1
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
4
|
Zulazmi NA, Arulsamy A, Ali I, Zainal Abidin SA, Othman I, Shaikh MF. The utilization of small non-mammals in traumatic brain injury research: A systematic review. CNS Neurosci Ther 2021; 27:381-402. [PMID: 33539662 PMCID: PMC7941175 DOI: 10.1111/cns.13590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and has complicated underlying pathophysiology. Numerous TBI animal models have been developed over the past decade to effectively mimic the human TBI pathophysiology. These models are of mostly mammalian origin including rodents and non-human primates. However, the mammalian models demanded higher costs and have lower throughput often limiting the progress in TBI research. Thus, this systematic review aims to discuss the potential benefits of non-mammalian TBI models in terms of their face validity in resembling human TBI. Three databases were searched as follows: PubMed, Scopus, and Embase, for original articles relating to non-mammalian TBI models, published between January 2010 and December 2019. A total of 29 articles were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae and adult, was found to be the most utilized non-mammalian TBI model in the current literature, followed by the fruit fly and roundworm. In conclusion, non-mammalian TBI models have advantages over mammalian models especially for rapid, cost-effective, and reproducible screening of effective treatment strategies and provide an opportunity to expedite the advancement of TBI research.
Collapse
Affiliation(s)
- Nurul Atiqah Zulazmi
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
| | - Idrish Ali
- Department of NeuroscienceCentral Clinical SchoolThe Alfred HospitalMonash UniversityMelbourneVic.Australia
| | - Syafiq Asnawi Zainal Abidin
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
- Liquid Chromatography Mass Spectrometry (LCMS) PlatformJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
| | - Iekhsan Othman
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
- Liquid Chromatography Mass Spectrometry (LCMS) PlatformJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSelangor Darul EhsanMalaysia
| |
Collapse
|
5
|
Villasana LE, Peters A, McCallum R, Liu C, Schnell E. Diazepam Inhibits Post-Traumatic Neurogenesis and Blocks Aberrant Dendritic Development. J Neurotrauma 2019; 36:2454-2467. [PMID: 30794026 DOI: 10.1089/neu.2018.6162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) triggers a robust increase in neurogenesis within the dentate gyrus of the hippocampus, but these new neurons undergo aberrant maturation and dendritic outgrowth. Because gamma-aminobutyric acid (GABA)A receptors (GABAARs) modulate dendritic outgrowth during constitutive neurogenesis and GABAAR-modulating sedatives are often administered to human patients after TBI, we investigated whether the benzodiazepine, diazepam (DZP), alters post-injury hippocampal neurogenesis. We used a controlled cortical impact (CCI) model of TBI in adult mice, and administered DZP or vehicle continuously for 1 week after injury via osmotic pump. Although DZP did not affect the neurogenesis rate in control mice, it almost completely prevented the TBI-induced increase in hippocampal neurogenesis as well as the aberrant dendritic growth of neurons born after TBI. DZP did not reduce cortical injury, reactive gliosis, or cell proliferation early after injury, but decreased c-Fos activation in the dentate gyrus at both early and late time-points after TBI, suggesting an association between neuronal activity and post-injury neurogenesis. Because DZP blocks post-injury neurogenesis, further studies are warranted to assess whether benzodiazepines alter cognitive recovery or the development of complications after TBI.
Collapse
Affiliation(s)
- Laura E Villasana
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Austin Peters
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Raluca McCallum
- 2Operative Care Division, VA Portland Health Care System, Portland, Oregon
| | - Chang Liu
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Eric Schnell
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon.,2Operative Care Division, VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
6
|
Corne R, Leconte C, Ouradou M, Fassina V, Zhu Y, Déou E, Besson V, Plotkine M, Marchand-Leroux C, Mongeau R. Spontaneous resurgence of conditioned fear weeks after successful extinction in brain injured mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:276-286. [PMID: 30096331 DOI: 10.1016/j.pnpbp.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Mild traumatic brain injury (TBI) is a major risk factor for post-traumatic stress disorder (PTSD), and both disorders share common symptoms and neurobiological defects. Relapse after successful treatment, known as long-term fear resurgence, is common in PTSD patients and a major therapeutic hurdle. We induced a mild focal TBI by controlled cortical impact (CCI) in male C57BL/6 J mice and used fear conditioning to assess PTSD-like behaviors and concomitant alterations in the fear circuitry. We found for the first time that mild TBI, and to a lesser extent sham (craniotomy), mice displayed a spontaneous resurgence of conditioned fear when tested for fear extinction memory recall, despite having effectively acquired and extinguished conditioned fear 6 weeks earlier in the same context. Other characteristic symptoms of PTSD are risk-taking behaviors and cognitive deficits. CCI mice displayed risk-taking behaviors, behavioral inflexibility and reductions in processing speed compared to naïve mice. In conjunction with these changes there were alterations in amygdala morphology 3 months post-trauma, and decreased myelin basic protein density at the primary lesion site and in distant secondary sites such as the hippocampus, thalamus, and amygdala, compared to sham mice. Furthermore, activity-dependent brain-derived neurotrophic factor (BDNF) transcripts were decreased in the prefrontal cortex, a key region for fear extinction consolidation, following fear extinction training in both TBI and, to a lesser extent, sham mice. This study shows for the first time that a mild brain injury can generate a spontaneous resurgence of conditioned fear associated with defective BDNF signalling in the prefrontal cortex, PTSD-like behaviors, and have enduring effects on the brain.
Collapse
Affiliation(s)
- R Corne
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Ouradou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Fassina
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Y Zhu
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - E Déou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Plotkine
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - R Mongeau
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.
| |
Collapse
|
7
|
Xing P, Ma K, Li L, Wang D, Hu G, Long W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. Acta Cir Bras 2018; 33:341-353. [PMID: 29768537 DOI: 10.1590/s0102-865020180040000006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the effect of hyperbaric oxygen therapy (HBOT) on traumatic brain injury (TBI) outcome. METHODS The modified Marmarou's weight drop device was used to generate non-lethal moderate TBI rat model, and further developed in vitro astrocytes culturing system. Then, we analyzed the expression changes of interested genes and protein by quantitative PCR and western blot. RESULTS Multiple HBO treatments significantly reduced the expression of apoptosis promoting genes, such as c-fos, c-jun, Bax and weakened the activation of Caspase-3 in model rats. On the contrary, HBOT alleviated the decrease of anti-apoptosis gene Bcl-2 and promoted the expression of neurotrophic factors (NTFs), such as NGF, BDNF, GDNF and NT-3 in vivo. As a consequent, the neuropathogenesis was remarkably relied with HBOT. Astrocytes from TBI brain or those cultured with 21% O2 density expressed higher NTFs than that of corresponding controls, from sham brain and cultured with 7% O2, respectively. The NTFs expression was the highest in astrocytes form TBI brain and cultured with 21% O2, suggesting a synergistic effect existed between TBI and the following HBO treatment in astrocytes. CONCLUSION Our findings provided evidence for the clinical usage of HBO treating brain damages.
Collapse
Affiliation(s)
- Pengcheng Xing
- MD, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Acquisition, analysis and interpretation of data; manuscript preparation
| | - Ke Ma
- MD, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Conception and design of the study, manuscript preparation, final approval
| | - Lijuan Li
- MD, Physician, Department of Geriatrics, Shanghai Sixth People's Hospital East, China. Acquisition of data, technical procedures
| | - Donglian Wang
- MD, Physician, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Technical procedures
| | - Guoyong Hu
- MD, Physician, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Technical procedures
| | - Wei Long
- MD, Physician, Department of Geriatrics, Shanghai Sixth People's Hospital East, China. Technical procedures
| |
Collapse
|
8
|
Chen YH, Huang EYK, Kuo TT, Miller J, Chiang YH, Hoffer BJ. Impact of Traumatic Brain Injury on Dopaminergic Transmission. Cell Transplant 2018; 26:1156-1168. [PMID: 28933212 PMCID: PMC5657731 DOI: 10.1177/0963689717714105] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Brain trauma is often associated with severe morbidity and is a major public health concern. Even when injury is mild and no obvious anatomic disruption is seen, many individuals suffer disabling neuropsychological impairments such as memory loss, mood dysfunction, substance abuse, and adjustment disorder. These changes may be related to subtle disruption of neural circuits as well as functional changes at the neurotransmitter level. In particular, there is considerable evidence that dopamine (DA) physiology in the nigrostriatal and mesocorticolimbic pathways might be impaired after traumatic brain injury (TBI). Alterations in DA levels can lead to oxidative stress and cellular dysfunction, and DA plays an important role in central nervous system inflammation. Therapeutic targeting of DA pathways may offer benefits for both neuronal survival and functional outcome after TBI. The purpose of this review is to discuss the role of DA pathology in acute TBI and the potential impact of therapies that target these systems for the treatment of TBI.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Yuan-Hao Chen, Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, 4F, No. 325, 2nd Sec., Cheng-Kung Road, Nei-Hu District, Taipei City, 114 Taiwan, Republic of China.
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Jonathan Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yung-Hsiao Chiang
- Section of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
9
|
Genetic Pathways of Neuroregeneration in a Novel Mild Traumatic Brain Injury Model in Adult Zebrafish. eNeuro 2018; 5:eN-NWR-0208-17. [PMID: 29302617 PMCID: PMC5752677 DOI: 10.1523/eneuro.0208-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are one of the most prevalent neurological disorders, and humans are severely limited in their ability to repair and regenerate central nervous system (CNS) tissue postinjury. However, zebrafish (Danio rerio) maintain the remarkable ability to undergo complete and functional neuroregeneration as an adult. We wish to extend knowledge of the known mechanisms of neuroregeneration by analyzing the differentially expressed genes (DEGs) in a novel adult zebrafish model of mTBI. In this study, a rodent weight drop model of mTBI was adapted to the adult zebrafish. A memory test showed significant deficits in spatial memory in the mTBI group. We identified DEGs at 3 and 21 days postinjury (dpi) through RNA-sequencing analysis. The resulting DEGs were categorized according to gene ontology (GO) categories. At 3 dpi, GO categories consisted of peak injury response pathways. Significantly, at 21 dpi, GO categories consisted of neuroregeneration pathways. Ultimately, these results validate a novel zebrafish model of mTBI and elucidate significant DEGs of interest in CNS injury and neuroregeneration.
Collapse
|
10
|
Selwyn RG, Cooney SJ, Khayrullina G, Hockenbury N, Wilson CM, Jaiswal S, Bermudez S, Armstrong RC, Byrnes KR. Outcome after Repetitive Mild Traumatic Brain Injury Is Temporally Related to Glucose Uptake Profile at Time of Second Injury. J Neurotrauma 2016; 33:1479-91. [PMID: 26650903 DOI: 10.1089/neu.2015.4129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) results in worsened outcomes, compared with a single injury, but the mechanism of this phenomenon is unclear. We have previously shown that mild TBI in a rat lateral fluid percussion model results in globally depressed glucose uptake, with a peak depression at 24 h that resolves by 16 days post-injury. The current study investigated the outcomes of a repeat injury conducted at various times during this period of depressed glucose uptake. Adult male rats were therefore subjected to rmTBI with a latency of 24 h, 5 days, or 15 days between injuries, followed by assessment of motor function, histopathology, and glucose uptake using positron emission tomography (PET). Rats that received a 24 h rmTBI showed significant deficits in motor function tasks, as well as significant increases in lesion volume and neuronal damage. The level of microglial and astrocytic activation also was associated with the timing of the second impact. Finally, rmTBI with latencies of 24 h and 5 days showed significant alterations in [(18)F]fluorodeoxyglucose uptake, compared with baseline scans. Therefore, we conclude that the state of the metabolic environment, as indicated by FDG-PET at the time of the repeat injury, significantly influences neurological outcomes.
Collapse
Affiliation(s)
- Reed G Selwyn
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
- 2 Department of Radiology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
- 3 Department of Radiology, University of New Mexico , Albuquerque, New Mexico
| | - Sean J Cooney
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Guzal Khayrullina
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Nicole Hockenbury
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Colin M Wilson
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Shalini Jaiswal
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Sara Bermudez
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Regina C Armstrong
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Kimberly R Byrnes
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
- 4 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
11
|
Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav Immun 2015; 47:118-30. [PMID: 25576803 DOI: 10.1016/j.bbi.2014.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI), including mild TBI (mTBI), is importantly associated with vigilance and sleep complaints. Because sleep is required for learning, plasticity and recovery, we here evaluated the bidirectional relationship between mTBI and sleep with two specific objectives: (1) Test that mTBI rapidly impairs sleep-wake architecture and the dynamics of the electrophysiological marker of sleep homeostasis (i.e., non-rapid eye movement sleep delta (1-4Hz) activity); (2) evaluate the impact of sleep loss following mTBI on the expression of plasticity markers that have been linked to sleep homeostasis and on genome-wide gene expression. A closed-head injury model was used to perform a 48h electrocorticographic (ECoG) recording in mice submitted to mTBI or Sham surgery. mTBI was found to immediately decrease the capacity to sustain long bouts of wakefulness as well as the amplitude of the time course of ECoG delta activity during wakefulness. Significant changes in ECoG spectral activity during wakefulness, non-rapid eye movement and rapid eye movement sleep were observed mainly on the second recorded day. A second experiment was performed to measure gene expression in the cerebral cortex and hippocampus after a mTBI followed either by two consecutive days of 6h sleep deprivation (SD) or of undisturbed behavior (quantitative PCR and next-generation sequencing). mTBI modified the expression of genes involved in immunity, inflammation and glial function (e.g., chemokines, glial markers) and SD changed that of genes linked to circadian rhythms, synaptic activity/neuronal plasticity, neuroprotection and cell death and survival. SD appeared to affect gene expression in the cerebral cortex more importantly after mTBI than Sham surgery including that of the astrocytic marker Gfap, which was proposed as a marker of clinical outcome after TBI. Interestingly, SD impacted the hippocampal expression of the plasticity elements Arc and EfnA3 only after mTBI. Overall, our findings reveal alterations in spectral signature across all vigilance states in the first days after mTBI, and show that sleep loss post-mTBI reprograms the transcriptome in a brain area-specific manner and in a way that could be deleterious to brain recovery.
Collapse
|
12
|
Kulkarni P, Kenkel W, Finklestein SP, Barchet TM, Ren J, Davenport M, Shenton ME, Kikinis Z, Nedelman M, Ferris CF. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex. PLoS One 2015; 10:e0125748. [PMID: 25955025 PMCID: PMC4425537 DOI: 10.1371/journal.pone.0125748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/26/2015] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Northeastern University, Boston, Massachusetts, United States of America
| | - William Kenkel
- Northeastern University, Boston, Massachusetts, United States of America
| | | | - Thomas M. Barchet
- Northeastern University, Boston, Massachusetts, United States of America
| | - JingMei Ren
- Biotrofix, Waltham, Massachusetts, United States of America
| | | | - Martha E. Shenton
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Zora Kikinis
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Mark Nedelman
- Ekam Imaging, Boston, Massachusetts, United States of America
| | - Craig F. Ferris
- Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Sierra-Mercado D, McAllister LM, Lee CCH, Milad MR, Eskandar EN, Whalen MJ. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice. Brain Res 2015; 1606:133-41. [PMID: 25721797 DOI: 10.1016/j.brainres.2015.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/04/2015] [Accepted: 02/15/2015] [Indexed: 01/10/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in "context A". Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory.
Collapse
Affiliation(s)
- Demetrio Sierra-Mercado
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, 00936.
| | - Lauren M McAllister
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| | - Christopher C H Lee
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| | - Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| | - Michael J Whalen
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
14
|
Petraglia AL, Dashnaw ML, Turner RC, Bailes JE. Models of Mild Traumatic Brain Injury. Neurosurgery 2014; 75 Suppl 4:S34-49. [DOI: 10.1227/neu.0000000000000472] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury. J Neurosci 2013; 33:5216-26. [PMID: 23516287 DOI: 10.1523/jneurosci.5133-12.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) modulates several cell signaling pathways in the hippocampus critical for memory formation. Previous studies have found that the cAMP-protein kinase A signaling pathway is downregulated after TBI and that treatment with a phosphodiesterase (PDE) 4 inhibitor rolipram rescues the decrease in cAMP. In the present study, we examined the effect of rolipram on TBI-induced cognitive impairments. At 2 weeks after moderate fluid-percussion brain injury or sham surgery, adult male Sprague Dawley rats received vehicle or rolipram (0.03 mg/kg) 30 min before water maze acquisition or cue and contextual fear conditioning. TBI animals treated with rolipram showed a significant improvement in water maze acquisition and retention of both cue and contextual fear conditioning compared with vehicle-treated TBI animals. Cue and contextual fear conditioning significantly increased phosphorylated CREB levels in the hippocampus of sham animals, but not in TBI animals. This deficit in CREB activation during learning was rescued in TBI animals treated with rolipram. Hippocampal long-term potentiation was reduced in TBI animals, and this was also rescued with rolipram treatment. These results indicate that the PDE4 inhibitor rolipram rescues cognitive impairments after TBI, and this may be mediated through increased CREB activation during learning.
Collapse
|
16
|
DeWitt DS, Perez-Polo R, Hulsebosch CE, Dash PK, Robertson CS. Challenges in the Development of Rodent Models of Mild Traumatic Brain Injury. J Neurotrauma 2013; 30:688-701. [DOI: 10.1089/neu.2012.2349] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas
| | - Regino Perez-Polo
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Claire E. Hulsebosch
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Pramod K. Dash
- Department of Neuroscience, The University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
17
|
Rodgers KM, Bercum FM, McCallum DL, Rudy JW, Frey LC, Johnson KW, Watkins LR, Barth DS. Acute neuroimmune modulation attenuates the development of anxiety-like freezing behavior in an animal model of traumatic brain injury. J Neurotrauma 2012; 29:1886-97. [PMID: 22435644 PMCID: PMC3390983 DOI: 10.1089/neu.2011.2273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans.
Collapse
Affiliation(s)
- Krista M. Rodgers
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Florencia M. Bercum
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Danielle L. McCallum
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Jerry W. Rudy
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Lauren C. Frey
- Department of Neurology, University of Colorado–Denver, and Colorado Injury Control Research Center, Denver, Colorado
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| | - Daniel S. Barth
- Department of Psychology and Neuroscience, University of Colorado–Boulder, Boulder, Colorado
| |
Collapse
|
18
|
Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry 2012; 71:335-43. [PMID: 22169439 PMCID: PMC3264758 DOI: 10.1016/j.biopsych.2011.11.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mild traumatic brain injury (cerebral concussion) results in cognitive and emotional dysfunction. These injuries are a significant risk factor for the development of anxiety disorders, including posttraumatic stress disorder. However, because physically traumatic events typically occur in a highly emotional context, it is unknown whether traumatic brain injury itself is a cause of augmented fear and anxiety. METHODS Rats were trained with one of five fear-conditioning procedures (n = 105) 2 days after concussive brain trauma. Fear learning was assessed over subsequent days and chronic changes in fear learning and memory circuitry were assessed by measuring N-methyl-D-aspartate receptor subunits and glutamic acid decarboxylase, 67 kDa isoform protein levels in the hippocampus and basolateral amygdala complex (BLA). RESULTS Injured rats exhibited an overall increase in fear conditioning, regardless of whether fear was retrieved via discrete or contextual-spatial stimuli. Moreover, injured rats appeared to overgeneralize learned fear to both conditioned and novel stimuli. Although no gross histopathology was evident, injury resulted in a significant upregulation of excitatory N-methyl-D-aspartate receptors in the BLA. There was a trend toward decreased γ-aminobutyric acid-related inhibition (glutamic acid decarboxylase, 67 kDa isoform) in the BLA and hippocampus. CONCLUSIONS These results suggest that mild traumatic brain injury predisposes the brain toward heightened fear learning during stressful postinjury events and provides a potential molecular mechanism by which this occurs. Furthermore, these data represent a novel rodent model that can help advance the neurobiological and therapeutic understanding of the comorbidity of posttraumatic stress disorder and traumatic brain injury.
Collapse
Affiliation(s)
- Maxine L. Reger
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Andrew M. Poulos
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Floyd Buen
- School of Medicine, University of California at San Diego, La Jolla, California, 92093, U.S.A
| | - Christopher C. Giza
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Pediatrics, Division of Pediatric Neurology, Mattel Children’s Hospital, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - David A. Hovda
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Michael S. Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| |
Collapse
|
19
|
Wang X, Pal R, Chen XW, Kumar KN, Kim OJ, Michaelis EK. Genome-wide transcriptome profiling of region-specific vulnerability to oxidative stress in the hippocampus. Genomics 2007; 90:201-12. [PMID: 17553663 PMCID: PMC2065755 DOI: 10.1016/j.ygeno.2007.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/07/2007] [Accepted: 03/19/2007] [Indexed: 11/23/2022]
Abstract
Neurons in the hippocampal CA1 region are particularly sensitive to oxidative stress (OS), whereas those in CA3 are resistant. To uncover mechanisms for selective CA1 vulnerability to OS, we treated organotypic hippocampal slices with duroquinone and compared transcriptional profiles of CA1 vs CA3 cells at various intervals. Gene Ontology and Biological Pathway analyses of differentially expressed genes showed that at all time points, CA1 had higher transcriptional activity for stress/inflammatory response, transition metal transport, ferroxidase, and presynaptic signaling activity, while CA3 had higher GABA-signaling, postsynaptic, and calcium and potassium channel activity. Real-time PCR and immunoblots confirmed the transcriptome data and the induction of OS by duroquinone in both hippocampal regions. Our functional genomics approach has identified in CA1 cells molecular pathways as well as unique genes, such as guanosine deaminase, lipocalin 2, synaptotagmin 4, and latrophilin 2, whose time-dependent induction following the initiation of OS may represent attempts at neurite outgrowth, synaptic recovery, and resistance against OS.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | - Ranu Pal
- Higuchi Biosciences Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | - Xue-wen Chen
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA
| | - Keshava N. Kumar
- Higuchi Biosciences Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | - Ok-Jin Kim
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | - Elias K. Michaelis
- Higuchi Biosciences Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
20
|
Lifshitz J, Witgen BM, Grady MS. Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: evaluation by conditioned fear response. Behav Brain Res 2006; 177:347-57. [PMID: 17169443 PMCID: PMC1851906 DOI: 10.1016/j.bbr.2006.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 10/03/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022]
Abstract
Conditioned fear associates a contextual environment and cue stimulus to a foot shock in a single training trial, where fear expressed to the trained context or cue indicates cognitive performance. Lesion, aspiration or inactivation of the hippocampus and amygdala impair conditioned fear to the trained context and cue, respectively. Moreover, only bilateral experimental manipulations, in contrast to unilateral, abolish cognitive performance. In a model of unilateral brain injury, we sought to test whether a single lateral fluid percussion brain injury impairs cognitive performance in conditioned fear. Brain-injured mice were evaluated for anterograde cognitive deficits, with the hypothesis that acute injury-induced impairments improve over time. Male C57BL/6J mice were brain-injured, trained at 5 or 27 days post-injury, and tested 48h later for recall of the association between the conditioned stimuli (trained context or cue) and the unconditioned stimulus (foot shock) by quantifying fear-associated freezing behavior. A significant anterograde hippocampal-dependent cognitive deficit was observed at 7 days in brain-injured compared to sham. Cued fear conditioning could not detect amygdala-dependent cognitive deficits after injury and stereological estimation of amygdala neuron number corroborated this finding. The absence of injury-related freezing in a novel context substantiated injury-induced hippocampal-dependent cognitive dysfunction, rather than generalized fear. Variations in the training and testing paradigms demonstrated a cognitive deficit in consolidation, rather than acquisition or recall. By 1-month post-injury, cognitive function recovered in brain-injured mice. Hence, the acute injury-induced cognitive impairment may persist while transient pathophysiological sequelae are underway, and improve as global dysfunction subsides.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| | | | | |
Collapse
|
21
|
Abstract
Epilepsy is a major unfavorable long-term consequence of traumatic brain injury (TBI). Moreover, TBI is one of the most important predisposing factors for the development of epilepsy, particularly in young adults. Understanding the molecular and cellular cascades that lead to the development of post-traumatic epilepsy (PTE) is key for preventing its development or modifying the disease process in such a way that epilepsy, if it develops, is milder and easier-to-treat. Tissue from TBI patients undergoing epileptogenesis is not available for such studies, which underscores the importance of developing clinically relevant animal models of PTE. The goal of this review is to (1) provide a description of PTE in humans, which is critical for the development of clinically relevant models of PTE, (2) review the characteristics of currently available PTE models, and (3) provide suggestions for the development of future models of PTE based on our current understanding of the mechanisms of TBI and epilepsy. The development of clinically relevant models of PTE is critical to advance our understanding of the mechanisms of post-traumatic epileptogenesis and epilepsy, as well as for producing breakthroughs in the development and testing of novel antiepileptogenic treatments.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
22
|
Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 2006; 219:175-86. [PMID: 16368179 DOI: 10.1016/j.tox.2005.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 12/31/2022]
Abstract
Male F344 rats were intravenously treated with 6 mg/kg cycloheximide (CHX), and microarray analysis was conducted on their livers 1, 2 and 6h after the CHX treatment. The histopathological examination and serum chemistry results indicated a mild hepatic cell death 2 and 6h after the CHX treatment, respectively. Multi-focal hepatocellular necrosis with slight neutrophil infiltration was observed 6h after the CHX treatment. The TUNEL staining results showed that the number of apoptotic hepatocytes was the highest 2h after the CHX treatment. Dramatic increases in the mRNA levels of ATF3 and CHOP genes, both of which were reported to play roles in the ER stress-mediated apoptosis pathway, were observed from 1h after the CHX treatment. In addition, increase of GADD45, p21 and p53 mRNA levels also suggested a time course-related stimulation of hepatocellular apoptotic signals. These results suggest that the hepatocyte apoptosis induced by the CHX treatment is triggered by ER stress. The hepatic mRNA levels of proinflammatory genes, such as TNFalpha, IL-1alpha and beta, were also increased 1 and 2h after the CHX treatment, supposedly mediated by the activated Kupffer cells engulfing the apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kazumi Ito
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan. ,jp
| | | | | | | | | | | |
Collapse
|
23
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
24
|
Nilsberth C, Kostyszyn B, Luthman J. Changes in APP, PS1 and other factors related to Alzheimer's disease pathophysiology after trimethyltin-induced brain lesion in the rat. Neurotox Res 2002; 4:625-636. [PMID: 12709301 DOI: 10.1080/1029842021000045471] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trimethyltin (TMT) chloride induces limbic system neurodegeneration, resulting in behavioral alterations including cognitive deficits. Different factors related to Alzheimer's disease (AD) were studied after TMT lesion in Sprague-Dawley rats. The expression of amyloid precursor protein (APP) containing 695 amino acids (APP695), APP containing the Kuniz protease inhibitor domain (APP- KPI), presenilin 1 (PS1), c- fos and IL- 1Beta was investigated at different timepoints after a single TMT injection (7 mg/kg i.p.) using in situ hybridization and immunohistochemistry. After the TMT treatment, extensive degeneration of pyramidal neurons was observed in the CA3 region of the hippocampus, concomitant with neurodegeneration in the outer layer of the CA1 region and layer II of entorhinal and piriform cortex. The affected regions showed abundant condensed eosinophilic and TUNEL-positive neuronal cells, that were apparent at day 4 after TMT, increasing to day 7 and subsequently disappearing. In the affected regions the levels of APP695 mRNA gradually declined with time after the TMT injection. While there was no apparent alteration in the overall expression of APP- KPI or PS1 mRNA, detailed analysis of the CA3c region showed that the mRNA expression shifted from neurons to glial cells. Three days after TMT, neurons in the piriform cortex, the CA3 region and DG expressed high levels of c-fos mRNA that slowly declined to become normalized when analyzed at day 28. At day 7 after TMT a few distinct IL- 1Beta mRNA expressing glial cells were observed in the CA3c region. Thus, TMT exposure leads to alterations in the expresson of APP, APP- KPI, PS1, c-fos and IL- 1Beta in the limbic system. These findings suggest that TMT lesions, not only share certain key features of AD symptomatology and regional neurodegeneration, but also induce effects on important factors related to the pathophysiology of AD.
Collapse
Affiliation(s)
- Camilla Nilsberth
- Karolinska Institutet, Neurotec, Section of Experimental Geriatrics, Novum KFC, S-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Abstract
A short review of the most widely used and popular experimental models of traumatic brain injury is presented. This review focuses on current animal models of traumatic brain injury that apply mechanical energy to the skull or, after trephination of the skull, to the intact dura. Recent experimental studies evaluating the pathobiology of traumatic brain injury using these models are also discussed. This article attempts to provide a broad overview of current knowledge and controversies in experimental animal research on brain trauma.
Collapse
Affiliation(s)
- H L Laurer
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia 19104-6316, USA.
| | | |
Collapse
|