1
|
Corna A, Cojocaru AE, Bui MT, Werginz P, Zeck G. Avoidance of axonal stimulation with sinusoidal epiretinal stimulation. J Neural Eng 2024; 21:026036. [PMID: 38547529 DOI: 10.1088/1741-2552/ad38de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Objective.Neuromodulation, particularly electrical stimulation, necessitates high spatial resolution to achieve artificial vision with high acuity. In epiretinal implants, this is hindered by the undesired activation of distal axons. Here, we investigate focal and axonal activation of retinal ganglion cells (RGCs) in epiretinal configuration for different sinusoidal stimulation frequencies.Approach.RGC responses to epiretinal sinusoidal stimulation at frequencies between 40 and 100 Hz were tested inex-vivophotoreceptor degenerated (rd10) isolated retinae. Experiments were conducted using a high-density CMOS-based microelectrode array, which allows to localize RGC cell bodies and axons at high spatial resolution.Main results.We report current and charge density thresholds for focal and distal axon activation at stimulation frequencies of 40, 60, 80, and 100 Hz for an electrode size with an effective area of 0.01 mm2. Activation of distal axons is avoided up to a stimulation amplitude of 0.23µA (corresponding to 17.3µC cm-2) at 40 Hz and up to a stimulation amplitude of 0.28µA (14.8µC cm-2) at 60 Hz. The threshold ratio between focal and axonal activation increases from 1.1 for 100 Hz up to 1.6 for 60 Hz, while at 40 Hz stimulation frequency, almost no axonal responses were detected in the tested intensity range. With the use of synaptic blockers, we demonstrate the underlying direct activation mechanism of the ganglion cells. Finally, using high-resolution electrical imaging and label-free electrophysiological axon tracking, we demonstrate the extent of activation in axon bundles.Significance.Our results can be exploited to define a spatially selective stimulation strategy avoiding axonal activation in future retinal implants, thereby solving one of the major limitations of artificial vision. The results may be extended to other fields of neuroprosthetics to achieve selective focal electrical stimulation.
Collapse
Affiliation(s)
- Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | | | - Mai Thu Bui
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Paul Werginz
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
2
|
Wei H, Zuo Q. A biologically inspired neurocomputing circuit for image representation. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Majdi JA, Qian H, Li Y, Langsner RJ, Shea KI, Agrawal A, Hammer DX, Hanig JP, Cohen ED. The use of time-lapse optical coherence tomography to image the effects of microapplied toxins on the retina. Invest Ophthalmol Vis Sci 2014; 56:587-97. [PMID: 25525175 DOI: 10.1167/iovs.14-15594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We developed a novel technique for accelerated drug screening and retinotoxin characterization using time-lapse optical coherence tomography (OCT) and a drug microapplication device. METHODS Using an ex vivo rabbit eyecup preparation, we studied retinotoxin effects in real-time by microperfusing small retinal areas under a transparent fluoropolymer tube. Known retinotoxic agents were applied to the retina for 5-minute periods, while changes in retinal structure, thickness, and reflectance were monitored with OCT. The OCT images of two agents with dissimilar mechanisms, cyanide and kainic acid, were compared to their structural changes seen histologically. RESULTS We found the actions of retinotoxic agents tested could be classified broadly into two distinct types: (1) agents that induce neuronal depolarization, such as kainic acid, causing increases in OCT reflectivity or thickness of the inner plexiform and nuclear layers, and decreased reflectivity of the outer retina; and (2) agents that disrupt mitochondrial function, such as cyanide, causing outer retinal structural changes as evidenced by a reduction in the OCT reflectivity of the photoreceptor outer segment and pigment epithelium layers. CONCLUSIONS Retinotoxin-induced changes in retinal layer reflectivity and thickness under the microperfusion tube in OCT images closely matched the histological evidence of retinal injury. Time-lapse OCT imaging of the microperfused local retina has the potential to accelerate drug retinotoxicological screening and expand the use of OCT as an evaluation tool for preclinical animal testing.
Collapse
Affiliation(s)
- Joseph A Majdi
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Haohua Qian
- National Eye Institute, Visual Function Core, National Institutes of Health, Bethesda, Maryland, United States
| | - Yichao Li
- National Eye Institute, Visual Function Core, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert J Langsner
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Katherine I Shea
- Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Joseph P Hanig
- Office of Testing and Research, Center for Drug Evaluation and Research, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, Maryland, United States
| |
Collapse
|
4
|
Abstract
Amacrine cells represent the most diverse class of retinal neuron, comprising dozens of distinct cell types. Each type exhibits a unique morphology and generates specific visual computations through its synapses with a subset of excitatory interneurons (bipolar cells), other amacrine cells, and output neurons (ganglion cells). Here, we review the intrinsic and network properties that underlie the function of the most common amacrine cell in the mammalian retina, the AII amacrine cell. The AII connects rod and cone photoreceptor pathways, forming an essential link in the circuit for rod-mediated (scotopic) vision. As such, the AII has become known as the rod-amacrine cell. We, however, now understand that AII function extends to cone-mediated (photopic) vision, and AII function in scotopic and photopic conditions utilizes the same underlying circuit: AIIs are electrically coupled to each other and to the terminals of some types of ON cone bipolar cells. The direction of signal flow, however, varies with illumination. Under photopic conditions, the AII network constitutes a crossover inhibition pathway that allows ON signals to inhibit OFF ganglion cells and contributes to motion sensitivity in certain ganglion cell types. We discuss how the AII's combination of intrinsic and network properties accounts for its unique role in visual processing.
Collapse
|
5
|
Johnson LJ, Cohen E, Ilg D, Klein R, Skeath P, Scribner DA. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. J Neurosci Methods 2012; 205:223-32. [PMID: 22266817 DOI: 10.1016/j.jneumeth.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Microelectrode recording arrays of 60-100 electrodes are commonly used to record neuronal biopotentials, and these have aided our understanding of brain function, development and pathology. However, higher density microelectrode recording arrays of larger area are needed to study neuronal function over broader brain regions such as in cerebral cortex or hippocampal slices. Here, we present a novel design of a high electrode count picocurrent imaging array (PIA), based on an 81,920 pixel Indigo ISC9809 readout integrated circuit camera chip. While originally developed for interfacing to infrared photodetector arrays, we have adapted the chip for neuron recording by bonding it to microwire glass resulting in an array with an inter-electrode pixel spacing of 30 μm. In a high density electrode array, the ability to selectively record neural regions at high speed and with good signal to noise ratio are both functionally important. A critical feature of our PIA is that each pixel contains a dedicated low noise transimpedance amplifier (∼0.32 pA rms) which allows recording high signal to noise ratio biocurrents comparable to single electrode voltage amplifier recordings. Using selective sampling of 256 pixel subarray regions, we recorded the extracellular biocurrents of rabbit retinal ganglion cell spikes at sampling rates up to 7.2 kHz. Full array local electroretinogram currents could also be recorded at frame rates up to 100 Hz. A PIA with a full complement of 4 readout circuits would span 1cm and could acquire simultaneous data from selected regions of 1024 electrodes at sampling rates up to 9.3 kHz.
Collapse
Affiliation(s)
- Lee J Johnson
- Code 5611, Optical Sciences Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Buldyrev I, Puthussery T, Taylor WR. Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell. J Neurophysiol 2011; 107:1795-807. [PMID: 22205648 DOI: 10.1152/jn.00924.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different types of retinal ganglion cells represent distinct spatiotemporal filters that respond selectively to specific features in the visual input. Much about the circuitry and synaptic mechanisms that underlie such specificity remains to be determined. This study examines how N-methyl-d-aspartate (NMDA) receptor signaling combines with other excitatory and inhibitory mechanisms to shape the output of small-field OFF brisk-sustained ganglion cells (OFF-BSGCs) in the rabbit retina. We used voltage clamp to separately resolve NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and inhibitory inputs elicited by stimulation of the receptive field center. Three converging circuits were identified. First is a direct glutamatergic input, arising from OFF cone bipolar cells (CBCs), which is mediated by synaptic NMDA and AMPA receptors. The NMDA input was saturated at 10% contrast, whereas the AMPA input increased monotonically up to 60% contrast. We propose that NMDA inputs selectively enhance sensitivity to low contrasts. The OFF bipolar cells, mediating this direct excitatory input, express dendritic kainate (KA) receptors, which are resistant to the nonselective AMPA/KA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt (NBQX), but are suppressed by a GluK1- and GluK3-selective antagonist, (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxy-thiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione (UBP-310). The second circuit entails glycinergic crossover inhibition, arising from ON-CBCs and mediated by AII amacrine cells, which modulate glutamate release from the OFF-CBC terminals. The third circuit also comprises glycinergic crossover inhibition, which is driven by the ON pathway; however, this inhibition impinges directly on the OFF-BSGCs and is mediated by an unknown glycinergic amacrine cell that expresses AMPA but not KA receptors.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Oregon Health & Science Univ., 3375 S.W. Terwilliger Blvd., Portland, OR 97239, USA.
| | | | | |
Collapse
|
7
|
Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 2009; 12:1308-16. [PMID: 19734895 DOI: 10.1038/nn.2389] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 07/28/2009] [Indexed: 11/09/2022]
Abstract
The detection of approaching objects, such as looming predators, is necessary for survival. Which neurons and circuits mediate this function? We combined genetic labeling of cell types, two-photon microscopy, electrophysiology and theoretical modeling to address this question. We identify an approach-sensitive ganglion cell type in the mouse retina, resolve elements of its afferent neural circuit, and describe how these confer approach sensitivity on the ganglion cell. The circuit's essential building block is a rapid inhibitory pathway: it selectively suppresses responses to non-approaching objects. This rapid inhibitory pathway, which includes AII amacrine cells connected to bipolar cells through electrical synapses, was previously described in the context of night-time vision. In the daytime conditions of our experiments, the same pathway conveys signals in the reverse direction. The dual use of a neural pathway in different physiological conditions illustrates the efficiency with which several functions can be accommodated in a single circuit.
Collapse
Affiliation(s)
- Thomas A Münch
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Beaudoin DL, Manookin MB, Demb JB. Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell. J Physiol 2008; 586:5487-502. [PMID: 18832424 DOI: 10.1113/jphysiol.2008.156224] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Visual neurons adapt to increases in stimulus contrast by reducing their response sensitivity and decreasing their integration time, a collective process known as 'contrast gain control.' In retinal ganglion cells, gain control arises at two stages: an intrinsic mechanism related to spike generation, and a synaptic mechanism in retinal pathways. Here, we tested whether gain control is expressed similarly by three synaptic pathways that converge on an OFF alpha/Y-type ganglion cell: excitatory inputs driven by OFF cone bipolar cells; inhibitory inputs driven by ON cone bipolar cells; and inhibitory inputs driven by rod bipolar cells. We made whole-cell recordings of membrane current in guinea pig ganglion cells in vitro. At high contrast, OFF bipolar cell-mediated excitatory input reduced gain and shortened integration time. Inhibitory input was measured by clamping voltage near 0 mV or by recording in the presence of ionotropic glutamate receptor (iGluR) antagonists to isolate the following circuit: cone --> ON cone bipolar cell --> AII amacrine cell --> OFF ganglion cell. At high contrast, this input reduced gain with no effect on integration time. Mean luminance was reduced 1000-fold to recruit the rod bipolar pathway: rod --> rod bipolar cell --> AII cell --> OFF ganglion cell. The spiking response, measured with loose-patch recording, adapted despite essentially no gain control in synaptic currents. Thus, cone bipolar-driven pathways adapt differently, with kinetic effects confined to the excitatory OFF pathway. The ON bipolar-mediated inhibition reduced gain at high contrast by a mechanism that did not require an iGluR. Under rod bipolar-driven conditions, ganglion cell firing showed gain control that was explained primarily by an intrinsic property.
Collapse
|
10
|
Joselevitch C, Kamermans M. Retinal parallel pathways: seeing with our inner fish. Vision Res 2008; 49:943-59. [PMID: 18722397 DOI: 10.1016/j.visres.2008.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 06/21/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
The general organization of the vertebrate retina is highly conserved, in spite of structural variations that occur in different animal classes. The retinas of cyprinid fish, for example, differ in many aspects from those of primates. However, these differences are in the same order of magnitude as those found among mammalian species. Therefore, it is important to consider whether these changes are minor variations on the same theme or whether they lead to fundamentally different functions. In this light, we compare the retinal organization of teleost fish and mammals as regards parallel processing and discuss their many similarities.
Collapse
Affiliation(s)
- Christina Joselevitch
- Retinal Signal Processing, The Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Petrides A, Trexler EB. Differential output of the high-sensitivity rod photoreceptor: AII amacrine pathway. J Comp Neurol 2008; 507:1653-62. [PMID: 18241050 DOI: 10.1002/cne.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the mammalian retina, the scotopic threshold of ganglion cells is in part dependent on how rod inputs are summed by their presynaptic cone bipolar cells. For ON cone bipolar cells, there are two anatomical routes for rod signals: 1) cone photoreceptors receive inputs via gap junctions with the surrounding, more numerous rods; and 2) ON cone bipolar cells receive highly convergent input via gap junctions with AII amacrine cells, which each receive input from hundreds of rods. Rod-cone coupling is thought to be utilized at higher photon fluxes relative to the AII-ON cone bipolar pathway due to the impedance mismatch of a single small rod driving a larger cone. Furthermore, it is widely held that the convergence of high-gain chemical synapses onto AIIs confers the highest sensitivity to ON cone bipolar cells and ganglion cells. A lack of coupling between one or more types of ON cone bipolar cells and AIIs would obviate this high-sensitivity pathway and explain the existence of ganglion cells with elevated scotopic thresholds. To investigate this possibility, we examined Neurobiotin and glycine diffusion from AIIs to bipolar cells and found that approximately one-fifth of ON cone bipolar cells are not coupled to AIIs. Unlike AII-AII coupling, which changes with ambient background intensity, the fraction of noncoupled ON cone bipolar cells was unaltered by dark or light adaptation. These data suggest that one of five morphologically distinct ON cone bipolar cell types is not coupled to AIIs and suggest that AII-ON cone bipolar coupling is modulated differently from AII-AII coupling.
Collapse
Affiliation(s)
- Artemis Petrides
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
12
|
Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 2008; 28:4136-50. [PMID: 18417693 DOI: 10.1523/jneurosci.4274-07.2008] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cone signals divide into parallel ON and OFF bipolar cell pathways, which respond to objects brighter or darker than the background and release glutamate onto the corresponding type of ganglion cell. It is assumed that ganglion cell excitatory responses are driven by these bipolar cell synapses. Here, we report an additional mechanism: OFF ganglion cells were driven in part by the removal of synaptic inhibition (disinhibition). The disinhibition played a relatively large role in driving responses at low contrasts. The disinhibition persisted in the presence of CNQX and d-AP-5. Furthermore, the CNQX/d-AP-5-resistant response was blocked by l-AP-4, meclofenamic acid, quinine, or strychnine but not by bicuculline. Thus, the disinhibition circuit was driven by the ON pathway and required gap junctions and glycine receptors but not ionotropic glutamate or GABA(A) receptors. These properties implicate the AII amacrine cell, better known for its role in rod vision, as a critical circuit element through the following pathway: cone --> ON cone bipolar cell --> AII cell --> OFF ganglion cell. Rods could also drive this circuit through their gap junctions with cones. Thus, to light decrement, AII cells, driven by electrical synapses with ON cone bipolar cells, would hyperpolarize and reduce glycine release to excite OFF ganglion cells. To light increment, the AII circuit would directly inhibit OFF ganglion cells. These results show a new role for disinhibition in the retina and suggest a new role for the AII amacrine cell in daylight vision.
Collapse
|
13
|
Bizheva K, Pflug R, Hermann B, Považay B, Sattmann H, Qiu P, Anger E, Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 2006; 103:5066-71. [PMID: 16551749 PMCID: PMC1405907 DOI: 10.1073/pnas.0506997103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Noncontact, depth-resolved, optical probing of retinal response to visual stimulation with a <10-microm spatial resolution, achieved by using functional ultrahigh-resolution optical coherence tomography (fUHROCT), is demonstrated in isolated rabbit retinas. The method takes advantage of the fact that physiological changes in dark-adapted retinas caused by light stimulation can result in local variation of the tissue reflectivity. fUHROCT scans were acquired from isolated retinas synchronously with electrical recordings before, during, and after light stimulation. Pronounced stimulus-related changes in the retinal reflectivity profile were observed in the inner/outer segments of the photoreceptor layer and the plexiform layers. Control experiments (e.g., dark adaptation vs. light stimulation), pharmacological inhibition of photoreceptor function, and synaptic transmission to the inner retina confirmed that the origin of the observed optical changes is the altered physiological state of the retina evoked by the light stimulus. We have demonstrated that fUHROCT allows for simultaneous, noninvasive probing of both retinal morphology and function, which could significantly improve the early diagnosis of various ophthalmic pathologies and could lead to better understanding of pathogenesis.
Collapse
Affiliation(s)
- K. Bizheva
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - R. Pflug
- Department of Physiology, Medical University of Vienna, A-1090 Vienna, Austria; and
| | - B. Hermann
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - B. Považay
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - H. Sattmann
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - P. Qiu
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - E. Anger
- Department of Physiology, Medical University of Vienna, A-1090 Vienna, Austria; and
| | - H. Reitsamer
- Department of Physiology, Medical University of Vienna, A-1090 Vienna, Austria; and
| | - S. Popov
- Femtosecond Optics Group, Physics Department, Imperial College, London SW7 2BW, England
| | - J. R. Taylor
- Femtosecond Optics Group, Physics Department, Imperial College, London SW7 2BW, England
| | - A. Unterhuber
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
| | - P. Ahnelt
- Department of Physiology, Medical University of Vienna, A-1090 Vienna, Austria; and
| | - W. Drexler
- *Center for Biomedical Engineering and Physics/Christian Doppler Laboratory and
- To whom correspondence should be addressed.
| |
Collapse
|
14
|
Trexler EB, Li W, Massey SC. Simultaneous Contribution of Two Rod Pathways to AII Amacrine and Cone Bipolar Cell Light Responses. J Neurophysiol 2005; 93:1476-85. [PMID: 15525810 DOI: 10.1152/jn.00597.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rod signals traverse several synapses en route to cone bipolar cells. In one pathway, rods communicate directly with cones via gap junctions. In a second pathway, signals flow rods-rod bipolars-AII amacrines-cone bipolars. The relative contribution of each pathway to retinal function is not well understood. Here we have examined this question from the perspective of the AII amacrine. AIIs form bidirectional electrical synapses with on cone bipolars. Consequently, as on cone bipolars are activated by outer plexiform inputs, they too should contribute to the AII response. Rod bipolar inputs to AIIs were blocked by AMPA receptor antagonists, revealing a smaller, non-AMPA component of the light response. This small residual response did not reverse between −70 and +70 mV and was blocked by carbenoxolone, suggesting that the current arose in on cone bipolars and was transmitted to AIIs via gap junctions. The residual component was evident for stimuli 2 log units below cone threshold and was prolonged for bright stimuli, demonstrating that it was rod driven. Because the rod bipolar-AII pathway was blocked, the rod-driven residual current likely was generated via the rod-cone pathway activation of on cone bipolars. Thus for a large range of intensities, rod signals reach the inner retina by both rod bipolar-AII and rod-cone coupling pathways.
Collapse
Affiliation(s)
- E Brady Trexler
- Department of Ophthalmology and Neuroscience, University of Texas Medical School, Houston, Texas, USA.
| | | | | |
Collapse
|
15
|
Wong KY, Cohen ED, Dowling JE. Retinal Bipolar Cell Input Mechanisms in Giant Danio. II. Patch-Clamp Analysis of on Bipolar Cells. J Neurophysiol 2005; 93:94-107. [PMID: 15229214 DOI: 10.1152/jn.00270.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate receptors on giant danio retinal on bipolar cells were studied with whole cell patch clamping using a slice preparation. Cone-driven on bipolars (Cbs) and mixed-input on bipolars (Mbs) were identified morphologically. Most Cbs responded to the excitatory amino acid transporter (EAAT) substrate d-aspartate but not to the group III metabotropic glutamate receptor (mGluR) agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) or the AMPA/kainate receptor agonist kainate, suggesting EAATs are the primary glutamate receptors on Cbs. The EAAT inhibitor dl- threo-β-benzyloxyasparate (TBOA) blocked all light-evoked responses of Cbs, suggesting these responses are mediated exclusively by EAATs. Conversely, all Mbs responded to d-aspartate and l-AP4 but not to kainate, indicating they have both EAATs and group III mGluRs (presumably mGluR6). The light responses of Mbs involve both receptors because they could be blocked by TBOA plus (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III mGluR antagonist) but not by either alone. Under dark-adapted conditions, the responses of Mbs to green (rod-selective) stimuli were reduced by CPPG but enhanced by TBOA. In contrast, both antagonists reduced the responses to red (cone-selective) stimuli, although TBOA was more effective. Furthermore, under photopic conditions, TBOA failed to eliminate light-evoked responses of Mbs. Thus on Mbs, rod inputs are mediated predominantly by mGluR6, whereas cone inputs are mediated mainly by EAATs but also by mGluR6 to some extent. Finally, we explored the interactions between EAATs and mGluR6 in Mbs. Responses to d-aspartate were reduced by l-AP4 and vice versa. Therefore mGluR6 and EAATs suppress each other, and this might underlie mutual suppression between rod and cone signals in Mbs.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
16
|
Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A 2003; 100:6789-94. [PMID: 12750462 PMCID: PMC164525 DOI: 10.1073/pnas.1237052100] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d-serine has been proposed as an endogenous modulator of N-methyl-d-aspartate (NMDA) receptors in many brain regions, but its presence and function in the vertebrate retina have not been characterized. We have detected d-serine and its synthesizing enzyme, serine racemase, in the retinas of several vertebrate species, including salamanders, rats, and mice and have localized both constituents to Müller cells and astrocytes, the two major glial cell types in the retina. Physiological studies in rats and salamanders demonstrated that, in retinal ganglion cells, d-serine can enhance excitatory currents elicited by the application of NMDA, as well as the NMDA receptor component of light-evoked synaptic responses. Application of d-amino acid oxidase, which degrades d-serine, reduced the magnitude of NMDA receptor-mediated currents, raising the possibility that endogenous d-serine serves as a ligand for setting the sensitivity of NMDA receptors under physiological conditions. These observations raise exciting new questions about the role of glial cells in regulating the excitability of neurons through release of d-serine.
Collapse
Affiliation(s)
- Eric R Stevens
- Department of Neuroscience, 6-145 Jackson Hall, University of Minnesota, 321 Church Street Southeast, Minneapolis 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Cohen ED. Synaptic mechanisms shaping the light-response in retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2001; 131:215-28. [PMID: 11420942 DOI: 10.1016/s0079-6123(01)31018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E D Cohen
- Department of Cellular and Molecular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Abstract
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMDA) receptors contribute significantly to the light-evoked EPSCs of ON- and OFF-X cells at many different holding potentials. An NMDA receptor contribution to the EPSCs was observable when retinal synaptic inhibition was either normally present or pharmacologically blocked. NMDA receptors formed 80% of the peak light-evoked EPSC at a holding potential of -40 mV; however, even at -80 mV, 20% of the light-evoked EPSC was NMDA-mediated. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated component to the light-evoked EPSCs predominated at a holding potential of -80 mV. The light-evoked EPSC was blocked by the AMPA receptor-selective antagonist GYKI52466 (50-100 microM). The AMPA receptor-mediated EPSC component had a linear current-voltage relation. AMPA receptors form the main non-NMDA EAAR current on both ON- and OFF- X ganglion cell dendrites. When synaptic transmission was blocked by the addition of Cd(2+) to the Ringer, application of kainate directly to ganglion cells evoked excitatory currents that were strongly blocked by GYKI52466. Experiments using selective EAAR modulators showed the AMPA receptor-selective modulator cyclothiazide potentiated glutamate-evoked currents on X cells, while the kainate receptor-selective modulator concanavalin A (ConA) had no effect on kainate-evoked currents. Whereas the present study confirms the general notion that AMPA EAAR-mediated currents are transient and NMDA receptor-mediated currents are sustained, current-voltage relations of the light-evoked EPSC at different time points showed the contributions of these two receptor types significantly overlap. Both NMDA and AMPA EAARs can transmit transient and sustained visual signals in X ganglion cells, suggesting that much signal shaping occurs presynaptically in bipolar cells.
Collapse
MESH Headings
- Animals
- Cats
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ferrets
- In Vitro Techniques
- Patch-Clamp Techniques
- Photic Stimulation
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Synapses/drug effects
- Synapses/physiology
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|