1
|
Perspective: Gestational Tryptophan Fluctuation Altering Neuroembryogenesis and Psychosocial Development. Cells 2022; 11:cells11081270. [PMID: 35455949 PMCID: PMC9032700 DOI: 10.3390/cells11081270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Tryptophan, as the sole precursor of serotonin, mainly derived from diets, is essential for neurodevelopment and immunomodulation. Gestational tryptophan fluctuation may account for the maternal-fetal transmission in determining neuroembryogenesis with long-lasting effects on psychological development. Personality disorders and social exclusion are related to psychosocial problems, leading to impaired social functioning. However, it is not clear how the fluctuation in mother-child transmission regulates the neuroendocrine development and gut microbiota composition in progeny due to that tryptophan metabolism in pregnant women is affected by multiple factors, such as diets (tryptophan-enriched or -depleted diet), emotional mental states (anxiety, depression), health status (hypertension, diabetes), and social support as well as stresses and management skills. Recently, we have developed a non-mammal model to rationalize those discrepancies without maternal effects. This perspective article outlines the possibility and verified the hypothesis in bully-victim research with this novel model: (1). Summarizes the effects of the maternal tryptophan administration on the neuroendocrine and microbial development in their offspring; (2). Highlights the inconsistency and limitations in studying the relationship between gestational tryptophan exposure and psychosocial development in humans and viviparous animals; and (3). Evidences that embryonic exposure to tryptophan and its metabolite modify bullying interactions in the chicken model. With the current pioneer researches on the biomechanisms underlying the bully-victim interaction, the perspective article provides novel insights for developing appropriate intervention strategies to prevent psychological disorders among individuals, especially those who experienced prenatal stress, by controlling dietary tryptophan and medication therapy during pregnancy.
Collapse
|
2
|
Huang X, Kuang S, Applegate TJ, Lin TL, Cheng HW. The development of the serotonergic and dopaminergic systems during chicken mid-late embryogenesis. Mol Cell Endocrinol 2019; 493:110472. [PMID: 31167113 DOI: 10.1016/j.mce.2019.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023]
Abstract
Serotonin (5-HT) acts as a morphogen influencing embryonic brain development, and as a neurotransmitter regulating multiple biological functions with lifelong effects on animal physical, physiological and mental health, especially during the rapid growth phase prior to birth when embryos face many challenges to reach structural and functional completion. In this study, the development of the serotoninergic (5-HTergic) system and its modulatory effect on the dopaminergic (DAergic) system and related neural circuits were investigated during the mid-late embryogenesis, embryonic day (E)12-E20, in the chicken's brain. During 5-HTergic neuronal maturation, a growth-related anatomical and functional remodeling was highlighted: the 5-HT neurons continuously grew during E12-E20 except for a remarkable regression during E14-E16. Correspondingly, there was a time-dependent change in the 5-HT synthetic capacity. Specifically, 5-HT concentrations in the raphe nuclei increased from E12 to E14, reaching a first plateau during E14-E16, then continuously increased up to E19, and reaching a second plateau between E19-E20. The second plateau of the 5-HT concentration was in correspondence with the establishment of the 5-HTergic autoregulatory loop during E19-E20 and the development of the DAergic system. The DA concentrations remained unchanged from E12 to E16, then started to increase at E16, reaching a maximum at E19, and diminished before hatching. The unique developing time sequence between the 5-HTergic and DAergic systems suggests that the 5-HTergic system may play a critical role in forming the 5-HT - DA neural circuit during chicken embryogenesis. These results provide new insights for understanding the functional organization of the 5-HTergic system during embryonic development and raise the possibility that prenatally modulating the 5-HTergic system may lead to long-lasting brain structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, 30602, Georgia
| | - Tsang-Long Lin
- Animal Disease Diagnostic Lab, Purdue University, West Lafayette, IN, 47907, USA
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Rawat A, Chaube R, Joy KP. Effects of the fish spawning inducer ovaprim on vasotocin receptor gene expression in brain and ovary of the catfish Heteropneustes fossilis with a note on differential transcript expression in ovarian follicles. Gen Comp Endocrinol 2017; 241:24-32. [PMID: 26965953 DOI: 10.1016/j.ygcen.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/26/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Ovaprim (OVP), a commercial formulation of a salmon GnRH analogue and the dopamine receptor-2 blocker domperidone, is a successful spawning inducer for fish breeding. It induces a preovulatory surge in LH, which stimulates the synthesis of a maturation-inducing steroid (MIS, 17,20β-dihydroxy-4-pregnen-3-one) that initiates germinal vesicle breakdown (GVBD) and ovulation. Coincidently, the OVP treatment also stimulates vasotocin (VT) secretion in the brain and ovary of the catfish Heteropneustes fossilis that also stimulates the synthesis of the MIS. VT mediates its effect through V1- and V2-type receptors. In the present study in the catfish, we report that OVP stimulates the expression of VT receptor genes v1a1, v1a2 and v2a in the brain and ovary. A single intraperitoneal administration of OVP (0.5μL/g body weight) or incubation of post-vitellogenic ovarian follicles with 5μL/mL OVP, for 0, 4, 8, 12, 16, and 24h stimulated ovulation and GVBD, respectively, in a time-dependent manner. The OVP treatment in vivo stimulated brain VT receptor transcript levels 4h onwards. The peak expression was noticed at 12h (v1a1), 8 and 12h (v1a2), and 8, 12 and 16h (v2a), coinciding with FOM and ovulation. The VT receptor genes are expressed in the ovarian follicles compartmentally; both v1a1 and v1a2 are expressed in the isolated follicular layer (theca and granulosa) but absent in denuded oocytes. V2a is expressed in the denuded oocytes and not in the follicular layer. The OVP injection stimulated the v1a1 and v1a2 expression from 4h onwards in both intact follicle and isolated follicular layer, the peak expression was observed at 16h. The v2a expression was up-regulated in both intact follicles and denuded oocytes at 4h (denuded oocytes) or 8h (intact follicle) onwards with the peak expression at 12h and 16h (denuded oocytes) or at 16h (intact follicles). Under in vitro conditions, the OVP incubations elicited similar pattern of changes with the peak stimulation at 16h for all the genes. In conclusion, the VT receptor genes are differentially expressed in the ovarian follicles and OVP induced periovulatory stimulation of the VT receptor genes, coinciding with FOM and ovulation.
Collapse
Affiliation(s)
- A Rawat
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Kline RJ, Holt GJ, Khan IA. Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis. Gen Comp Endocrinol 2016; 225:33-44. [PMID: 26361870 DOI: 10.1016/j.ygcen.2015.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 11/21/2022]
Abstract
The arginine vasotocin/vasopressin (AVT/AVP) and gonadotropin releasing hormone (GnRH) systems are known to control sexual behaviors and reproduction, respectively, in different vertebrate groups. However, a direct functional connection between these two neuroendocrine systems has not been demonstrated for any vertebrate species. Therefore, the objective of this research was to test the hypothesis that AVT acts on the GnRH system via an AVT V1a receptor in a sex changing grouper species, the rock hind, Epinephelus adscensionis. AVT V1a2 receptors were co-localized with GnRH-I on neurons in the preoptic anterior hypothalamus identifying a structural linkage between the AVT system and GnRH-I. Transcripts for avt, gnrh-I, and two AVT receptor subtypes (v1a1 and v1a2) were isolated and characterized for E. adscensionis and their expression was measured in males and females by q-RT-PCR. Translation of V1a-type cDNA sequences revealed two distinct forms of the AVT V1a receptor in E. adscensionis brain similar to those reported for other species. The observation of significantly higher gnrh-I mRNA in the POA+H of rock hind males as compared to females suggests differential regulation of the gnrh-I transcripts in the two sexes of this protogynous species. In male E. adscensionis, but not in females, a negative relationship was seen between plasma 11-ketotestosterone (11-KT) and the v1a1 receptor mRNA levels in the POA+H, while a positive trend was observed between 11-KT and v1a2 receptor mRNA levels, indicating that these receptor forms may be differentially regulated.
Collapse
Affiliation(s)
- Richard J Kline
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520, USA.
| | - G Joan Holt
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Izhar A Khan
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX 75428, USA
| |
Collapse
|
5
|
García-Fernández JM, Cernuda-Cernuda R, Davies WIL, Rodgers J, Turton M, Peirson SN, Follett BK, Halford S, Hughes S, Hankins MW, Foster RG. The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrinol 2015; 37:13-28. [PMID: 25448788 DOI: 10.1016/j.yfrne.2014.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 01/30/2023]
Abstract
Extraretinal photoreceptors located within the medio-basal hypothalamus regulate the photoperiodic control of seasonal reproduction in birds. An action spectrum for this response describes an opsin photopigment with a λmax of ∼ 492 nm. Beyond this however, the specific identity of the photopigment remains unresolved. Several candidates have emerged including rod-opsin; melanopsin (OPN4); neuropsin (OPN5); and vertebrate ancient (VA) opsin. These contenders are evaluated against key criteria used routinely in photobiology to link orphan photopigments to specific biological responses. To date, only VA opsin can easily satisfy all criteria and we propose that this photopigment represents the prime candidate for encoding daylength and driving seasonal breeding in birds. We also show that VA opsin is co-expressed with both gonadotropin-releasing hormone (GnRH) and arginine-vasotocin (AVT) neurons. These new data suggest that GnRH and AVT neurosecretory pathways are endogenously photosensitive and that our current understanding of how these systems are regulated will require substantial revision.
Collapse
Affiliation(s)
- José M García-Fernández
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Spain
| | - Wayne I L Davies
- School of Animal Biology and University of Western Australia Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jessica Rodgers
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Michael Turton
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Brian K Follett
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.eNuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
6
|
Ohuchi H, Yamashita T, Tomonari S, Fujita-Yanagibayashi S, Sakai K, Noji S, Shichida Y. A non-mammalian type opsin 5 functions dually in the photoreceptive and non-photoreceptive organs of birds. PLoS One 2012; 7:e31534. [PMID: 22348098 PMCID: PMC3279408 DOI: 10.1371/journal.pone.0031534] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/09/2012] [Indexed: 11/23/2022] Open
Abstract
A mammalian type opsin 5 (neuropsin) is a recently identified ultraviolet (UV)-sensitive pigment of the retina and other photosensitive organs in birds. Two other opsin 5-related molecules have been found in the genomes of non-mammalian vertebrates. However, their functions have not been examined as yet. Here, we identify the molecular properties of a second avian opsin 5, cOpn5L2 (chicken opsin 5-like 2), and its localization in the post-hatch chicken. Spectrophotometric analysis and radionucleotide-binding assay have revealed that cOpn5L2 is a UV-sensitive bistable pigment that couples with the Gi subtype of guanine nucleotide-binding protein (G protein). As a bistable pigment, it also shows the direct binding ability to agonist all-trans-retinal to activate G protein. The absorption maxima of UV-light-absorbing and visible light-absorbing forms were 350 and 521 nm, respectively. Expression analysis showed relatively high expression of cOpn5L2 mRNA in the adrenal gland, which is not photoreceptive but an endocrine organ, while lower expression was found in the brain and retina. At the protein level, cOpn5L2 immunoreactive cells were present in the chromaffin cells of the adrenal gland. In the brain, cOpn5L2 immunoreactive cells were found in the paraventricular and supraoptic nuclei of the anterior hypothalamus, known for photoreceptive deep brain areas. In the retina, cOpn5L2 protein was localized to subsets of cells in the ganglion cell layer and the inner nuclear layer. These results suggest that the non-mammalian type opsin 5 (Opn5L2) functions as a second UV sensor in the photoreceptive organs, while it might function as chemosensor using its direct binding ability to agonist all-trans-retinal in non-photoreceptive organs such as the adrenal gland of birds.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
8
|
Garlov PE. Plasticity of nonapeptidergic neurosecretory cells in fish hypothalamus and neurohypophysis. ACTA ACUST UNITED AC 2006; 245:123-70. [PMID: 16125547 DOI: 10.1016/s0074-7696(05)45005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The structure and function of nonapeptidergic neurosecretory cells (NP-NSC) are considered in terms of comparative morphology. Among NSC of different ergicity for NP-NSC the most characteristic involve massive accumulation and storage of neurohormonal products. Only in NP-NSC are the secretory cycles of functioning clearly expressed. Their highest reactivity is established during experimental and physiological stresses. In contrast, liberinergic, statinergic, and monoaminergic NSC, unlike NP-NSC, are characterized even in the "norm" by a constantly high level of extrusion processes. As signs of maximum NP-NSC plasticity, we consider the largest size of elementary neurosecretory granules, the diversity of secretion forms, and the maximum development of Herring bodies-clear manifestations of secretory cycles of functioning. In particular, phases of massive storage of neurosecretory granules in the extrusion cycle of NP-NSC neurosecretory terminals express accumulation of neurosecretory products. It is concluded that a particularly high degree of plasticity of NP-NSC is provided by their capability for functional reversion. This reversion is manifested first in the form of the restoration of the initial moderate level of functioning and especially in the accumulation of neurosecretory products. The reversion is considered an important mechanism providing a high degree of NSC plasticity. This degree turns out to be sufficient for participation of NP-NSC in the integration of fish reproduction. It is shown that NP-NSC are organized by the principle of a triad of the balanced system. This system consists of two alternative states: accumulation and release of neurosecretory products and the center of control of dynamics of their interrelations, the self-regulating center. In the latter, the key role is probably played by the Golgi complex.
Collapse
|
9
|
Bellemère G, Vaudry H, Morain P, Jégou S. Effect of prolyl endopeptidase inhibition on arginine-vasopressin and thyrotrophin-releasing hormone catabolism in the rat brain. J Neuroendocrinol 2005; 17:306-13. [PMID: 15869566 DOI: 10.1111/j.1365-2826.2005.01308.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compound S 17092 is a potent and selective inhibitor of prolyl endopeptidase (EC 3.4.21.26, PEP) that may be of therapeutic value for the treatment of memory impairment associated with neurodegenerative diseases. In the present study, we investigated the effects of S 17092 on the catabolism of the promnesic neuropeptides thyrotrophin-releasing hormone (TRH) and arginine-vasopressin (AVP) in the rat brain. In vitro, bacterial PEP hydrolysed both TRH and AVP, and the breakdown of the two peptides was almost completely prevented by 10(-5) M S 17092. In vivo, a single oral administration of S 17092 provoked a significant increase in TRH-like immunoreactivity (TRH-LI) in the cerebral cortex (+63% for a 10 mg/kg dose and +72% for a 30 mg/kg dose), as well as AVP-LI in the hippocampus (+54% for a 30 mg/kg dose), but did not affect TRH-LI in the amygdala nor AVP-LI in the cerebral cortex. Chronic administration of S 17092 (10 or 30 mg/kg daily) lead to a significant increase in THR-LI in the cerebral cortex (+55% and +56%, respectively), but did not modify AVP-LI in the hippocampus, nor in the cerebral cortex. These results show that the selective PEP inhibitor S 17092 increases TRH and AVP content in discrete regions of the rat brain. The present data suggest that the promnesic and antiamnesic effects of S 17092 can be accounted for, at least in part, by blockage of AVP and TRH degradation by PEP.
Collapse
Affiliation(s)
- G Bellemère
- INSERM U413, European Institute for Peptide Research, Laboratory of Cellular and Molecular Neuroendocrinology, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
10
|
Dermon CR, Stamatakis A, Giakoumaki S, Balthazart J. Differential effects of testosterone on protein synthesis activity in male and female quail brain. Neuroscience 2004; 123:647-66. [PMID: 14706777 DOI: 10.1016/j.neuroscience.2003.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In Japanese quail, testosterone (T) increases the Nissl staining density in the medial preoptic nucleus (POM) in relation to the differential activation by T of copulatory behavior. The effect of T on protein synthesis was quantified here in 97 discrete brain regions by the in vivo autoradiographic (14)C-leucine (Leu) incorporation method in adult gonadectomized male and female quail that had been treated for 4 weeks with T or left without hormone. T activated male sexual behaviors in males but not females. Overall Leu incorporation was increased by T in five brain regions, many of which contain sex steroid receptors such as the POM, archistriatum and lateral hypothalamus. T decreased Leu incorporation in the medial septum. Leu incorporation was higher in males than females in two nuclei but higher in females in three nuclei including the hypothalamic ventromedial nucleus. Significant interactions between effects of T and sex were seen in 13 nuclei: in most nuclei (n=12), T increased Leu incorporation in males but decreased it in females. The POM boundaries were defined by a denser Leu incorporation than the surrounding area and incorporation was increased by T more in males (25%) than in females (6%). These results confirm that protein synthesis in brain areas relevant to the control of sexual behavior can be affected by the sex of the subjects or their endocrine condition and that T can have differential effects in the two sexes. These anabolic changes should reflect the sexually differentiated neurochemical mechanisms mediating behavioral activation.
Collapse
Affiliation(s)
- C R Dermon
- Department of Biology, University of Crete, Heraklion 714 09, Crete, Greece
| | | | | | | |
Collapse
|
11
|
Saito D, Hasegawa Y, Urano A. Gonadotropin-releasing hormones modulate electrical activity of vasotocin and isotocin neurons in the brain of rainbow trout. Neurosci Lett 2003; 351:107-10. [PMID: 14583393 DOI: 10.1016/j.neulet.2003.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is widely distributed in the vertebrate brains; however, its significance in the brain function is poorly understood. Both GnRH and vasopressin-family hormones are involved in control of reproductive behavior. Anatomical evidence indicated the possible action of GnRH on classical neurosecretory neurons. In the present study, we examined whether GnRH modulates electrical activity of vasotocin (VT) and isotocin (IT) neurons in the brain of rainbow trout (Oncorhynchus mykiss). Two forms of GnRH, salmon GnRH and chicken GnRH II, are present in the rainbow trout brain, and their fibers are localized in the close vicinity of VT and IT neurons. Applications of both GnRH forms elevated the frequency of cell-type-specific synchronous Ca(2+) pulses in VT and IT neurons that are blocked by a GnRH-receptor antagonist. Our results showed facilitatory actions of GnRHs on VT and IT neurons, suggesting that GnRH neurons modulate classical neurosecretory neurons to control reproductive behavior.
Collapse
Affiliation(s)
- Daisuke Saito
- Division of Biological Sciences, Hokkaido University Graduate School of Science, Sapporo, Hokkaido 060-0810, Japan.
| | | | | |
Collapse
|
12
|
Abstract
The neurohypophyseal hormone arginine vasotocin (AVT) combines both antidiuretic and reproductive activities. In the domestic chicken AVT produces assimetric effects on the reproductive functions of males and females. AVT synthesized in magnocellular diencephalic neurons is released into circulation in a highly coordinated manner contributing to the peripheral control of oviposition in hens. Conversely, parvocellular AVT cells located in the limbic system (bed nucleus of stria terminalis (BST)) are quite different in their properties and, possible, functions. In domestic chickens these cells express AVT in a sexually dimorphic manner and are found solely in males. This sexually dimorphic part of the AVT system is sensitive to gonadal steroids. Experimental data demonstrated that AVT modulates different aspects of reproductive behavior including courtship vocalization and copulation. Sexual differentiation of these limbic vasotocinergic cells show striking correlation with sexual differentiation of masculine behavior. Evidences coming from physiological, anatomical and ethological studies suggest strong implication of the vasotocinergic system in the control of reproductive functions.
Collapse
Affiliation(s)
- A Jurkevich
- Institute of Ecology, Vilnius University, Akademijos 2, Vilnius LT-2600, Lithuania
| | | |
Collapse
|
13
|
Absil P, Foidart A, Hemmings HC, Steinbusch HW, Ball GF, Balthazart J. Distribution of DARPP-32 immunoreactive structures in the quail brain: anatomical relationship with dopamine and aromatase. J Chem Neuroanat 2001; 21:23-39. [PMID: 11173218 DOI: 10.1016/s0891-0618(00)00094-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We recently demonstrated that dopamine (DA) as well as different DA receptor agonists and antagonists are able to decrease within a few minutes the aromatase activity (AA) measured in vitro in homogenates or in explants of the quail preoptic area - hypothalamus. In addition, DA also appears to regulate AA, in vivo presumably by modifying enzyme synthesis. The cellular mechanisms and the anatomical substrate that mediate these controls of AA by DA are poorly understood. Tyrosine hydroxylase-immunoreactive (TH-ir) fibers and punctate structures have been previously observed in close vicinity of aromatase-immunoreactive (ARO-ir) cells in the quail medial preoptic nucleus (POM) and bed nucleus striae terminalis (BST) but these fibers could reflect a noradrenergic innervation. We also do not know whether aromatase cells are dopaminoceptive. The main goal of the present study was therefore to bring more information on the anatomical relationships between aromatase expressing neurons and the dopaminergic system in the quail brain. The visualization by immunocytochemistry of DA and of the D1 receptor associated protein DARPP-32 was used to address these questions. DA-ir fibers were observed in the quail forebrain and overlapped extensively with nuclei that contain high densities of ARO-ir cells such as the POM and BST. This confirms that the previously reported TH-ir innervation of ARO-ir cells is, at least in part, of dopaminergic nature. DARPP-32-immunoreactive cells were found in periventricular position throughout the hypothalamus. DARPP-32-ir cells were also observed in telencephalic and mesencephalic areas (hyperstriatum accessorium, paleostriatum, nucleus intercollicularis, optic tectum). DARPP-32-ir fibers were widespread in tel-, di-, and mes-encephalic areas. The highest densities of immunoreactive fibers were detected in the lobus parolfactorius, paleostriatum augmentatum and substantia nigra/area ventralis of Tsai. In double-labeled sections, appositions between DARPP-32 fibers and ARO-ir cells were present in the dorsolateral POM and BST but DARPP-32 immunoreactivity was not detected in the ARO-ir perikarya (no colocalization). These data confirm the presence of a dopaminoceptive structures within the main cell clusters of ARO-ir cells in the quail brain but provide no evidence that these ARO-ir cells are themselves dopaminoceptive. Because DARPP-32 is not present in all types of cells expressing DA receptors, the presence of DA receptors that would not be associated with DARPP-32 in ARO-ir cells still remains to be investigated
Collapse
Affiliation(s)
- P Absil
- Euron European Graduate School of Neuroscience, USA
| | | | | | | | | | | |
Collapse
|