1
|
Morrissey ZD, Kumar P, Phan TX, Maienschein-Cline M, Leow A, Lazarov O. Neurogenesis drives hippocampal formation-wide spatial transcription alterations in health and Alzheimer's disease. FRONTIERS IN DEMENTIA 2025; 4:1546433. [PMID: 40309339 PMCID: PMC12041076 DOI: 10.3389/frdem.2025.1546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The mechanism by which neurogenesis regulates the profile of neurons and glia in the hippocampal formation is not known. Further, the effect of neurogenesis on neuronal vulnerability characterizing the entorhinal cortex in Alzheimer's disease (AD) is unknown. Here, we used in situ sequencing to investigate the spatial transcription profile of neurons and glia in the hippocampal circuitry in wild-type mice and in familial AD (FAD) mice expressing varying levels of neurogenesis. This approach revealed that in addition to the dentate gyrus, neurogenesis modulates the cellular profile in the entorhinal cortex and CA regions of the hippocampus. Notably, enhancing neurogenesis in FAD mice led to partial restoration of neuronal and cellular profile in these brain areas, resembling the profile of their wild-type counterparts. This approach provides a platform for the examination of the cellular dynamics in the hippocampal formation in health and in AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Trongha X. Phan
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | | | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Fujikawa R, Yamada J, Maeda S, Iinuma KM, Moriyama G, Jinno S. Inhibition of reactive oxygen species production accompanying alternatively activated microglia by risperidone in a mouse ketamine model of schizophrenia. J Neurochem 2024; 168:2690-2709. [PMID: 38770640 DOI: 10.1111/jnc.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent studies have highlighted the potential involvement of reactive oxygen species (ROS) and microglia, a major source of ROS, in the pathophysiology of schizophrenia. In our study, we explored how the second-generation antipsychotic risperidone (RIS) affects ROS regulation and microglial activation in the hippocampus using a mouse ketamine (KET) model of schizophrenia. KET administration resulted in schizophrenia-like behaviors in male C57BL/6J mice, such as impaired prepulse inhibition (PPI) of the acoustic startle response and hyper-locomotion. These behaviors were mitigated by RIS. We found that the gene expression level of an enzyme responsible for ROS production (Nox2), which is primarily associated with activated microglia, was lower in KET/RIS-treated mice than in KET-treated mice. Conversely, the levels of antioxidant enzymes (Ho-1 and Gclc) were higher in KET/RIS-treated mice. The microglial density in the hippocampus was increased in KET-treated mice, which was counteracted by RIS. Hierarchical cluster analysis revealed three morphological subtypes of microglia. In control mice, most microglia were resting-ramified (type I, 89.7%). KET administration shifted the microglial composition to moderately ramified (type II, 44.4%) and hyper-ramified (type III, 25.0%). In KET/RIS-treated mice, type II decreased to 32.0%, while type III increased to 34.0%. An in vitro ROS assay showed that KET increased ROS production in dissociated hippocampal microglia, and this effect was mitigated by RIS. Furthermore, we discovered that a NOX2 inhibitor could counteract KET-induced behavioral deficits. These findings suggest that pharmacological inhibition of ROS production by RIS may play a crucial role in ameliorating schizophrenia-related symptoms. Moreover, modulating microglial activation to regulate ROS production has emerged as a novel avenue for developing innovative treatments for schizophrenia.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Sharifi M, Oryan S, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Comparing the synaptic potentiation in schaffer collateral-CA1 synapses in dorsal and intermediate regions of the hippocampus in normal and kindled rats. IBRO Neurosci Rep 2023; 15:252-261. [PMID: 37841086 PMCID: PMC10570600 DOI: 10.1016/j.ibneur.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
There is growing evidence that the hippocampus comprises diverse neural circuits that exhibit longitudinal variation in their properties, however, the intermediate region of the hippocampus has received comparatively little attention. Therefore, this study was designed to compared short- and long-term synaptic plasticity between the dorsal and intermediate regions of the hippocampus in normal and PTZ-kindled rats. Short-term plasticity was assessed by measuring the ratio of field excitatory postsynaptic potentials' (fEPSPs) slope in response to paired-pulse stimulation at three different inter-pulse intervals (20, 80, and 160 ms), while long-term plasticity was assessed using primed burst stimulation (PBS). The results showed that the basal synaptic strength differed between the dorsal and intermediate regions of the hippocampus in both control and kindled rats. In the control group, paired-pulse stimulation of Schaffer collaterals resulted in a significantly lower fEPSP slope in the intermediate part of the hippocampus compared to the dorsal region. Additionally, the magnitude of long-term potentiation (LTP) was significantly lower in the intermediate part of the hippocampus compared to the dorsal region. In PTZ-kindled rats, both short-term facilitation and long-term potentiation were impaired in both regions of the hippocampus. Interestingly, there was no significant difference in synaptic plasticity between the dorsal and intermediate regions in PTZ-kindled rats, despite impairments in both regions. This suggests that seizures eliminate the regional difference between the dorsal and intermediate parts of the hippocampus, resulting in similar electrophysiological activity in both regions in kindled animals. Future studies should consider this when investigating the responses of the dorsal and intermediate regions of the hippocampus following PTZ kindling.
Collapse
Affiliation(s)
- Maryam Sharifi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Morrissey ZD, Gao J, Zhan L, Li W, Fortel I, Saido T, Saito T, Bakker A, Mackin S, Ajilore O, Lazarov O, Leow AD. Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 14:1085989. [PMID: 36711209 PMCID: PMC9878347 DOI: 10.3389/fnagi.2022.1085989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. METHODS To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations (App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. RESULTS We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. DISCUSSION Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
A method to estimate the cellular composition of the mouse brain from heterogeneous datasets. PLoS Comput Biol 2022; 18:e1010739. [PMID: 36542673 PMCID: PMC9838873 DOI: 10.1371/journal.pcbi.1010739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/13/2023] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The mouse brain contains a rich diversity of inhibitory neuron types that have been characterized by their patterns of gene expression. However, it is still unclear how these cell types are distributed across the mouse brain. We developed a computational method to estimate the densities of different inhibitory neuron types across the mouse brain. Our method allows the unbiased integration of diverse and disparate datasets into one framework to predict inhibitory neuron densities for uncharted brain regions. We constrained our estimates based on previously computed brain-wide neuron densities, gene expression data from in situ hybridization image stacks together with a wide range of values reported in the literature. Using constrained optimization, we derived coherent estimates of cell densities for the different inhibitory neuron types. We estimate that 20.3% of all neurons in the mouse brain are inhibitory. Among all inhibitory neurons, 18% predominantly express parvalbumin (PV), 16% express somatostatin (SST), 3% express vasoactive intestinal peptide (VIP), and the remainder 63% belong to the residual GABAergic population. We find that our density estimations improve as more literature values are integrated. Our pipeline is extensible, allowing new cell types or data to be integrated as they become available. The data, algorithms, software, and results of our pipeline are publicly available and update the Blue Brain Cell Atlas. This work therefore leverages the research community to collectively converge on the numbers of each cell type in each brain region.
Collapse
|
6
|
Fujikawa R, Jinno S. Identification of hyper-ramified microglia in the CA1 region of the mouse hippocampus potentially associated with stress resilience. Eur J Neurosci 2022; 56:5137-5153. [PMID: 36017697 DOI: 10.1111/ejn.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Recent studies have indicated that some individuals are less affected by stress, and such individuals are called resilient. This study aimed to determine whether the specific phenotype of microglia might be involved in resilience using the social defeat stress paradigm. Male C57BL/6J (B6) mice were attacked by aggressive male ICR mice for five consecutive days. After stress exposure, the social behaviour was reduced in about half of the B6 mice (vulnerable), whereas no such change was observed in the remaining half of the B6 mice (resilient). Anxiety-like behaviour was increased in vulnerable mice compared with resilient mice and non-stressed controls. However, depression-related behaviour was comparable between the three groups. The morphological characteristics of microglia in the CA1 region of the dorsal hippocampus in non-stressed controls and resilient mice differed from those in vulnerable mice. Interestingly, the voxel densities of GABAergic and glutamatergic synaptic puncta colocalized with microglia were higher in resilient mice than in non-stressed controls and vulnerable mice. Microglia were then objectively classified into three morphological types by hierarchical cluster analysis. The appearance of type I microglia resembled the so-called resting ramified microglia and represented the major population of microglia in non-stressed controls. Type II microglia exhibited a de-ramified morphology and accounted for 60% of the microglia in vulnerable mice. Type III microglia showed a hyper-ramified morphology and represented more than half of the microglia in resilient mice. These results suggest that hyper-ramified microglia in the hippocampus may be associated with stress resilience via the modulation of synaptic transmission.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Perrenoud Q, Leclerc C, Geoffroy H, Vitalis T, Richetin K, Rampon C, Gallopin T. Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS One 2022; 17:e0270981. [PMID: 35802727 PMCID: PMC9269967 DOI: 10.1371/journal.pone.0270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Clémence Leclerc
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Tania Vitalis
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Kevin Richetin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Maeda S, Yamada J, Iinuma KM, Nadanaka S, Kitagawa H, Jinno S. Chondroitin sulfate proteoglycan is a potential target of memantine to improve cognitive function via the promotion of adult neurogenesis. Br J Pharmacol 2022; 179:4857-4877. [PMID: 35797426 DOI: 10.1111/bph.15920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in aging-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analyzing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis. EXPERIMENTAL APPROACH The effects of MEM on neurogenesis-related cells and CSPG content were assessed in the hippocampus of middle-aged mice. The MEM-induced alterations in gene expressions of neurotrophins and enzymes associated with biosynthesis and degradation of CSPG in the hippocampus were also measured. The effects of MEM on cognitive function were estimated using a behavioral test battery. The same set of behavioral tests was applied to evaluate the effects of pharmacological depletion of CSPG in the hippocampus. KEY RESULTS The densities of newborn granule cells and content of CSPG in the hippocampus were increased by MEM. The expression levels of the enzyme responsible for the biosynthesis CSPG were increased by MEM. The neurotrophin-related molecules were activated by MEM. Short- and long-term memory performance was improved by MEM. Pharmacological depletion of CSPG impairs the effects of MEM on cognitive improvement in middle-aged mice. CONCLUSIONS AND IMPLICATIONS MEM regulates the biosynthesis and degradation of CSPG, which may underlie the improvement of cognitive function via the promotion of adult hippocampal neurogenesis. These results imply that CSPG-related enzymes may be potentially attractive candidates for the treatment of aging-related cognitive decline.
Collapse
Affiliation(s)
- Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Yamada J, Maeda S, Soya M, Nishida H, Iinuma KM, Jinno S. Alleviation of cognitive deficits via upregulation of chondroitin sulfate biosynthesis by lignan sesamin in a mouse model of neuroinflammation. J Nutr Biochem 2022; 108:109093. [PMID: 35724814 DOI: 10.1016/j.jnutbio.2022.109093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022]
Abstract
Lignans are plant-derived compounds that act as partial estrogen agonists. Chondroitin sulfate proteoglycans (CSPGs) represent one of the major components of the extracellular matrix (ECM). Here we aimed to understand the role of sesamin (SES), a major lignan compound, in the biosynthesis and degradation of CSPGs in the mouse hippocampus because CSPGs play a key role in the regulation of cognitive functions through the promotion of adult neurogenesis. The expression of the pro-inflammatory cytokine interleukin-1β was decreased by SES administration in the hippocampus of lipopolysaccharide (LPS)-treated mice, a model of neuroinflammation-induced cognitive deficits. The expression of genes related to biosynthesis and degradation of CSPGs in the hippocampus of LPS-treated mice was both increased and decreased by SES administration. Further, the diffuse ECM labeling of CSPGs by Wisteria floribunda agglutinin (WFA) in the hippocampus of LPS-treated mice was increased by SES administration. The densities of neural stem cells, late transit-amplifying cells, and newborn-granule cells in the hippocampus of LPS-treated mice were also increased by SES administration. Moreover, SES-induced alterations in gene expression, WFA labeling, and adult neurogenesis in LPS-treated mice were more evident in the dorsal hippocampus (center of cognition) than in the ventral hippocampus (center of emotion). Neither LPS nor SES administration affected locomotor activity, anxiety-like behavior, and depression-related behavior. However, impairments in contextual memory and sensorimotor gating in LPS-treated mice were recovered by SES administration. Our results show that SES can promote adult hippocampal neurogenesis through the upregulation of CSPGs, which may alleviate cognitive deficits induced by neuroinflammation.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Soya
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidefumi Nishida
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
10
|
Xia Y, Qadota H, Wang ZH, Liu P, Liu X, Ye KX, Matheny CJ, Berglund K, Yu SP, Drake D, Bennett DA, Wang XC, Yankner BA, Benian GM, Ye K. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. SCIENCE ADVANCES 2022; 8:eabj8658. [PMID: 35353567 PMCID: PMC8967231 DOI: 10.1126/sciadv.abj8658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
The age-related cognitive decline of normal aging is exacerbated in neurodegenerative diseases including Alzheimer's disease (AD). However, it remains unclear whether age-related cognitive regulators in AD pathologies contribute to life span. Here, we show that C/EBPβ, an Aβ and inflammatory cytokine-activated transcription factor that promotes AD pathologies via activating asparagine endopeptidase (AEP), mediates longevity in a gene dose-dependent manner in neuronal C/EBPβ transgenic mice. C/EBPβ selectively triggers inhibitory GABAnergic neuronal degeneration by repressing FOXOs and up-regulating AEP, leading to aberrant neural excitation and cognitive dysfunction. Overexpression of CEBP-2 or LGMN-1 (AEP) in Caenorhabditis elegans neurons but not muscle stimulates neural excitation and shortens life span. CEBP-2 or LGMN-1 reduces daf-2 mutant-elongated life span and diminishes daf-16-induced longevity. C/EBPβ and AEP are lower in humans with extended longevity and inversely correlated with REST/FOXO1. These findings demonstrate a conserved mechanism of aging that couples pathological cognitive decline to life span by the neuronal C/EBPβ/AEP pathway.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hiroshi Qadota
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Neuroscience program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karen X. Ye
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Courtney J. Matheny
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University, Atlanta, GA 30322, USA
| | - Derek Drake
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | | | - Guy M. Benian
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
11
|
Phytoestrogen genistein modulates neuron-microglia signaling in a mouse model of chronic social defeat stress. Neuropharmacology 2022; 206:108941. [PMID: 34990615 DOI: 10.1016/j.neuropharm.2021.108941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/20/2023]
Abstract
Microglia, resident immune cells in the brain, are shown to mediate the crosstalk between psychological stress and depression. Interestingly, increasing evidence indicates that sex hormones, particularly estrogen, are involved in the regulation of immune system. In this study, we aimed to understand the potential effects of chronic social defeat stress (CSDS) and genistein (GEN), an estrogenic compound of the plant origin, on neuron-microglia interactions in the mouse hippocampus. The time spent in the avoidance zone in the social interaction test was increased by CSDS 1 day after the exposure, while the avoidance behavior returned to control levels 14 days after the CSDS exposure. Similar results were obtained from the elevated plus-maze test. However, the immobility time in the forced swim test was increased by CSDS 14 days after the exposure, and the depression-related behavior was in part alleviated by GEN. The numerical densities of microglia in the hippocampus were increased by CSDS, and they were decreased by GEN. The voxel densities of synaptic structures and synaptic puncta colocalized with microglia were decreased by CSDS, and they were increased by GEN. Neither CSDS nor GEN affected the gene expressions of major pro-inflammatory cytokines. Conversely, the expression levels of genes related to neurotrophic factors were decreased by CSDS, and they were partially reversed by GEN. These findings show that GEN may in part alleviate stress-related symptoms, and the effects of GEN may be associated with the modulation of neuron-microglia signaling via chemokines and neurotrophic factors in the hippocampus.
Collapse
|
12
|
Ohgomori T, Jinno S. Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure. Neuroscience 2021; 472:90-102. [PMID: 34358632 DOI: 10.1016/j.neuroscience.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have emphasized that adult hippocampal neurogenesis impairment may be associated with cognitive problems. Because cuprizone (CPZ), a copper-chelating reagent, was shown to decrease the production of new neurons, we aimed to further understand the involvement of adult hippocampal neurogenesis impairment in cognitive function by using a short-term (2-week) CPZ exposure paradigm. The CPZ-fed mice showed cognitive deficits, i.e., impaired sensorimotor gating and reduced social novelty preference, compared to normal-fed mice. Although a long-term (e.g., 5-week) CPZ exposure paradigm was found to cause demyelination, we encountered that the labeling for myelin in the hippocampus was unaffected by 2-week CPZ exposure. The densities of neuronal progenitor cells (NPCs) and newborn granule cells (NGCs) were lower in CPZ-fed mice than in normal-fed mice, while those of neural stem cells (NSCs) were comparable between groups. We then examined whether short-term CPZ exposure might induce activation of signal transducer and activator of transcription 3 (STAT3), which plays a major role in cytokine receptor signaling. The densities of phosphorylated STAT3-positive (pSTAT3+) NSCs were higher in CPZ-fed mice than in normal-fed mice, while those of pSTAT3+ NPCs/NGCs were very low in both groups. Interestingly, the densities of bromodeoxyuridine-positive (BrdU+) NSCs were higher in CPZ-fed mice than in normal-fed mice 2 weeks after BrdU injection, while those of BrdU+ NPCs/NGCs were lower in CPZ-fed mice than in normal-fed mice. These findings suggest that short-term CPZ exposure inhibits differentiation of NSCs into NPCs via activation of STAT3, which may in part underlie cognitive deficits.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
Ohgomori T, Iinuma K, Yamada J, Jinno S. A unique subtype of ramified microglia associated with synapses in the rat hippocampus. Eur J Neurosci 2021; 54:4740-4754. [PMID: 34110047 DOI: 10.1111/ejn.15330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
To date, a number of studies have reported the heterogeneity of activated microglia. However, there is increasing evidence suggests that ramified, so-called resting, microglia may also be heterogeneous, and they may play diverse roles in normal brain homeostasis. Here, we found that both 5D4 keratan sulfate epitope-positive (5D4+ ) and 5D4-negative (5D4- ) microglia coexisted in the hippocampus of normal rats, while all microglia were negative for the 5D4 epitope in the hippocampus of normal mice. We thus aimed to determine the potential heterogeneity of microglia related to the 5D4 epitope in the normal rat hippocampus. The optical disector analysis showed that the densities of 5D4+ microglia were higher in the stratum oriens of the CA3 region than in other layers and regions. Although both 5D4+ and 5D4- microglia exhibited a ramified morphology, the three-dimensional reconstruction analysis showed that the node numbers, end numbers, and complexity of processes were higher in 5D4+ than in 5D4- microglia. The linear discriminant analysis showed that 5D4+ and 5D4- microglia can be classified into distinct morphometric subtypes. The ratios of contact between synaptic boutons and microglial processes were higher in 5D4+ than in 5D4- microglia. The gene expressions of pro-inflammatory cytokine interleukin-1β and purinergic receptor P2Y12 (P2Y12 R) were higher in 5D4+ than in 5D4- microglia. Together, these results indicate that at least two different subtypes of ramified microglia coexist in the normal rat hippocampus and also suggest that 5D4+ microglia may represent a unique subtype associated with synapses.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Japan
| | - Kyoko Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Fujikawa R, Yamada J, Jinno S. Subclass imbalance of parvalbumin-expressing GABAergic neurons in the hippocampus of a mouse ketamine model for schizophrenia, with reference to perineuronal nets. Schizophr Res 2021; 229:80-93. [PMID: 33229224 DOI: 10.1016/j.schres.2020.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 11/29/2022]
Abstract
Impairments of parvalbumin-expressing GABAergic neurons (PV+ neurons) and specialized extracellular structures called perineuronal nets (PNNs) have been found in schizophrenic patients. In this study, we examined potential alterations in four subclasses of PV+ neurons colocalized with PNNs in the hippocampus of a mouse ketamine model for schizophrenia. Because biosynthesis of human natural killer-1 (HNK-1) is shown to be associated with the risk of schizophrenia, here we used mouse monoclonal Cat-315 antibody, which recognizes HNK-1 glycans on PNNs. Once-daily intraperitoneal injections of ketamine for seven consecutive days induced hyper-locomotor activity in the open field tests. The prepulse inhibition (PPI) test showed that PPI scores declined in ketamine-treated mice compared to vehicle-treated mice. The densities of PV+ neurons and Cat-315+ PNNs declined in the CA1 region of ketamine-treated mice. Interestingly, the density of Cat-315+/PV+ neurons was lower in ketamine-treated mice than in vehicle-treated mice, whereas the density of Cat-315-/PV+ neurons was not affected by ketamine. Among the four subclasses of PV+ neurons, the densities of Cat-315+/PV+ basket cells and Cat-315-/PV+ axo-axonic cells were lower in ketamine-treated mice than in vehicle-treated mice, while the densities of Cat-315-/PV+ basket cells and Cat-315+/PV+ axo-axonic cells were not affected by ketamine. Taken together, PNNs may not play a simple neuroprotective role against ketamine. Because different subclasses of PV+ neurons are considered to play distinct roles in the hippocampal neuronal network, the ketamine-induced subclass imbalance of PV+ neurons may result in abnormal network activity, which underlies the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
15
|
Ohgomori T, Jinno S. Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a mouse pilocarpine model of status epilepticus. Neuropharmacology 2020; 176:108227. [PMID: 32634527 DOI: 10.1016/j.neuropharm.2020.108227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that microglia may play a critical role in epileptogenesis during the early post-status epilepticus (SE) period. In this study, we aimed to elucidate the effects of preconditioning of microglia with lipopolysaccharide (LPS) on neuropathology and cognitive deficits in a mouse pilocarpine model of SE. Mice were treated with an intraperitoneal injection of LPS 24 h before SE induction. The open field test at 13 days after SE showed that LPS preconditioning suppressed SE-induced hyperactivity. The Y-maze test at 14 days after SE showed that LPS preconditioning ameliorated SE-induced working memory impairment. The extent of neuronal damage was decreased by LPS preconditioning in the hippocampus of mice euthanized at 15 days after SE. Gene profile analysis of hippocampal microglia at 15 days after SE showed that the expression level of interleukin-1β was increased by SE induction but decreased by LPS preconditioning. By contrast, SE induction increased the expression levels of phagocytosis-related genes, and LPS preconditioning further enhanced their expression. Interestingly, LPS preconditioning increased the numerical density of hippocampal microglia expressing the 5D4 keratan sulfate epitope, a population of cells known to be involved in phagocytosis. The voxel density of glutamatergic synapses was increased by SE induction but decreased by LPS preconditioning, while GABAergic synapses were not affected by these procedures. Our findings indicate that LPS preconditioning may in part alleviate SE-related abnormal synaptogenesis and cognitive deficits, and also suggest that modulation of microglial activation during the early post-SE period may be a novel strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Young WS, Song J. Characterization of Oxytocin Receptor Expression Within Various Neuronal Populations of the Mouse Dorsal Hippocampus. Front Mol Neurosci 2020; 13:40. [PMID: 32256314 PMCID: PMC7093644 DOI: 10.3389/fnmol.2020.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/30/2022] Open
Abstract
Oxytocin, acting through the oxytocin receptor (Oxtr) in the periphery, is best known for its roles in regulating parturition and lactation. However, it is also now known to possess a number of important social functions within the central nervous system, including social preference, memory and aggression, that vary to different degrees in different species. The Oxtr is found in both excitatory and inhibitory neurons within the brain and research is focusing on how, for example, activation of the receptor in interneurons can enhance the signal-to-noise of neuronal transmission. It is important to understand which neurons in the mouse dorsal hippocampus might be activated during memory formation. Therefore, we examined the colocalization of transcripts in over 5,000 neurons for Oxtr with those for nine different markers often found in interneurons using hairpin chain reaction in situ hybridization on hippocampal sections. Most pyramidal cell neurons of CA2 and many in the CA3 express Oxtr. Outside of those excitatory neurons, over 90% of Oxtr-expressing neurons co-express glutamic acid decarboxylase-1 (Gad-1) with progressively decreasing numbers of co-expressing cholecystokinin, somatostatin, parvalbumin, neuronal nitric oxide synthase, the serotonin 3a receptor, the vesicular glutamate transporter 3, calbindin 2 (calretinin), and vasoactive intestinal polypeptide neurons. Distributions were analyzed within hippocampal layers and regions as well. These findings indicate that Oxtr activation will modulate the activity of ~30% of the Gad-1 interneurons and the majority of the diverse population of those, mostly, interneuron types specifically examined in the mouse hippocampus.
Collapse
Affiliation(s)
- W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
17
|
PSA-NCAM Colocalized with Cholecystokinin-Expressing Cells in the Hippocampus Is Involved in Mediating Antidepressant Efficacy. J Neurosci 2019; 40:825-842. [PMID: 31801810 DOI: 10.1523/jneurosci.1779-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
The extracellular glycan polysialic acid linked to neural cell adhesion molecule (PSA-NCAM) is principally expressed in the developing brain and the adult neurogenic regions. Although colocalization of PSA-NCAM with cholecystokinin (CCK) was found in the adult brain, the role of PSA-NCAM remains unclear. In this study, we aimed to elucidate the functional significance of PSA-NCAM in the CA1 region of the male mouse hippocampus. Combined fluorescence in situ hybridization and immunohistochemistry showed that few vesicular glutamate transporter 3-negative/CCK-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The somata of PSA-NCAM+/CCK+ cells were highly innervated by serotonergic boutons than those of PSA-NCAM-/CCK+ cells. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. Pharmacological digestion of PSA-NCAM impaired the efficacy of antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, but not the efficacy of benzodiazepine anxiolytic diazepam. A Western blot showed that restraint stress decreased the expressions of p11 and mature brain-derived neurotrophic factor (BDNF), and FLX increased them. Interestingly, the FLX-induced elevation of expression of p11, but not mature BDNF, was impaired by the digestion of PSA-NCAM. Quantitative reverse transcription-polymerase chain reaction showed that restraint stress reduced the expression of polysialyltransferase ST8Sia IV and FLX elevated it. Collectively, PSA-NCAM colocalized with VGluT3+/CCK+ cells in the CA1 region of the hippocampus may play a unique role in the regulation of antidepressant efficacy via the serotonergic pathway.SIGNIFICANCE STATEMENT Polysialic acid (PSA) is composed of eight or more α2,8-linked sialic acids. Here, we examined the functional significance of polysialic acid linked to the neural cell adhesion molecule (PSA-NCAM) in the adult mouse hippocampus. Few vesicular glutamate transporter 3-negative/cholecystokinin-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. The efficacy of antidepressants, but not anxiolytics, was impaired by the digestion of PSA-NCAM. The antidepressant-induced increase in p11 expression was inhibited following PSA-NCAM digestion. We hence hypothesize that PSA-NCAM colocalized with VGluT3+/CCK+ cells may play a unique role in regulating antidepressant efficacy.
Collapse
|
18
|
Yamada J, Jinno S. Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology 2019; 158:107710. [DOI: 10.1016/j.neuropharm.2019.107710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
|
19
|
Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol 2019; 528:14-31. [PMID: 31237692 DOI: 10.1002/cne.24734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Induction of keratan sulfate in microglia has been found in several animal models of neurological disorders. However, the significance of keratan sulfate-expressing microglia is not fully understood. To address this issue, we analyzed the characteristics of microglia labeled by the 5D4 epitope, a marker of high-sulfated keratan sulfate, in the mouse hippocampus during the latent period after pilocarpine-induced status epilepticus (SE). Only 5D4-negative (5D4- ) microglia were found in the CA1 region of vehicle-treated controls and pilocarpine-treated mice at 1 day after SE onset. A few 5D4+ microglia appeared in the strata oriens and radiatum at 5 days post-SE, and they were distributed into the stratum pyramidale at 14 days post-SE. The expressions of genes related to both anti- and pro-inflammatory cytokines were higher in 5D4+ cells than in 5D4- cells at 5 but not 14 days post-SE. The expressions of genes related to phagocytosis were higher in 5D4+ cells than in 5D4- cells throughout the latent period. The phagocytic activity of microglia, as measured by engulfment of the zymosan bioparticles, was higher in 5D4+ cells than in 5D4- cells. The contact ratios between excitatory synaptic boutons and microglia were also higher in 5D4+ cells than in 5D4- cells at 5 and 14 days post-SE. The excitatory/inhibitory ratios of synaptic boutons within the microglial domain were lower in 5D4+ cells than in 5D4- cells at 14 days post-SE. Our findings indicate that 5D4+ microglia may play some role in epileptogenesis via pruning of excitatory synapses during the latent period after SE.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Ohgomori T, Jinno S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 2019; 363:98-110. [DOI: 10.1016/j.taap.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
21
|
Shima Y, Miyabayashi K, Sato T, Suyama M, Ohkawa Y, Doi M, Okamura H, Suzuki K. Fetal Leydig cells dedifferentiate and serve as adult Leydig stem cells. Development 2018; 145:145/23/dev169136. [DOI: 10.1242/dev.169136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Previous studies have established that fetal Leydig cells (FLCs) and adult Leydig cells (ALCs) show distinct functional characteristics. However, the lineage relationship between FLCs and ALCs has not been clarified yet. Here, we reveal that a subset of FLCs dedifferentiate at fetal stages to give rise to ALCs at the pubertal stage. Moreover, the dedifferentiated cells contribute to the peritubular myoid cell and vascular pericyte populations in the neonatal testis, and these non-steroidogenic cells serve as potential ALC stem cells. We generated FLC lineage-specific Nr5a1 (Ad4BP/SF-1) gene-disrupted mice and mice lacking the fetal Leydig enhancer (FLE) of the Nr5a1 gene. Phenotypes of these mice support the conclusion that most of the ALCs arise from dedifferentiated FLCs, and that the FLE of the Nr5a1 gene is essential for both initial FLC differentiation and pubertal ALC redifferentiation.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Kanako Miyabayashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences and Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka
| | - Mikita Suyama
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences and Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka
| | - Yasuyuki Ohkawa
- AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences and Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
22
|
Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. J Neurosci 2018; 38:8496-8513. [PMID: 30126967 DOI: 10.1523/jneurosci.0632-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. The aim of this study was to specify the functional significance of CSPG in adult hippocampal neurogenesis using male mice. Here, we showed that neural stem cells and neuronal progenitors in the dentate gyrus were covered in part by CSPG. Pharmacological depletion of CSPG in the dentate gyrus reduced the densities of neuronal progenitors and newborn granule cells. 3D reconstruction of newborn granule cells showed that their maturation was inhibited by CSPG digestion. The novel object recognition test revealed that CSPG digestion caused cognitive memory impairment. Western blot analysis showed that expression of β-catenin in the dentate gyrus was decreased by CSPG digestion. The amount of CSPG in the dentate gyrus was increased by enriched environment (EE) and was decreased by forced swim stress. In addition, EE accelerated the recovery of CSPG expression in the dentate gyrus from the pharmacological depletion and promoted the restoration of granule cell production. Conversely, the densities of newborn granule cells were also decreased in mice that lacked chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT1), a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and improve cognitive memory was impaired in T1KO mice. These findings indicate that CSPG is involved in the regulation of adult hippocampal neurogenesis and suggest that increased synthesis of CSPG by CSGalNacT1 may mediate promotion of granule cell production and improvement of cognitive memory in response to EE.SIGNIFICANCE STATEMENT Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. Here, we specified the role of CSPG in adult neurogenesis in the mouse hippocampus. Digestion of CSPG in the dentate gyrus impaired granule cell production and cognitive memory. Enriched environment (EE) promoted the recovery of CSPG expression and granule cell production from the CSPG digestion. Additionally, adult neurogenesis was impaired in mice that lacked a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and cognitive memory was impaired in T1KO mice. Altogether, these findings indicate that CSPG underlies adult hippocampal neurogenesis and suggest that increased synthesis of CSPG may mediate promotion of granule cell production in response to EE.
Collapse
|
23
|
Katahira T, Miyazaki N, Motoyama J. Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Dev Growth Differ 2018; 60:278-290. [DOI: 10.1111/dgd.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuya Katahira
- Organization of Advanced Research and Education; Doshisha University; Kyoto Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology; Graduate School of Brain Science; Doshisha University; Kyoto Japan
| |
Collapse
|
24
|
Basler L, Gerdes S, Wolfer DP, Slomianka L. Sampling the Mouse Hippocampal Dentate Gyrus. Front Neuroanat 2017; 11:123. [PMID: 29311853 PMCID: PMC5733054 DOI: 10.3389/fnana.2017.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE) have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus). We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m) of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal) sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.
Collapse
Affiliation(s)
- Lisa Basler
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
| | - Stephan Gerdes
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - David P Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, ETH Zürich, Zürich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Ohgomori T, Yamasaki R, Kira JI, Jinno S. Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3'-Iminodipropionitrile. Neurotox Res 2017; 33:768-780. [PMID: 28965218 DOI: 10.1007/s12640-017-9822-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Chronic administration of 3,3'-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1 G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1 G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1 G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3- cells in IDPN-treated mice and SOD1 G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1 G93A mice.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
26
|
Ohgomori T, Yamasaki R, Takeuchi H, Kadomatsu K, Kira JI, Jinno S. Differential activation of neuronal and glial STAT3 in the spinal cord of the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2017; 46:2001-2014. [PMID: 28715117 DOI: 10.1111/ejn.13650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are activated by phosphorylation in the spinal cord of patients suffering from amyotrophic lateral sclerosis (ALS). The major scope of our study is a comprehensive histological characterization of the mechanisms underlying neuronal and glial STAT3 activation in the pathogenesis of ALS using SOD1G93A mice. We calculated the fold changes (FCs, ratios vs. appropriate controls) of the numerical densities of the following phosphorylated STAT3-positive (pSTAT3)+ cells - choline acetyltransferase (ChAT)+ α-motoneurons, ionized calcium-binding adapter molecule 1 (Iba1)+ microglia, and S100β+ astrocytes in SOD1G93A mice. The FCs of pSTAT3+ microglia and pSTAT3+ astrocytes were increased from 9 to 15 weeks of age and then plateaued until 21 weeks. In contrast, the FCs of pSTAT3+ α-motoneurons peaked at 9 weeks and then decreased until 21 weeks. The immunoreactivity for nonphosphorylated neurofilament protein (SMI-32), a marker of axonal impairment, was decreased in pSTAT3+ α-motoneurons compared with pSTAT3- α-motoneurons at 9 weeks of age. We then compared the following pharmacological models - the chronic administration of 3,3'-iminodipropionitrile (IDPN), which models axonal impairment, and the acute administration of lipopolysaccharide (LPS), which is a model of neuroinflammation. The FCs of pSTAT3+ α-motoneurons were increased in IDPN-treated mice, while those of pSTAT3+ microglia were increased in LPS-treated mice. The FCs of pSTAT3+ astrocytes were higher in SOD1G93A mice at 9 weeks compared with IDPN- and LPS-treated mice. Our results indicate that axonopathy and neuroinflammation may trigger the respective activation of neuronal and glial STAT3, which is observed during ALS pathogenesis.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
27
|
Ohgomori T, Yamasaki R, Takeuchi H, Kadomatsu K, Kira JI, Jinno S. Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 2017; 356:114-124. [PMID: 28526579 DOI: 10.1016/j.neuroscience.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
From a view point of the glutamate excitotoxicity theory, several studies have suggested that abnormal glutamate homeostasis via dysfunction of glial glutamate transporter-1 (GLT-1) may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). However, the detailed role of GLT-1 in the pathogenies of ALS remains controversial. To assess this issue, here we elucidated structural alterations associated with dysregulation of glutamate homeostasis using SOD1G93A mice, a genetic model of familial ALS. We first examined the viability of α-motoneurons in the lumbar spinal cord of SOD1G93A mice. Measurement of the soma size and density indicated that α-motoneurons might be intact at 9weeks of age (presymptomatic stage), then soma shrinkage began at 15weeks of age (progressive stage), and finally neuronal density declined at 21weeks of age (end stage). Next, we carried out the line profile analysis, and found that the coverage of α-motoneurons by GLT-1-positive (GLT-1+) astrocytic processes was decreased only at 21weeks of age, while the reduction of coverage of α-motoneurons by synaptophysin-positive (SYP+) presynaptic terminals began at 15weeks of age. Interestingly, the coverage of α-motoneurons by VGluT2+ presynaptic terminals was transiently increased at 9weeks of age, and then gradually decreased towards 21weeks of age. On the other hand, there were no time-dependent alterations in the coverage of α-motoneurons by GABAergic presynaptic terminals. These findings suggest that VGluT2 and GLT-1 may be differentially involved in the pathogenesis of ALS via abnormal glutamate homeostasis at the presymptomatic stage and end stage of disease, respectively.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
28
|
Yamada J, Ohgomori T, Jinno S. Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine. J Comp Neurol 2017; 525:2035-2049. [PMID: 28271508 DOI: 10.1002/cne.24198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 02/04/2023]
Abstract
The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315+ ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
29
|
Milior G, Di Castro MA, Sciarria LP, Garofalo S, Branchi I, Ragozzino D, Limatola C, Maggi L. Electrophysiological Properties of CA1 Pyramidal Neurons along the Longitudinal Axis of the Mouse Hippocampus. Sci Rep 2016; 6:38242. [PMID: 27922053 PMCID: PMC5138623 DOI: 10.1038/srep38242] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Evidence for different physiological properties along the hippocampal longitudinal axis is emerging. Here, we examined the electrophysiological features of neurons at different dorso-ventral sites of the mouse CA1 hippocampal region. Cell position was defined with respect to longitudinal coordinates of each slice. We measured variations in neuronal excitability, subthreshold membrane properties and neurotransmitter responses along the longitudinal axis. We found that (i) pyramidal cells of the dorsal hippocampus (DH) were less excitable than those of the ventral hippocampus (VH). Resting Membrane Potential (RMP) was more hyperpolarized and somatic Input Resistance (Ri) was lower in DH compared to VH. (ii) The Paired-pulse ratio (PPR) of focally induced synaptic responses was systematically reduced from the DH to the VH; (iii) Long-term-potentiation was most pronounced in the DH and fell gradually in the intermediate hippocampus and in the VH; (iv) the frequency of miniature GABAergic events was higher in the VH than in the DH; (v) the PPR of evoked inhibitory post-synaptic current (IPSC) was higher in the DH than in the VH. These findings indicate an increased probability of both GABA and glutamate release and a reduced plasticity in the ventral compared to more dorsal regions of the hippocampus.
Collapse
Affiliation(s)
- Giampaolo Milior
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris 75013, France
| | - Maria Amalia Di Castro
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Livio Pepe' Sciarria
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Stefano Garofalo
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Ragozzino
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Laura Maggi
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| |
Collapse
|
30
|
Yamada J, Hatabe J, Tankyo K, Jinno S. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology 2016; 111:92-106. [DOI: 10.1016/j.neuropharm.2016.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
31
|
Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol 2016; 525:1234-1249. [DOI: 10.1002/cne.24132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| |
Collapse
|
32
|
Huff CL, Morano RL, Herman JP, Yamamoto BK, Gudelsky GA. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate. Neurotoxicology 2016; 57:282-290. [PMID: 27773601 DOI: 10.1016/j.neuro.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/15/2023]
Abstract
3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.
Collapse
Affiliation(s)
- Courtney L Huff
- Division of Pharmaceutical Sciences, University of Cincinnati-James Winkle College of Pharmacy, Cincinnati, OH 45267, United States
| | - Rachel L Morano
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati-College of Medicine, Cincinnati, OH, 45219, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati-College of Medicine, Cincinnati, OH, 45219, United States
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University-School of Medicine, Indianapolis, IN 46202, United States
| | - Gary A Gudelsky
- Division of Pharmaceutical Sciences, University of Cincinnati-James Winkle College of Pharmacy, Cincinnati, OH 45267, United States.
| |
Collapse
|
33
|
Fujimoto H, Konno K, Watanabe M, Jinno S. Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons. J Comp Neurol 2016; 525:868-884. [PMID: 27560447 DOI: 10.1002/cne.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Abstract
The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non-GABAergic phenotype, while they express well-established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (-) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV+ /NOS- /GAD67+ , PV+ /NOS+ /GAD67+ , PV+ /NOS- /GAD67- , and PV- /NOS+ /GAD67- . Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67- IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67+ IC neurons remained unchanged in all subdivisions. The NDs of PV+ /NOS- /GAD67+ neurons and PV- /NOS+ /GAD67- neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV+ /NOS+ /GAD67+ neurons and PV+ /NOS- /GAD67- neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67+ IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868-884, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Ohgomori T, Yamada J, Takeuchi H, Kadomatsu K, Jinno S. Comparative morphometric analysis of microglia in the spinal cord of SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2016; 43:1340-51. [PMID: 26946061 DOI: 10.1111/ejn.13227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
It has long been recognized that reactive microglia undergo a series of phenotypic changes accompanying morphological transformation. However, the morphological classification of microglia has not yet been achieved. To address this issue, here we morphometrically analysed three-dimensionally reconstructed ionized calcium binding adaptor molecule 1-immunoreactive (Iba1(+) ) microglia in the ventral horn of the lumbar spinal cord of SOD1(G93A) transgenic mice, a model of amyotrophic lateral sclerosis. The hierarchical cluster analysis revealed that microglia were objectively divided into four groups: type S (named after surveillant microglia) and types R1, R2 and R3 (named after reactive microglia). For the purpose of comparative morphometry, we also analysed two pharmacological disease models using wild-type mice: 3,3'-iminodipropionitrile (IDPN)-induced axonopathy and lipopolysaccharide (LPS)-induced neuroinflammation. Type S microglia showed a typical ramified morphology of surveillant microglia, and were mostly observed in wild-type controls. Type R1 microglia were seen at the early stage of disease in SOD1(G93A) mice, and also frequently occurred in IDPN-treated mice. They exhibited small cell bodies with shorter and simple processes. Type R2 microglia were morphologically similar to type R1 microglia, but only transiently occurred in the middle stage of disease in SOD1(G93A) mice and in IDPN-treated mice. Type R3 microglia exhibited a bushy shape, and were observed in the end stage of disease in SOD1(G93A) mice and in LPS-treated mice. These findings indicate that microglia of SOD1(G93A) mice can be classified into four types, and also suggest that the phenotypic changes may be induced by the events related to axonopathy and neuroinflammation.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
35
|
Aging affects new cell production in the adult hippocampus: A quantitative anatomic review. J Chem Neuroanat 2015; 76:64-72. [PMID: 26686289 DOI: 10.1016/j.jchemneu.2015.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 02/08/2023]
Abstract
In the last century, cognitive impairment in elderly people was considered as the consequence of neuronal death. However, later analyses indicated that age-related reduction in neuron number was limited to specific regions of the central nervous system, and was irrelevant to brain dysfunction in both humans and non-human animals. Recent studies have indicated that progressive diminution of neural plasticity across an individual's life span may underlie age-related brain dysfunction. To date, various factors have been shown to contribute to neural plasticity. In particular, substantial data supports the importance of production of new cells in the adult brain: the rate of hippocampal neurogenesis wanes radically during aging; similarly, white matter homeostasis via oligodendrogenesis is also affected by aging. This review briefly summarizes quantitative studies on adult hippocampal neurogenesis and oligodendrogenesis. Although the hippocampus is traditionally recognized as the memory center of the brain, it has started to emerge as an integrator of cognition and emotion. One of the current research highlights is that diverse functions of the hippocampus are topographically embedded along its longitudinal and transverse axes. Here we discuss alterations in adult neurogenesis and oligodendrogenesis during aging from a topographic view point. The quantitative anatomic approach to age-related alterations in production of new cells in the hippocampus may give a novel insight into how brain functions suffer from aging.
Collapse
|
36
|
Watanabe T, Frahm J, Michaelis T. In Vivo Brain MR Imaging at Subnanoliter Resolution: Contrast and Histology. Magn Reson Med Sci 2015; 15:11-25. [PMID: 26346405 DOI: 10.2463/mrms.2015-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article provides an overview of in vivo magnetic resonance (MR) imaging contrasts obtained for mammalian brain in relation to histological knowledge. Emphasis is paid to the (1) significance of high spatial resolution for the optimization of T1, T2, and magnetization transfer contrast, (2) use of exogenous extra- and intracellular contrast agents for validating endogenous contrast sources, and (3) histological structures and biochemical compounds underlying these contrasts and (4) their relevance to neuroradiology. Comparisons between MR imaging at subnanoliter resolution and histological data indicate that (a) myelin sheaths, (b) nerve cells, and (c) the neuropil are most responsible for observed MR imaging contrasts, while (a) diamagnetic macromolecules, (b) intracellular paramagnetic ions, and (c) extracellular free water, respectively, emerge as the dominant factors. Enhanced relaxation rates due to paramagnetic ions, such as iron and manganese, have been observed for oligodendrocytes, astrocytes, microglia, and blood cells in the brain as well as for nerve cells. Taken together, a plethora of observations suggests that the delineation of specific structures in high-resolution MR imaging of mammalian brain and the absence of corresponding contrasts in MR imaging of the human brain do not necessarily indicate differences between species but may be explained by partial volume effects. Second, paramagnetic ions are required in active cells in vivo which may reduce the magnetization transfer ratio in the brain through accelerated T1 recovery. Third, reductions of the magnetization transfer ratio may be more sensitive to a particular pathological condition, such as astrocytosis, microglial activation, inflammation, and demyelination, than changes in relaxation. This is because the simultaneous occurrence of increased paramagnetic ions (i.e., shorter relaxation times) and increased free water (i.e., longer relaxation times) may cancel T1 or T2 effects, whereas both processes reduce the magnetization transfer ratio.
Collapse
Affiliation(s)
- Takashi Watanabe
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie
| | | | | |
Collapse
|
37
|
Wu MV, Sahay A, Duman RS, Hen R. Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 2015; 7:a018978. [PMID: 26238355 DOI: 10.1101/cshperspect.a018978] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Amar Sahay
- Center for Regenerative Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114 Harvard Stem Cell Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut 06520 Department of Neurobiology, Yale University, New Haven, Connecticut 06520
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10027 Department of Pharmacology, Columbia University, New York, New York 10027
| |
Collapse
|
38
|
Molgaard S, Ulrichsen M, Boggild S, Holm ML, Vaegter C, Nyengaard J, Glerup S. Immunofluorescent visualization of mouse interneuron subtypes. F1000Res 2015. [DOI: 10.12688/f1000research.5349.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of excitatory neurons is controlled by a highly diverse population of inhibitory interneurons. These cells show a high level of physiological, morphological and neurochemical heterogeneity, and play highly specific roles in neuronal circuits. In the mammalian hippocampus, these are divided into 21 different subtypes of GABAergic interneurons based on their expression of different markers, morphology and their electrophysiological properties. Ideally, all can be marked using an antibody directed against the inhibitory neurotransmitter GABA, but parvalbumin, calbindin, somatostatin, and calretinin are also commonly used as markers to narrow down the specific interneuron subtype. Here, we describe a journey to find the necessary immunological reagents for studying GABAergic interneurons of the mouse hippocampus. Based on web searches there are several hundreds of different antibodies on the market directed against these four markers. Searches in the literature databases allowed us to narrow it down to a subset of antibodies most commonly used in publications. However, in our hands the most cited ones did not work for immunofluorescence stainings of formaldehyde fixed tissue sections and cultured hippocampal neurons, and we had to immunostain our way through thirteen different commercial antibodies before finally finding a suitable antibody for each of the four markers. The antibodies were evaluated based on signal-to-noise ratios as well as if positive cells were found in layers of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, an antibody review database, stainings with high signal-to-noise ratios and location of the immunostained cells in accordance with the literature could be obtained, making these antibodies suitable choices for studying the GABAergic system.
Collapse
|
39
|
Yamada J, Jinno S. Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon's horn of the mouse hippocampus. J Comp Neurol 2015; 523:790-804. [DOI: 10.1002/cne.23712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy; Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582 Japan
| | - Shozo Jinno
- Department of Developmental Molecular Anatomy; Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582 Japan
| |
Collapse
|
40
|
Yamada J, Ohgomori T, Jinno S. Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur J Neurosci 2014; 41:368-78. [PMID: 25411016 DOI: 10.1111/ejn.12792] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
Recent studies have suggested that the perineuronal net (PNN), a specialised extracellular matrix structure, and parvalbumin (PV), an EF-hand calcium-binding protein, are involved in the regulation of plasticity of neural circuits. Here, we aimed to quantitatively estimate the relationship between the two plasticity regulators, PV and PNNs, in the hippocampus of young adult mice. Dual fluorescence staining for PV and Wisteria floribunda agglutinin (a broad PNN marker) showed that a substantial population of PV-expressing (PV(+) ) GABAergic neurons lacked PNNs. Optical disector analysis demonstrated that there were fewer PNN(+) neurons than PV(+) neurons. The ratio of PNN expression in PV(+) neurons was generally lower in the dendritic layers than in the principal cell layers, whereas the ratio of PV expression in PNN(+) neurons was effectively 100%. The mean PV fluorescence was significantly higher in PNN(+) /PV(+) neurons than in PNN(-) /PV(+) neurons. Cumulative frequencies for single-cell PV fluorescence indicated that intensely stained PV(+) neurons tend to be enwrapped by PNNs, whereas weakly stained PV(+) neurons are likely to lack PNNs. We digested the PNNs by a unilateral injection of chondroitinase ABC (chABC) into the dorsal CA1 region. Although the densities of PV(+) neurons remained unchanged, the PV fluorescence declined 7 days after chABC injection. Quantitative real-time polymerase chain reaction analysis demonstrated a reduction in PV mRNA expression following chABC injection. These findings indicate that the presence or absence of PNNs affects the relative PV expression in GABAergic neurons in the hippocampus.
Collapse
Affiliation(s)
- J Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | |
Collapse
|
41
|
Molgaard S, Ulrichsen M, Boggild S, Holm ML, Vaegter C, Nyengaard J, Glerup S. Immunofluorescent visualization of mouse interneuron subtypes. F1000Res 2014; 3:242. [PMID: 25469233 PMCID: PMC4240249 DOI: 10.12688/f1000research.5349.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 01/03/2023] Open
Abstract
The activity of excitatory neurons is controlled by a highly diverse population of inhibitory interneurons. These cells show a high level of physiological, morphological and neurochemical heterogeneity, and play highly specific roles in neuronal circuits. In the mammalian hippocampus, these are divided into 21 different subtypes of GABAergic interneurons based on their expression of different markers, morphology and their electrophysiological properties. Ideally, all can be marked using an antibody directed against the inhibitory neurotransmitter GABA, but parvalbumin, calbindin, somatostatin, and calretinin are also commonly used as markers to narrow down the specific interneuron subtype. Here, we describe a journey to find the necessary immunological reagents for studying GABAergic interneurons of the mouse hippocampus. Based on web searches there are several hundreds of different antibodies on the market directed against these four markers. Searches in the literature databases allowed us to narrow it down to a subset of antibodies most commonly used in publications. However, in our hands the most cited ones did not work for immunofluorescence stainings of formaldehyde fixed tissue sections and cultured hippocampal neurons, and we had to immunostain our way through thirteen different commercial antibodies before finally finding a suitable antibody for each of the four markers. The antibodies were evaluated based on signal-to-noise ratios as well as if positive cells were found in layers of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, an antibody review database, stainings with high signal-to-noise ratios and location of the immunostained cells in accordance with the literature could be obtained, making these antibodies suitable choices for studying the GABAergic system.
Collapse
Affiliation(s)
- Simon Molgaard
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Stereology and Electron Microscopy Laboratory, Department of Clinical institute, Aarhus University, Aarhus, 8000 C, Denmark ; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, FL 32224, USA ; Danish Research Institute of Translational Neuroscience DANDRITE, Aarhus, 8000, Denmark
| | - Maj Ulrichsen
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Danish Research Institute of Translational Neuroscience DANDRITE, Aarhus, 8000, Denmark
| | - Simon Boggild
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Stereology and Electron Microscopy Laboratory, Department of Clinical institute, Aarhus University, Aarhus, 8000 C, Denmark
| | - Marie-Louise Holm
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark
| | - Christian Vaegter
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Danish Research Institute of Translational Neuroscience DANDRITE, Aarhus, 8000, Denmark
| | - Jens Nyengaard
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Stereology and Electron Microscopy Laboratory, Department of Clinical institute, Aarhus University, Aarhus, 8000 C, Denmark
| | - Simon Glerup
- The Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Aarhus, 8000 C, Denmark ; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, FL 32224, USA ; Danish Research Institute of Translational Neuroscience DANDRITE, Aarhus, 8000, Denmark
| |
Collapse
|
42
|
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. J Comp Neurol 2014; 522:900-20. [PMID: 23982969 DOI: 10.1002/cne.23452] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8024
| | | | | | | |
Collapse
|
43
|
Yamada J, Jinno S. Age-related differences in oligodendrogenesis across the dorsal-ventral axis of the mouse hippocampus. Hippocampus 2014; 24:1017-29. [PMID: 24753086 DOI: 10.1002/hipo.22287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 11/07/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) continue to divide and generate new oligodendrocytes (OLs) in the healthy adult brain. Although recent studies have indicated that adult oligodendrogenesis may be vital for the maintenance of normal brain function, the significance of adult oligodendrogenesis in brain aging remains unclear. In this study, we report a stereological estimation of age-related oligodendrogenesis changes in the mouse hippocampus: the dorsal subdivision is related to learning and memory, while the ventral subdivision is involved in emotional behaviors. To identify OPCs and OLs, we used a set of molecular markers, OL lineage transcription factor (Olig2) and platelet-derived growth factor receptor-alpha (PDGFαR). Intracellular dye injection shows that PDGFαR+/Olig2+ cells and PDGFαR-/Olig2+ cells can be defined as OPCs and OLs, respectively. In the dorsal Ammon's horn, the numbers of OPCs decreased with age, while those of OLs remained unchanged during aging. In the ventral Ammon's horn, the numbers of OPCs and OLs generally decreased with age. Bromodeoxyuridine (BrdU) fate-tracing analysis revealed that the numbers of BrdU+ mitotic OPCs in the Ammon's horn remained unchanged during aging in both the dorsal and ventral subdivisions. Unexpectedly, the numbers of BrdU+ newly generated OLs increased with age in the dorsal Ammon's horn, but remained unchanged in the ventral Ammon's horn. Together, the numbers of OLs in the dorsal Ammon's horn may be maintained during aging by increased survival of adult born OLs, while the numbers of OLs in the ventral Ammon's horn may be reduced with age due to the lack of such compensatory mechanisms. These observations provide new insight into the involvement of adult oligodendrogenesis in age-related changes in the structure and function of the hippocampus.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
44
|
Wu MV, Hen R. Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus 2014; 24:751-61. [PMID: 24550158 DOI: 10.1002/hipo.22265] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/04/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
Adult-born granule cells in the mammalian dentate gyrus have long been implicated in hippocampal dependent spatial learning and behavioral effects of chronic antidepressant treatment. Although recent anatomical and functional evidence indicates a dissociation of the dorsal and ventral regions of the hippocampus, it is not known if adult neurogenesis within each region specifically contributes to distinct functions or whether adult-born cells along the entire dorsoventral axis are required for these behaviors. We examined the role of distinct subpopulations of adult-born hippocampal granule cells in learning- and anxiety-related behaviors using low-dose focal x-irradiation directed specifically to the dorsal or ventral dentate gyrus. Our findings indicate a functional dissociation between adult-born neurons along the longitudinal axis of the dentate gyrus wherein new neurons in the dorsal dentate gyrus are required for timely acquisition of contextual discrimination while immature neurons in the ventral dentate gyrus are necessary for anxiolytic/antidepressant-related effects of fluoxetine. Interestingly, when contexts are presented with altered temporal cues, or fluoxetine is administered alongside chronic glucocorticoid treatment, this dissociation is abrogated such that adult-born neurons across the entire dorsoventral extent of the dentate gyrus appear to contribute to these behaviors. Our results suggest that individual subpopulations of adult-born hippocampal neurons may be sufficient to mediate distinct behaviors in certain conditions, but are required to act in concert in more challenging situations.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
45
|
Adeosun SO, Hou X, Zheng B, Stockmeier C, Ou X, Paul I, Mosley T, Weisgraber K, Wang JM. Cognitive deficits and disruption of neurogenesis in a mouse model of apolipoprotein E4 domain interaction. J Biol Chem 2013; 289:2946-59. [PMID: 24324264 DOI: 10.1074/jbc.m113.497909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E4 (apoE4) allele is the major genetic risk factor for sporadic Alzheimer disease (AD) due to the higher prevalence and earlier onset of AD in apoE4 carriers. Accumulating data suggest that the interaction between the N- and the C-terminal domains in the protein may be the main pathologic feature of apoE4. To test this hypothesis, we used Arg-61 mice, a model of apoE4 domain interaction, by introducing the domain interaction feature of human apoE4 into native mouse apoE. We carried out hippocampus-dependent learning and memory tests and related cellular and molecular assays on 12- and 3-month-old Arg-61 and age-matched background C57BL/6J mice. Learning and memory task performance were impaired in Arg-61 mice at both old and young ages compared with C57BL/6J mice. Surprisingly, young Arg-61 mice had more mitotic doublecortin-positive cells in the subgranular zone; mRNA levels of brain-derived neurotrophic factor (BDNF) and TrkB were also higher in 3-month-old Arg-61 hippocampus compared with C57BL/6J mice. These early-age neurotrophic and neurogenic (proliferative) effects in the Arg-61 mouse may be an inadequate compensatory but eventually detrimental attempt by the system to "repair" itself. This is supported by the higher cleaved caspase-3 levels in the young animals that not only persisted, but increased in old age, and the lower levels of doublecortin at old age in the hippocampus of Arg-61 mice. These results are consistent with human apoE4-dependent cognitive and neuro-pathologic changes, supporting the principal role of domain interaction in the pathologic effect of apoE4. Domain interaction is, therefore, a viable therapeutic/prophylactic target for cognitive impairment and AD in apoE4 subjects.
Collapse
|
46
|
Watanabe T, Frahm J, Michaelis T. Cell layers and neuropil: contrast-enhanced MRI of mouse brain in vivo. NMR IN BIOMEDICINE 2013; 26:1870-1878. [PMID: 24142688 DOI: 10.1002/nbm.3042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Contrast-enhanced T₁- and T₂-weighted MRI at 9.4 T and in-plane resolutions of 25 and 30 µm has been demonstrated to differentiate between neural tissues in mouse brain in vivo, including granule cell layers, principal cell layers, general neuropil, specialized neuropil and white matter. In T₁-weighted MRI of the olfactory bulb, hippocampus and cerebellum, contrast obtained by the intracranial administration of gadopentetate dimeglumine (Gd-DTPA) reflects the extra- and intracellular spaces of gray matter in agreement with histological data. General neuropil areas are highlighted, whereas other tissues present with lower signal intensities. The induced contrast is similar to that in plain T₂-weighted MRI, but offers a 16-30-fold higher contrast-to-noise ratio. Systemic administration of manganese chloride increases the signal-to-noise ratio in T₁-weighted MRI to a significantly greater extent in principal cell layers and specialized neuropil than in granule cell layers, whereas gadolinium-enhanced MRI indicates no larger intracellular spaces in these tissues. Granule cell layers are enhanced no more than general neuropil by manganese, whereas gadolinium-enhanced MRI indicates significantly larger intracellular spaces in the cell layers. These discrepancies suggest that the signal increase after manganese administration reflects cellular activity which is disproportionate to the intracellular space. As a result, principal cell layers and specialized neuropil become highlighted, whereas granule cell layers, general neuropil and white matter present with lower signal intensities.
Collapse
|
47
|
Ohara S, Sato S, Tsutsui KI, Witter MP, Iijima T. Organization of multisynaptic inputs to the dorsal and ventral dentate gyrus: retrograde trans-synaptic tracing with rabies virus vector in the rat. PLoS One 2013; 8:e78928. [PMID: 24223172 PMCID: PMC3819259 DOI: 10.1371/journal.pone.0078928] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/17/2013] [Indexed: 12/22/2022] Open
Abstract
Behavioral, anatomical, and gene expression studies have shown functional dissociations between the dorsal and ventral hippocampus with regard to their involvement in spatial cognition, emotion, and stress. In this study we examined the difference of the multisynaptic inputs to the dorsal and ventral dentate gyrus (DG) in the rat by using retrograde trans-synaptic tracing of recombinant rabies virus vectors. Three days after the vectors were injected into the dorsal or ventral DG, monosynaptic neuronal labeling was present in the entorhinal cortex, medial septum, diagonal band, and supramammillary nucleus, each of which is known to project to the DG directly. As in previous tracing studies, topographical patterns related to the dorsal and ventral DG were seen in these regions. Five days after infection, more of the neurons in these regions were labeled and labeled neurons were also seen in cortical and subcortical regions, including the piriform and medial prefrontal cortices, the endopiriform nucleus, the claustrum, the cortical amygdala, the medial raphe nucleus, the medial habenular nucleus, the interpeduncular nucleus, and the lateral septum. As in the monosynaptically labeled regions, a topographical distribution of labeled neurons was evident in most of these disynaptically labeled regions. These data indicate that the cortical and subcortical inputs to the dorsal and ventral DG are conveyed through parallel disynaptic pathways. This second-order input difference in the dorsal and ventral DG is likely to contribute to the functional differentiation of the hippocampus along the dorsoventral axis.
Collapse
Affiliation(s)
- Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
48
|
Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus 2013; 24:89-101. [PMID: 24115312 DOI: 10.1002/hipo.22207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 01/15/2023]
Abstract
S100A6 (calcyclin), an EF-hand calcium binding protein, is considered to play various roles in the brain, for example, cell proliferation and differentiation, calcium homeostasis, and neuronal degeneration. In addition to some limbic nuclei, S100A6 is distributed in the rostral migratory stream, one of the major neurogenic niches of the adult brain. However, the potential involvement of S100A6 in adult neurogenesis remains unclear. In this study, we aimed to elucidate the role of S100A6 in the other major neurogenic niche, the subgranular zone of the dentate gyrus in the adult mouse hippocampus. Immunofluorescent multiple labeling showed that S100A6 was highly expressed in neural stem cells labeled by sex determining region Y-box 2, brain lipid-binding protein protein and glial fibrillary acidic protein. S100A6+ cells often extended a long process typical of radial glial morphology. In addition, S100A6 was found in some S100β+ astrocyte lineage cells. Interestingly, proliferating cell nuclear antigen was detected in a fraction of S100A6+/S100β+ cells. These cells were considered to be lineage-restricted astrocyte precursors maintaining mitotic potential. On the other hand, S100A6 was rarely seen in neural lineage cells labeled by T-box brain protein 2, doublecortin, calretinin and calbindin D28K. Cell fate-tracing experiment using BrdU showed that the majority of newly generated immature astrocytes were immunoreactive for S100A6, while mature astrocytes lacked S100A6 immunoreactivity. Administration of S100 protein inhibitor, trifluoperazine, caused a reduction in production of S100β+ astrocyte lineage cells, but had no impact on neurogenesis. Overall, our data provide the first evidence that S100A6 is a specific marker of neural stem cells and astrocyte precursors, and may be especially important for generation of astrocytes in the adult hippocampus.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
49
|
Marx M, Haas CA, Häussler U. Differential vulnerability of interneurons in the epileptic hippocampus. Front Cell Neurosci 2013; 7:167. [PMID: 24098270 PMCID: PMC3787650 DOI: 10.3389/fncel.2013.00167] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/07/2013] [Indexed: 11/30/2022] Open
Abstract
The loss of hippocampal interneurons has been considered as one reason for the onset of temporal lobe epilepsy (TLE) by shifting the excitation-inhibition balance. Yet, there are many different interneuron types which show differential vulnerability in the context of an epileptogenic insult. We used the intrahippocampal kainate (KA) mouse model for TLE in which a focal, unilateral KA injection induces status epilepticus (SE) followed by development of granule cell dispersion (GCD) and hippocampal sclerosis surrounding the injection site but not in the intermediate and temporal hippocampus. In this study, we characterized the loss of interneurons with respect to septotemporal position and to differential vulnerability of interneuron populations. To this end, we performed intrahippocampal recordings of the initial SE, in situ hybridization for glutamic acid decarboxylase 67 (GAD67) mRNA and immunohistochemistry for parvalbumin (PV) and neuropeptide Y (NPY) in the early phase of epileptogenesis at 2 days and at 21 days after KA injection, when recurrent epileptic activity and GCD have fully developed. We show that SE extended along the entire septotemporal axis of both hippocampi, but was stronger at distant sites than at the injection site. There was an almost complete loss of interneurons surrounding the injection site and expanding to the intermediate hippocampus already at 2 days but increasing until 21 days after KA. Furthermore, we observed differential vulnerability of PV- and NPY-expressing cells: while the latter were lost at the injection site but preserved at intermediate sites, PV-expressing cells were gone even at sites more temporal than GCD. In addition, we found upregulation of GAD67 mRNA expression in dispersed granule cells and of NPY staining in ipsilateral granule cells and ipsi- and contralateral mossy fibers. Our data thus indicate differential survival capacity of interneurons in the epileptic hippocampus and compensatory plasticity mechanisms depending on the hippocampal position.
Collapse
Affiliation(s)
- Markus Marx
- Experimental Epilepsy Research, Department of Neurosurgery, University of Freiburg Freiburg, Germany
| | | | | |
Collapse
|
50
|
Amschl D, Neddens J, Havas D, Flunkert S, Rabl R, Römer H, Rockenstein E, Masliah E, Windisch M, Hutter-Paier B. Time course and progression of wild type α-synuclein accumulation in a transgenic mouse model. BMC Neurosci 2013; 14:6. [PMID: 23302418 PMCID: PMC3546911 DOI: 10.1186/1471-2202-14-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022] Open
Abstract
Background Progressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age. Results These mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus. Conclusion The present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies.
Collapse
Affiliation(s)
- David Amschl
- QPS Austria GmbH, Parkring 12, Grambach 8074, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|