1
|
6-Hydroxydopamine induces distinct alterations in GDF5 and GDNF mRNA expression in the rat nigrostriatal system in vivo. Neurosci Lett 2013; 561:176-81. [PMID: 24373993 DOI: 10.1016/j.neulet.2013.12.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023]
Abstract
Growth/differentiation factor (GDF)5 and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD) and represent promising new therapies for PD. The aim of this study was to investigate the expression of GDF5, GDNF and their receptors in the nigrostriatal dopaminergic system in rat models of PD. It found that endogenous GDF5, GDNF and their receptors are differentially expressed in two 6-hydroxydopamine lesion models of PD. In both striatal and medial forebrain bundle (MFB) lesion models, striatal levels of GDF5 mRNA increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased after 10 and 28 days. Midbrain mRNA levels for both GDF5 receptors transiently increased after striatal lesion, whereas those of two GDNF receptors decreased at later time-points in both models. Despite the fact that exogenous GDF5 and GDNF have comparable effects on dopaminergic neurons in vitro and in vivo, their endogenous responses to neurotoxic injury are different. This highlights the importance of studying neurotrophic factor expression at distinct disease stages and in various animal models of PD.
Collapse
|
2
|
Iravani MM, Sadeghian M, Leung CCM, Jenner P, Rose S. Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett 2012; 510:138-42. [PMID: 22281445 DOI: 10.1016/j.neulet.2012.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/27/2011] [Accepted: 01/08/2012] [Indexed: 10/14/2022]
Abstract
Reactive gliosis and inflammatory change is a key component of nigral dopaminergic cell death in Parkinson's disease (PD). Astrocyte derived glial cell line-derived neurotrophic factor (GDNF) promotes the survival and growth of dopaminergic neurones and it protects against or reverses nigral degeneration induced by 6-OHDA and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rodents and primates. But the effect of increased levels of pro-inflammatory cytokines on the release of GDNF is unknown. This study examined the relationship between release of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and the expression of GDNF in rats following nigral lipopolysaccharide (LPS) administration. Acute nigral administration of LPS led to marked elevation of IL-1β but insignificant TNF-α tissue content and to a prominent expression of GDNF immunoreactivity in astrocytes but not microglia. The results suggest that inflammation is not only involved in neuronal loss but could promote neuronal survival through increased release of GDNF following up-regulation of IL-1β.
Collapse
Affiliation(s)
- Mahmoud M Iravani
- Neurodegenerative Disease Research Centre, Institute of Pharmaceutical Sciences, School of Biomedical Sciences, King's College London, SE1 1UL London, UK.
| | | | | | | | | |
Collapse
|
3
|
Xu G, Xiong Z, Yong Y, Wang Z, Ke Z, Xia Z, Hu Y. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 2010; 167:174-84. [PMID: 20123001 DOI: 10.1016/j.neuroscience.2010.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/18/2010] [Accepted: 01/23/2010] [Indexed: 11/16/2022]
Abstract
The protective effect of an iridoid catalpol extracted and purified from the traditional Chinese medicinal herb Rehmannia glutinosa on the neuronal degeneration of nigral-striatal dopaminergic pathway was studied in a chronic 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)/probenecid C57BL/6 mouse model and in 1-methyl-4-phenylpyridimium (MPP(+)) intoxicated cultured mesencephalic neurons. Rotarod performance revealed that the locomotor ability of mice was significantly impaired after completion of model production and maintained thereafter for at least 4 weeks. Catalpol orally administered for 8 weeks (starting from the second week of model production) dose dependently improved the locomotor ability. HPLC revealed that catalpol significantly elevated striatal dopamine levels without changing the metabolite/dopamine ratios. Nor did it bind to dopamine receptors. Therefore it is unlikely that catalpol resembles any of the known compounds for treating Parkinsonism. Instead, catalpol dose dependently raised the tyrosine hydroxylase (TH) neuron number in substantia nigra pars compacta (SNpc), the striatal dopamine transporter (DAT) density and the striatal glial cell derived neurotrophic factor (GDNF) protein level. Linear regression revealed that both the TH neuron number and DAT density were positively correlated to the GDNF level. In the cultured mesencephalic neurons, MPP(+) decreased the dopaminergic neuron number and shortened the neurite length, whereas catalpol showed protective effect dose dependently. Furthermore, the expression of GDNF mRNA was up-regulated by catalpol to a peak nearly double of normal control in neurons intoxicated with MPP(+) for 24 h but not in normal neurons. The GDNF receptor tyrosine kinase RET inhibitor 4-amino-5-(4-methyphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]pyrimidine (PP1) abolished the protective effect of catalpol either partially (TH positive neuron number) or completely (neurite length). Taken together, catalpol improves locomotor ability by attenuating the neuronal degeneration of nigral-striatal dopaminergic pathway, and this attenuation is at least partially through elevating the striatal GDNF expression.
Collapse
Affiliation(s)
- G Xu
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
4
|
Effect of nigrostriatal damage induced by 6-hydroxydopamine on the expression of glial cell line–derived neurotrophic factor in the striatum of the rat. Neuroscience 2009; 162:148-54. [DOI: 10.1016/j.neuroscience.2009.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 01/18/2023]
|
5
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
6
|
Fan Y, Kong H, Shi X, Sun X, Ding J, Wu J, Hu G. Hypersensitivity of aquaporin 4-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine and astrocytic modulation. Neurobiol Aging 2008; 29:1226-36. [PMID: 17353068 DOI: 10.1016/j.neurobiolaging.2007.02.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/15/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Aquaporin 4 (AQP4) is a predominant water channel protein in mammalian brains, which is localized in the astrocyte plasma membrane. AQP4 has gained much attraction due to its involvement in the physiopathology of cerebral disorders including stroke, tumor, infection, hydrocephalus, epilepsy, and traumatic brain injury. But there is almost no evidence whether abnormal AQP4 levels are associated with degenerative diseases, such as Parkinson's disease (PD). In our studies, we established PD animal models by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to test the hypothesis that abnormal AQP4 expression is involved in the pathophysiology of this disease. We show that mutant mice lacking AQP4 were significantly more prone to MPTP-induced neurotoxicity than their wild-type littermates. Furthermore, after administration of MPTP, astroglial proliferation and GDNF protein synthesis were inhibited by AQP4 deficiency. This study demonstrates that AQP4 is important in the MPTP neurotoxic process and indicates that the therapeutic strategy targeted to astrocytic modulation with AQP4 may offer a great potential for the development of new treatment for PD.
Collapse
Affiliation(s)
- Yi Fan
- Laboratory of Neuropharmacology, Department of Anatomy, Histology & Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Hirata Y, Kiuchi K. Rapid down-regulation of Ret following exposure of dopaminergic neurons to neurotoxins. J Neurochem 2007; 102:1606-1613. [PMID: 17555550 DOI: 10.1111/j.1471-4159.2007.04695.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan
| | - Kazutoshi Kiuchi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Japan
| |
Collapse
|
8
|
Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP. Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: Role of neuron–glia crosstalk. Neurobiol Dis 2006; 23:533-42. [PMID: 16766196 DOI: 10.1016/j.nbd.2006.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/27/2006] [Accepted: 04/24/2006] [Indexed: 01/13/2023] Open
Abstract
The effect of selective injury to dopaminergic neurons on the expression of glial cell line-derived neurotrophic factor (GDNF) was examined in substantia nigra cell cultures. H(2)O(2), mimicking increased oxidative stress, or l-DOPA, the main symptomatic treatment for Parkinson's disease, increased GDNF mRNA and protein levels in a time-dependent mode in neuron-glia mixed cultures. The concentration dependence indicated that mild, but not extensive, injury induced GDNF up-regulation. GDNF neutralization with an antibody decreased dopaminergic cell viability in H(2)O(2)-treated cultures, showing that up-regulation of GDNF was protecting dopaminergic neurons. Neither H(2)O(2) nor l-DOPA directly affected GDNF expression in astrocyte cultures, but conditioned media from challenged mixed cultures increased GDNF mRNA and protein levels in astrocyte cultures, indicating that GDNF up-regulation was mediated by neuronal factors. Since pretreatment with 6-OHDA completely abolished H(2)O(2)-induced GDNF up-regulation, we propose that GDNF up-regulation is triggered by failing dopaminergic neurons that signal astrocytes to increase GDNF expression.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
9
|
Bäckman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC, Vonsatel P, Tomac AC. Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study. Mol Cell Endocrinol 2006; 252:160-6. [PMID: 16644101 DOI: 10.1016/j.mce.2006.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-beta superfamily, is a potent trophic factor for dopaminergic neurons of the ventral midbrain, which are known to degenerate during Parkinson's disease (PD). The neuroprotective, neurorestorative, and stimulatory properties of GDNF has prompted numerous suggestions that this trophic factor may be a potential therapeutic tool to treat PD, and it has also been widely speculated that altered GDNF expression levels may be involved in the pathophysiology of the disease. In this study, we have investigated if mRNA expression levels for GDNF and/or its receptors are altered during PD in the human putamen, a target area for dopamine neurons of the substantia nigra compacta. Expression levels were analyzed with quantitative real-time reverse transcriptase polymerase reaction (RT qPCR) in post-mortem tissues from PD patients and aged matched controls. Primer pairs specific for GDNF (isoforms I and II), and its receptor molecules, GFRalpha1 and cRET were utilized. GDNF, cRET and GFRalpha1 mRNA expression was clearly detected in the putamen of control and Parkinson's disease patients. A modest but significant upregulation of GDNF mRNA levels (Isoform I) was observed in the putamen of Parkinson's disease patients with a marked loss of nigral neurons. No significant changes were observed for the expression of cRet and GFRa1. These data suggest that the extensive loss of dopaminergic neurons in the substantia nigra, and concomitant loss of striatal dopamine, may induce compensatory changes in the expression of target derived GDNF, but not its receptor system.
Collapse
Affiliation(s)
- Cristina M Bäckman
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
11
|
Smith AD, Antion M, Zigmond MJ, Austin MC. Effect of 6-hydroxydopamine on striatal GDNF and nigral GFRα1 and RET mRNAs in the adult rat. ACTA ACUST UNITED AC 2003; 117:129-38. [PMID: 14559146 DOI: 10.1016/s0169-328x(03)00289-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exogenous GDNF as well as vectors containing the gene for this trophic factor has been shown to be neuroprotective in animal models of Parkinson's disease. We therefore investigated whether changes in striatal GDNF protein and nigral mRNA levels of its co-receptors GFRalpha1 and RET occur in response to lesions of dopamine (DA) neurons and examined the temporal profile of these changes as they relate to the loss of dopaminergic markers. Rats were lesioned with 6-hydroxydopamine and sacrificed 3 h to 60 days post-infusion. DA tissue levels in the striatum and tyrosine hydroxylase immunoreactivity in the substantia nigra (SN) and ventral tegmental area (VTA) were used to determine the size of the lesions. GDNF protein was measured in the striatum using radioimmunocytochemistry. In situ hybridization was used to determine alterations in the mRNAs of RET and GFRalpha1 in the SN and VTA. We observed no persistent changes in GDNF protein in the striatum in response to 6-hydroxydopamine over the 60-day observation period, suggesting that compensatory changes in this trophic factor do not occur in response to injury. Dramatic decreases in RET and GFRalpha1 were observed in both SN and VTA that were generally correlated with the loss of TH protein and striatal DA content, strongly suggesting that these receptors are located on DA neurons and that the protective effect of GDNF reflects a direct action of the trophic factor on these neurons.
Collapse
Affiliation(s)
- Amanda D Smith
- Department of Neurology, University of Pittsburgh, S-510 Biomedical Science Tower, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
The removal of excess neurons by programmed cell death (PCD) is believed to be critical for the proper development and function of the nervous system. A major role of this neuronal loss is to attain quantitative matching of neurons with their targets and afferents. Because motoneurons (MNs) in Bax knock-out (Bax KO) mice fail to undergo PCD in the face of normal target muscle development, we asked whether the excess rescued neurons in Bax KO mice can develop normally. We observed many small atrophied MNs in postnatal Bax KO mice, and these failed to innervate limb muscle targets. When examined embryonically during the PCD period, however, these excess MNs had initiated target innervation. To examine whether a limitation in trophic factor availability is responsible for postnatal MN atrophy and loss of innervation, we applied glial cell line-derived neurotrophic factor (GDNF) to neonatal mice. GDNF injection for 7-14 d induced the regrowth and reinnervation of muscle targets by atrophic MNs in Bax KO mice and prevented the normal postnatal death of MNs in wild-type mice. These results indicate that, although initially all of the MNs, including those rescued by Bax deletion, are able to project to and innervate targets, because of limited target-derived signals required for maintaining innervation and growth, only a subpopulation can grow and retain target contacts postnatally. Although sensory neurons in the dorsal root ganglia are also rescued from PCD by Bax deletion, their subsequent development is less affected than that of MNs.
Collapse
|
13
|
Sango K, Horie H, Saito H, Ajiki K, Tokashiki A, Takeshita K, Ishigatsubo Y, Kawano H, Ishikawa Y. Diabetes is not a potent inducer of neuronal cell death in mouse sensory ganglia, but it enhances neurite regeneration in vitro. Life Sci 2002; 71:2351-68. [PMID: 12231397 DOI: 10.1016/s0024-3205(02)02040-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We examined the effects of diabetes on the morphological features and regenerative capabilities of adult mouse nodose ganglia (NG) and dorsal root ganglia (DRG). By light and electron microscopy, no apoptotic cell death was detected in the ganglia obtained from either streptozotocin (STZ)-induced diabetic or normal C57BL/6J mice in vivo. Neurite regeneration from transected nerve terminals of NG and DRG explants in culture at normal (10 mM) and high (30 mM) glucose concentrations was significantly enhanced in the diabetic mice. Chromatolytic changes (i.e. swelling and migration of the nucleus to an eccentric position in the neurons, and a loss of Nissl substance in the neuronal perikarya) and apoptotic cell death (less than one-fifth of the neurons) in the cultured ganglia were present, but neither hyperglycemia in vivo nor high glucose conditions in vitro altered the morphological features of the ganglia or the ratios of apoptotic cells at 3 days in culture. By semiquantitative RT-PCR analysis, the mRNA expressions of ciliary neurotrophic factor (CNTF) in DRG from both mice were down-regulated at 1 day in culture. The expression in diabetic DRG, but not in control DRG, was significantly up-regulated at later stages (3 and 7 days) in culture. In summary, hyperglycemia is unlikely to induce cell death in the sensory ganglia, but enhances the regenerative capability of vagal and spinal sensory nerves in vitro. The up-regulation of CNTF mRNA expression during the culture of diabetic DRG may play a role in the enhanced neurite regeneration.
Collapse
Affiliation(s)
- Kazunori Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, 183-8526, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marco S, Saura J, Pérez-Navarro E, José Martí M, Tolosa E, Alberch J. Regulation of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease. JOURNAL OF NEUROBIOLOGY 2002; 52:343-51. [PMID: 12210101 DOI: 10.1002/neu.10082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.
Collapse
Affiliation(s)
- Sònia Marco
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Koo H, Choi BH. Expression of glial cell line-derived neurotrophic factor (GDNF) in the developing human fetal brain. Int J Dev Neurosci 2001; 19:549-58. [PMID: 11600317 DOI: 10.1016/s0736-5748(01)00042-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
GDNF expression was examined immunocytochemically in developing human fetal brains obtained from aborted fetuses ranging from 7 to 39 weeks in gestational age. At 7-8 weeks, strong immunoreactivity was noted within radial glial processes, glia limitans and choroid plexus of the telencephalic vesicle. By 10 weeks, ependymal cells, primitive matrix cells and early developing cortical plate neurons showed positive staining. By 15-16 weeks, migrating neurons in the subventricular and intermediate zones and in the cortical plate were strongly positive for GDNF. The glia limitans of the cerebral cortex and subependymal astrocytes remained positive at this time. As fetal age increased, GDNF expression shifted to neurons and glial cells in the deeper structures of the brain. The most prominent GDNF staining was observed in the cytoplasm and dendrites of Purkinje cells of the cerebellum by 25 weeks and thereafter. Pyramidal neurons of the CA1 region and granule cells of the dentate fascia of the hippocampus, neurons of the entorhinal cortex, and scattered neurons within the brain stem, medulla and spinal cord all showed strong GDNF staining by 25-35 weeks. Widespread GDNF expression in neuronal and non-neuronal cells with distinct developmental shifts suggests that GDNF may play a critical role in the survival, differentiation and maintenance of neurons at different stages of development in the developing human fetal brain.
Collapse
Affiliation(s)
- H Koo
- Department of Pathology, College of Medicine, Ewha Womans University, and Ewha Medical Research Center, Seoul, South
| | | |
Collapse
|
16
|
Yurek DM, Fletcher-Turner A. Differential expression of GDNF, BDNF, and NT-3 in the aging nigrostriatal system following a neurotoxic lesion. Brain Res 2001; 891:228-35. [PMID: 11164827 DOI: 10.1016/s0006-8993(00)03217-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein levels for brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were measured in the striatum and ventral midbrain of young and aged Brown Norway/F344 F1 (F344BNF(1)) hybrid rats following a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. At 2 weeks post-lesion, protein levels of BDNF and GDNF were higher in the denervated striatum when compared to the intact striatum for young (4-5 months old) but not old (31-33 months old) rats. Interestingly, in old rats BDNF protein in the denervated striatum was significantly lower than that measured in the intact striatum. At the same time point BDNF protein levels in the ventral midbrain were higher on the lesioned versus intact side for both young and old rats while no significant side differences were detected for GDNF protein in the ventral midbrain of young or old rats. No significant differences in NT-3 protein levels were detected between the lesioned and intact sides for striatal or ventral midbrain regions in either young or old brain. While no significant age effects were detected for BDNF or NT-3 protein, young rats showed higher GDNF protein levels in both the striatum (lesioned or intact) and ventral midbrain (lesioned or intact) than old rats. These data show that two endogenous neurotrophic factors, BDNF and GDNF, are differentially affected by a 6-OHDA lesion in the aging nigrostriatal system with young brain showing a significant compensatory increase of these two factors in the denervated striatum while no compensatory increase is observed in aged brain.
Collapse
Affiliation(s)
- D M Yurek
- Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Health Sciences Research Building, Lexington, Kentucky, KY 40536-0305, USA.
| | | |
Collapse
|