, Taché Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res 2011; 1396:20-34. [PMID: 21555116 DOI: 10.1016/j.brainres.2011.04.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/30/2011] [Accepted: 04/17/2011] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 reduces food intake when injected centrally in rodents. We recently described wide distribution of nucleobindin2 (NUCB2)/nesfatin-1 immunoreactivity in rat brain autonomic nuclei activated by various stressors. We used C57BL/6 mice to localize brain NUCB2/nesfatin-1 immunoreactivity and assessed activation of NUCB2/nesfatin 1 neurons after water avoidance stress (WAS). Gastric emptying of a non-nutrient liquid was also determined. NUCB2/nesfatin-1 immunoreactivity was detected in cortical areas including piriform, insular, cingulate and somatomotor cortices, the limbic system including amygdaloid nuclei, hippocampus and septum, the basal ganglia, bed nucleus of the stria terminalis, the thalamus including paraventricular and parafascicular nuclei, the hypothalamus including supraoptic, periventricular, paraventricular (PVN), arcuate nuclei and ventromedial and lateral hypothalamic areas. Intensely labeled NUCB2/nesfatin-1 neurons were detected in a previously undefined region which we named intermediate dorsomedial hypothalamus. In the brainstem, NUCB2/nesfatin-1 immunoreactivity was detected in the raphe nuclei, Edinger-Westphal nucleus, locus coeruleus (LC), lateral parabrachial nucleus, ventrolateral medulla (VLM) and dorsal vagal complex. WAS induced Fos expression in 35% of NUCB2/nesfatin-1-immunoreactive neurons in the PVN, 50% in the LC, 54% in the rostral raphe pallidus, 58% in the VLM, 39% in the middle part of the nucleus of the solitary tract (NTS) and 33% in the caudal NTS. Nesfatin-1 injected intracerebroventricularly significantly decreased gastric emptying. These data showed that NUCB2/nesfatin-1 immunoreactivity is distributed in mouse brain areas involved in the regulation of stress response and visceral functions activated by an acute psychological stressor suggesting that nesfatin-1 might play a role in the efferent component of the stress response.
Collapse
Affiliation(s)
- Miriam Goebel-Stengel
- CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
35
|
Lembke V, Goebel M, Frommelt L, Inhoff T, Lommel R, Stengel A, Taché Y, Grötzinger C, Bannert N, Wiedenmann B, Klapp BF, Kobelt P. Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides 2011; 32:65-70. [PMID: 20933028 PMCID: PMC4040259 DOI: 10.1016/j.peptides.2010.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022]
Abstract
The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15M NaCl ip (n=4/group). The number of c-Fos-immunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p<0.05) compared to vehicle treated rats (4 ± 1, p<0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p<0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects.
Collapse
Affiliation(s)
- Vanessa Lembke
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Miriam Goebel
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Lisa Frommelt
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Tobias Inhoff
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology; Charité, Campus Virchow; Universitätsmedizin Berlin, Germany
| | - Reinhardt Lommel
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Andreas Stengel
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yvette Taché
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Carsten Grötzinger
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology; Charité, Campus Virchow; Universitätsmedizin Berlin, Germany
| | | | - Bertram Wiedenmann
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology; Charité, Campus Virchow; Universitätsmedizin Berlin, Germany
| | - Burghard F. Klapp
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Peter Kobelt
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology; Charité, Campus Virchow; Universitätsmedizin Berlin, Germany
- Correspondence: Peter Kobelt, PhD Department of Medicine, Division Psychosomatic Medicine and Psychotherapy Charité – Universitätsmedizin Berlin, Campus Mitte Luisenstraße 13 A 10117 Berlin, Germany Phone: +49 30 450-559739 Fax: +49 30 450-559939
| |
Collapse
|
36
|
Moran TH, Ladenheim EE. Adiposity signaling and meal size control. Physiol Behav 2010; 103:21-4. [PMID: 21110992 DOI: 10.1016/j.physbeh.2010.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/09/2010] [Indexed: 01/27/2023]
Abstract
Signaling from energy stores provides feedback on overall nutrient availability to influence food intake. Beginning with seminal studies by Woods and colleagues identifying insulin as an adiposity signal, it has become clear that such factors affect food intake by modulating the efficacy of within meal feedback satiety signals. More recent work with leptin has revealed actions of the hormone in modulating the efficacy of multiple gut feedback signals, identified the dorsal hindbrain as a site of signal integration and suggested both local and descending hypothalamic to hindbrain actions in mediating these effects. The original work by Woods and colleagues provided the necessary experimental paradigms for these advances.
Collapse
Affiliation(s)
- Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
37
|
Goebel M, Stengel A, Wang L, Coskun T, Alsina-Fernandez J, Rivier J, Taché Y. Pattern of Fos expression in the brain induced by selective activation of somatostatin receptor 2 in rats. Brain Res 2010; 1351:150-164. [PMID: 20637739 DOI: 10.1016/j.brainres.2010.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 02/08/2023]
Abstract
Central activation of somatostatin (sst) receptors by oligosomatostatin analogs inhibits growth hormone and stress-related rise in catecholamine plasma levels while stimulating grooming, feeding behaviors, gastric transit and acid secretion, which can be mimicked by selective sst(2) receptor agonist. To evaluate the pattern of neuronal activation induced by peptide sst receptor agonists, we assessed Fos-expression in rat brain after intracerebroventricular (i.c.v.) injection of a newly developed selective sst(2) agonist compared to the oligosomatostatin ODT8-SST, a pan-sst(1-5) agonist. Ninety min after injection of vehicle (10 microl) or previously established maximal orexigenic dose of peptides (1 microg=1 nmol/rat), brains were assessed for Fos-immunohistochemistry and doublelabeling. Food and water were removed after injection. The sst(2) agonist and ODT8-SST induced a similar Fos distribution pattern except in the arcuate nucleus where only the sst(2) agonist increased Fos. Compared to ODT8-SST, the sst(2) agonist induced higher Fos-expression by 3.7-times in the basolateral amygdaloid nucleus, 1.2-times in the supraoptic nucleus (SON), 1.6-times in the magnocellular paraventricular hypothalamic nucleus (mPVN), 4.1-times in the external lateral parabrachial nucleus, and 2.6-times in both the inferior olivary nucleus and superficial layer of the caudal spinal trigeminal nucleus. Doublelabeling in the hypothalamus showed that ODT8-SST activates 36% of oxytocin, 63% of vasopressin and 79% of sst(2) immunoreactive neurons in the mPVN and 28%, 55% and 25% in the SON, respectively. Selective activation of sst(2) receptor results in a more robust neuronal activation than the pan-sst(1-5) agonist in various brain regions that may have relevance in sst(2) mediated alterations of behavioral, autonomic and endocrine functions.
Collapse
Affiliation(s)
- Miriam Goebel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Lixin Wang
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Tamer Coskun
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| |
Collapse
|
38
|
Sabatier N, Leng G. Responses to cholecystokinin in the ventromedial nucleus of the rat hypothalamus in vivo. Eur J Neurosci 2010; 31:1127-35. [PMID: 20377625 DOI: 10.1111/j.1460-9568.2010.07144.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The peptide cholecystokinin (CCK) is a short-term satiety signal released from the gastrointestinal tract during food intake. From the periphery, CCK signalling travels via the vagus nerve to reach the brainstem from which it is relayed higher into the brain. The hypothalamus is a key integrator of appetite-related stimuli and the ventromedial nucleus of the hypothalamus (VMN) is thought to have an important role in the regulation of satiety. We investigated the effect of intravenous injections of CCK on the spontaneous firing activity of single VMN neurons in urethane-anaesthetised rats in vivo. We found that the predominant effect of CCK on the electrical activity in the VMN is inhibitory. We analysed the responses to CCK according to electrophysiologically distinct subpopulations of VMN neurons and found that four of these VMN subpopulations were inhibited by CCK, while five were not significantly affected. Finally, CCK-induced inhibitory response in VMN neurons was not altered by pre-administration of intravenous leptin.
Collapse
Affiliation(s)
- Nancy Sabatier
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
39
|
Grill HJ. Leptin and the systems neuroscience of meal size control. Front Neuroendocrinol 2010; 31:61-78. [PMID: 19836413 PMCID: PMC2813996 DOI: 10.1016/j.yfrne.2009.10.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/14/2022]
Abstract
The development of effective pharmacotherapy for obesity will benefit from a more complete understanding of the neural pathways and the neurochemical signals whose actions result in the reduction of the size of meals. This review examines the neural control of meal size and the integration of two principal sources of that control--satiation signals arising from the gastrointestinal tract and CNS leptin signaling. Four types of integrations that are central to the control of meal size are described and each involves the neurons of the nucleus tractus solitarius (NTS) in the dorsal hindbrain. Data discussed show that NTS neurons integrate information arising from: (1) ascending GI-derived vagal afferent projections, (2) descending neuropeptidergic projections from leptin-activated arcuate and paraventricular nucleus neurons, (3) leptin signaling in NTS neurons themselves and (4) melanocortinergic projections from NTS and hypothalamic POMC neurons to NTS neurons and melanocortinergic modulation of vagal afferent nerve terminals that are presynaptic to NTS neurons.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Pirnik Z, Maixnerová J, Matysková R, Koutová D, Zelezná B, Maletínská L, Kiss A. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides 2010; 31:139-44. [PMID: 19818819 DOI: 10.1016/j.peptides.2009.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/26/2022]
Abstract
The hypothalamus plays an important role in food consumption, receiving information about energy balance via hormonal, metabolic, and neural inputs. Its neurons produce neuropeptides influencing energy balance. Especially important to regulation of food consumption are certain hypothalamic structures, including the arcuate (ARC) and ventromedial (VMN) nuclei and the lateral hypothalamic area (LHA). We determined the impact of cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on activity of ARC and VMN neurons and hypocretin (Hcrt) synthesizing neurons in LHA. ARC is an integrative nucleus regulating food consumption, VMN is considered to be a satiety centre, and LHA a hunger sensing centre. After overnight fasting, male C57Bl/6 mice received intraperitoneal injection of (i.p.) saline (SAL) or CCK (4microg/kg) or intracerebroventricular injection of (i.c.v.) CART peptide (0.1microg/mice) or CCK (i.p.) followed by CART peptide (i.c.v.) 5min later. Sixty minutes later, the presence of Fos or Fos/Hcrt immunostaining indicated activity of ARC and VMN neurons, as well as of Hcrt cells in LHA. CCK alone did not influence neuronal activity in any of the nuclei studied. CART peptide stimulated neurons in ARC and VMN (p<0.01) but decreased Hcrt neuronal activity in LHA (p<0.05). Co-administration of both peptides synergistically stimulated ARC neurons (p<0.01) and asynergistically inhibited LHA Hcrt neurons (p<0.01). Results indicate that CCK may modify the effect of CART peptide and thus substantially influence activity of neurons in hypothalamic structures involved in regulation of food intake.
Collapse
Affiliation(s)
- Zdeno Pirnik
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Tsurugizawa T, Torii K. Physiological Roles of Glutamate Signaling in Gut and Brain Function. Biol Pharm Bull 2010; 33:1796-9. [DOI: 10.1248/bpb.33.1796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Kunio Torii
- Institute of Life Sciences, Ajinomoto Co., Inc
| |
Collapse
|
42
|
Blood oxygenation level-dependent response to intragastric load of corn oil emulsion in conscious rats. Neuroreport 2009; 20:1625-9. [DOI: 10.1097/wnr.0b013e32833312e5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Thermoregulation in the cold changes depending on the time of day and feeding condition: physiological and anatomical analyses of involved circadian mechanisms. Neuroscience 2009; 164:1377-86. [DOI: 10.1016/j.neuroscience.2009.08.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 11/19/2022]
|
44
|
German J, Kim F, Schwartz GJ, Havel PJ, Rhodes CJ, Schwartz MW, Morton GJ. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 2009; 150:4502-11. [PMID: 19574396 PMCID: PMC2754686 DOI: 10.1210/en.2009-0445] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that hormones such as insulin and leptin act in the hypothalamus to regulate energy balance and glucose metabolism. Here we show that in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats, adenovirally induced expression of leptin receptors in the area of the hypothalamic arcuate nucleus improved peripheral insulin sensitivity via enhanced suppression of hepatic glucose production, with no change of insulin-stimulated glucose uptake or disposal. This effect was associated with increased insulin signal transduction via phosphatidylinositol-3-OH kinase (as measured by pY-insulin receptor substrate-1 and pS-PKB/Akt) in liver, but not skeletal muscle, and with reduced hepatic expression of the gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate kinase. Moreover, the beneficial effects of hypothalamic leptin signaling on hepatic insulin sensitivity were blocked by selective hepatic vagotomy. We conclude that hypothalamic leptin action increases peripheral insulin sensitivity primarily via effects on the liver and that the mechanism underlying this effect is dependent on the hepatic branch of the vagus nerve.
Collapse
Affiliation(s)
- Jonathan German
- Department of Medicine, University of Washington at South Lake Union, 815 Mercer Street, Box 358055, Seattle, Washington 98195.
| | | | | | | | | | | | | |
Collapse
|
45
|
CCK-8S activates c-Fos in a dose-dependent manner in nesfatin-1 immunoreactive neurons in the paraventricular nucleus of the hypothalamus and in the nucleus of the solitary tract of the brainstem. ACTA ACUST UNITED AC 2009; 157:84-91. [DOI: 10.1016/j.regpep.2009.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
|
46
|
Goebel M, Stengel A, Wang L, Taché Y. Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Res 2009; 1300:114-24. [PMID: 19733157 DOI: 10.1016/j.brainres.2009.08.082] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/22/2009] [Accepted: 08/25/2009] [Indexed: 12/16/2022]
Abstract
Nesfatin-1 is a newly discovered peptide that was reported to reduce food intake when injected centrally. We recently described its wide distribution in rat brain autonomic nuclei which implies potential recruitment of nesfatin-1 by stress. We investigated whether restraint, a mixed psychological and physical stressor, activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Male Sprague-Dawley rats were either subjected to 30 min restraint or left undisturbed and 90 min later brains were processed for double immunohistochemical labeling of Fos and nesfatin-1. Restraint induced significant Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling revealed that Fos-ir neurons comprised 95% of nesfatin-1-ir cells in the SON, 90% in the VLM, 80% in the LC, 48% in the caudal NTS, 57% in the rRPa, 48% in the anterior parvicellular PVN, 27% in the medial magnocellular PVN, 18% in the lateral magnocellular PVN and 10% in the medial parvicellular PVN. These data demonstrate that nesfatin-1 neurons are part of the hypothalamic and hindbrain neuronal cell groups activated by restraint suggesting a possible role of nesfatin-1 in the response to stress.
Collapse
Affiliation(s)
- Miriam Goebel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | |
Collapse
|
47
|
Williams DL, Baskin DG, Schwartz MW. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1238-46. [PMID: 19726710 DOI: 10.1152/ajpregu.00182.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin is thought to reduce food intake, in part, by increasing sensitivity to satiation signals, including CCK. Leptin action in both forebrain and hindbrain reduces food intake, and forebrain leptin action augments both the anorexic and neuronal activation responses to CCK. Here, we asked whether leptin signaling in hindbrain also enhances these responses to CCK. We found that food intake was strongly inhibited at 30 min after a combination of 4th-intracerebroventricular (4th-icv) leptin injection and intraperitoneal CCK administration, whereas neither hormone affected intake during this period when given alone. Leptin injections targeted directly at the dorsal vagal complex (DVC) similarly enhanced the anorexic response to intraperitoneal CCK. Intra-DVC leptin injection also robustly increased the number of neurons positive for phospho-STAT3 staining in the area surrounding the site of injection, confirming local leptin receptor activation. Conversely, the anorexic response to 4th-icv leptin was completely blocked by IP devazepide, a CCKA-R antagonist, suggesting that hindbrain leptin reduces intake via a mechanism requiring endogenous CCK signaling. We then asked whether hindbrain leptin treatment enhances the dorsomedial hindbrain, hypothalamus, or amygdala c-Fos responses to IP CCK. We found that, in contrast to the effects of forebrain leptin administration, 4th-icv leptin injection had no effect on CCK-induced c-Fos in any structures examined. We conclude that leptin signaling in either forebrain or hindbrain areas can enhance the response to satiation signals and that multiple distinct neural circuits likely contribute to this interaction.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
48
|
Becskei C, Lutz TA, Riediger T. Diet-derived nutrients mediate the inhibition of hypothalamic NPY neurons in the arcuate nucleus of mice during refeeding. Am J Physiol Regul Integr Comp Physiol 2009; 297:R100-10. [DOI: 10.1152/ajpregu.91014.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fasting activates orexigenic neuropeptide Y neurons in the hypothalamic arcuate nucleus (ARC) of mice, which is reversed by 2 h refeeding with standard chow. Here, we investigated the contribution of diet-derived macronutrients and anorectic hormones to the reversal of the fasting-induced ARC activation during 2 h refeeding. Refeeding of 12-h-fasted mice with a cellulose-based, noncaloric mash induced only a small reduction in c-Fos expression. Refeeding with diets, containing carbohydrates, protein, or fat alone reversed it similar to chow; however, this effect depended on the amount of intake. The fasting-induced ARC activation was unchanged by subcutaneously injected amylin, CCK (both 20 μg/kg), insulin (0.2 U/kg and 0.05 U/kg) or leptin (2.6 mg/kg). Insulin and leptin had no effect on c-Fos expression in neuropeptide Y or proopiomelanocortin-containing ARC neurons. Interestingly, CCK but not amylin reduced the ghrelin-induced c-Fos expression in the ARC in ad libitum-fed mice, suggesting that CCK may inhibit orexigenic ARC neurons when acting together with other feeding-related signals. We conclude that all three macronutrients and also non-nutritive, ingestion-dependent signals contribute to an inhibition of orexigenic ARC neurons after refeeding. Similar to the previously demonstrated inhibitory in vivo action of peptide YY, CCK may be a postprandial mediator of ARC inhibition.
Collapse
|
49
|
Blevins JE, Overduin J, Fuller J, Cummings D, Matsumoto K, Moralejo D. Normal feeding and body weight in Fischer 344 rats lacking the cholecystokinin-1 receptor gene. Brain Res 2009; 1255:98-112. [PMID: 19111529 PMCID: PMC6202117 DOI: 10.1016/j.brainres.2008.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 01/26/2023]
Abstract
A large body of evidence has demonstrated that one mechanism by which cholecystokinin (CCK) inhibits food intake through activation of CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. OLETF rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic, obese, and predisposed to type 2 diabetes. Recently, by introgressing the OLETF-derived, CCK1R-null gene onto a Fischer 344 genetic background, we have been able to generate a CCK1R-deficient, congenic rat strain, F344.Cck1r(-/-), that in contrast to OLETF rats, possesses a lean and normoglycemic phenotype. In the present study, the behavioral and neurobiological phenotype of this rat strain was characterized more fully. As expected, intraperitoneal injections of CCK-8 inhibited intake of chow and Ensure Plus and induced Fos responses in the area postrema and the gelatinosus, commissural and medial subdivisions of the nucleus tractus solitarius of wild-type F344.Cck1r(+/+) rats, whereas CCK-8 was without effect on food intake or Fos induction in the F344.Cck1r(-/-) rats. F344.Cck1r(-/-) and F344.Cck1r(+/+) rats did not differ in body weight and showed comparable weight gain when maintained on Ensure Plus for 2 weeks. Also, no difference was found in 24-h food intake, and dark-phase meal frequency or meal size between F344.Cck1r(+/+) and F344.Cck1r(-/-) rats. As expected, blockade of endogenous CCK action at CCK1R increased food intake and blocked the effects of peripheral CCK-8 in wild-type F344.Cck1r(+/+) rats. These results confirm that in rats with a F344 background, CCK-1R mediates CCK-8-induced inhibition of food intake and Fos activation in the hindbrain and demonstrate that selective genetic ablation of CCK1R is not associated with altered meal patterns, hyperphagia, or excessive weight gain on a palatable diet.
Collapse
Affiliation(s)
- J. E. Blevins
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - J. Overduin
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - J.M. Fuller
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - D.E. Cummings
- Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - K. Matsumoto
- Division for Animal Research Resources, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - D.H. Moralejo
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
50
|
Goebel M, Stengel A, Wang L, Lambrecht NWG, Taché Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett 2009; 452:241-6. [PMID: 19348732 DOI: 10.1016/j.neulet.2009.01.064] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/07/2009] [Accepted: 01/25/2009] [Indexed: 01/16/2023]
Abstract
Nesfatin-1 is one of the peptide products of posttranslational processing of the nucleobindin-2 (NUCB2) gene, suggested to have physiological relevance to suppress food intake and body weight gain in rats. Nesfatin-1-immunoreactive cells have been found in distinct nuclei in the rat brain related to circuitries regulating food intake. Here, we report novel yet undescribed localization of NUCB2/nesfatin-1 at the mRNA and protein level in the rat central nervous system. Immunohistochemical staining revealed the localization of NUCB2/nesfatin-1 in the piriform and insular cortex, endopiriform nucleus, nucleus accumbens, lateral septum, bed nucleus of stria terminalis, central amygdaloid nucleus, medial preoptic area, dorsal raphe nucleus, ambiguus nucleus, ventrolateral medulla and gigantocellular reticular nucleus, as well as Purkinje-cells of the cerebellum. In the spinal cord, nesfatin-1 immunoreactivity (IR) was found in both sympathetic and parasympathetic preganglionic neuronal groups and in the dorsal area X from lower thoracic to sacral segments. The immunohistochemical results were confirmed by RT-PCR in the central amygdaloid nucleus, nucleus accumbens, cerebellum and lumbar spinal cord microdissected by punch technique. The features and distributions of nesfatin-1 IR and mRNA expression in the brain and spinal cord suggest that NUCB2/nesfatin-1 could play a wider role in autonomic regulation of visceral-endocrine functions besides food intake.
Collapse
Affiliation(s)
- Miriam Goebel
- CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|