1
|
Blount Q, Hernandez-Morato I, Moayedi Y, Pitman MJ. Expression of Glial Cell-Derived Neurotrophic Factor Receptors Within Nucleus Ambiguus During Rat Development. Laryngoscope 2023; 133:2240-2247. [PMID: 36271908 PMCID: PMC10121972 DOI: 10.1002/lary.30440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The nucleus ambiguus (NAmb) is a column of neurons in the medulla oblongata, involved in bulbar functions. Expression of Glial Cell-Derived Neurotrophic Factor (GDNF) and its receptors (GDNFR) is observed within the cell bodies during reinnervation following recurrent laryngeal nerve (RLN) injury. Little is known regarding GDNFR expression in the formation of the NAmb and the laryngeal innervation during embryogenesis. Understanding the timing and pattern of GDNFR expression in embryogenesis versus after RLN injury may provide insights into therapeutic targets for regeneration after RLN injury. STUDY DESIGN Laboratory experiment. METHODS Rat brainstems at E14.5/E16.5/E18.5/E20.5/adult were stained for GDNFR: GFRα-1/GFRα-2/GFRα-3/Ret. Islet1 and choline acetyltransferase were used as cell body markers. Sections were observed using fluorescent microscopy and quantified through manual cell counting. RESULTS Expression of GFRα-1, GFRα-3, and Ret was identified within the NAmb, hypoglossal, and facial nuclei of the adult medulla. During development, GFRα-1 immunoreactivity was seen at E20.5. GFRα-2 expression was not observed at any timepoint. GFRα-3 expression began at E16.5. Ret expression within nerve fibers in the NAmb were observed beginning at E14.5, but never in the cell bodies. CONCLUSION Embryonic GDNFR expression in the NAmb differs from that of the adult after RLN injury. The developing brainstem experienced upregulation at discrete timepoints with signaling sustained through adulthood. In contrast, adult RLN-transected rats experienced patterns of up and down regulation. GFRα-1 may contribute to muscle targeting and neuromuscular junction maturation, GFRα-3 may contribute to both, as well as axon guidance. It is likely that GDNF is functioning via a Ret-independent pathway. LEVEL OF EVIDENCE NA Laryngoscope, 133:2240-2247, 2023.
Collapse
Affiliation(s)
- Quinton Blount
- Mercer University School of Medicine, Columbus, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Department of Neurology, Columbia University, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Principal Investigator
| |
Collapse
|
2
|
Kasanga EA, Owens CL, Cantu MA, Richard AD, Davis RW, McDivitt LM, Blancher B, Pruett BS, Tan C, Gajewski A, Manfredsson FP, Nejtek VA, Salvatore MF. GFR-α1 Expression in Substantia Nigra Increases Bilaterally Following Unilateral Striatal GDNF in Aged Rats and Attenuates Nigral Tyrosine Hydroxylase Loss Following 6-OHDA Nigrostriatal Lesion. ACS Chem Neurosci 2019; 10:4237-4249. [PMID: 31538765 DOI: 10.1021/acschemneuro.9b00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) improved motor function in Parkinson's disease (PD) patients in Phase I clinical trials, and these effects persisted months after GDNF discontinuation. Conversely, phase II clinical trials reported no significant effects on motor improvement vs placebo. The disease duration and the quantity, infusion approach, and duration of GDNF delivery may affect GDNF efficacy in PD treatment. However, identifying mechanisms activated by GDNF that affect nigrostriatal function may reveal additional avenues to partially restore nigrostriatal function. In PD and aging models, GDNF affects tyrosine hydroxylase (TH) expression or phosphorylation in substantia nigra (SN), long after a single GDNF injection in striatum. In aged rats, the GDNF family receptor, GFR-α1, increases TH expression and phosphorylation in SN. To determine if GFR-α1 could be a mechanistic link in long-term GDNF impact, we conducted two studies; first to determine if a single unilateral striatal delivery of GDNF affected GFR-α1 and TH over time (1 day, 1 week, and 4 weeks) in the striatum or SN in aged rats, and second, to determine if soluble GFR-α1 could mitigate TH loss following 6-hydroxydopamine (6-OHDA) lesion. In aged rats, GDNF bilaterally increased ser31 TH phosphorylation and GFR-α1 expression in SN at 1 day and 4 weeks after GDNF, respectively. In striatum, GFR-α1 expression decreased 1 week after GDNF, only on the GDNF-injected side. In 6-OHDA-lesioned rats, recombinant soluble GFR-α1 mitigated nigral, but not striatal, TH protein loss following 6-OHDA. Together, these results show GDNF has immediate and long-term impact on dopamine regulation in the SN, which includes a gradual increase in GFR-α1 expression that may sustain TH expression and dopamine function therein.
Collapse
Affiliation(s)
- Ella A Kasanga
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Catherine L Owens
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Mark A Cantu
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Adam D Richard
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Richard W Davis
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Lisa M McDivitt
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Blake Blancher
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Brandon S Pruett
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Christopher Tan
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Austin Gajewski
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology , Barrow Neurological Institute , Phoenix , Arizona 85013 , United States
| | - Vicki A Nejtek
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Michael F Salvatore
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
3
|
GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity. Brain Res Bull 2018; 140:270-280. [PMID: 29758254 DOI: 10.1016/j.brainresbull.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity.
Collapse
|
4
|
Arnold JC, Cantu MA, Kasanga EA, Nejtek VA, Papa EV, Bugnariu N, Salvatore MF. Aging-related limit of exercise efficacy on motor decline. PLoS One 2017; 12:e0188538. [PMID: 29176896 PMCID: PMC5703560 DOI: 10.1371/journal.pone.0188538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 01/05/2023] Open
Abstract
Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12-18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRα-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRα-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRα-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRα-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRα-1 expression following exercise may limit its efficacy to reverse motor decline.
Collapse
Affiliation(s)
- Jennifer C. Arnold
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Neurosurgery, New York University School of Medicine, New York, New York, United States of America
| | - Mark A. Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ella A. Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Vicki A. Nejtek
- Institute for Healthy Aging and Center for Alzheimer’s and Neurodegenerative Disease Research, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Evan V. Papa
- Department of Physical & Occupational Therapy, Idaho State University–Meridian Health Science Center, Meridian, ID, United States of America
| | - Nicoleta Bugnariu
- School of Health Professions, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Arnold JC, Salvatore MF. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats. ACS Chem Neurosci 2016; 7:227-39. [PMID: 26599339 PMCID: PMC4926611 DOI: 10.1021/acschemneuro.5b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.
Collapse
Affiliation(s)
- Jennifer C. Arnold
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
6
|
Pruett BS, Salvatore MF. Nigral GFRα1 infusion in aged rats increases locomotor activity, nigral tyrosine hydroxylase, and dopamine content in synchronicity. Mol Neurobiol 2013; 47:988-99. [PMID: 23321789 DOI: 10.1007/s12035-013-8397-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2013] [Indexed: 02/05/2023]
Abstract
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson's disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF's cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.
Collapse
Affiliation(s)
- Brandon S Pruett
- Department of Pharmacology, Louisiana State University Health Sciences Center, School of Medicine, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130, USA
| | | |
Collapse
|
7
|
Barak S, Ahmadiantehrani S, Kharazia V, Ron D. Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption. Transl Psychiatry 2011; 1. [PMID: 22238721 PMCID: PMC3253655 DOI: 10.1038/tp.2011.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is an essential growth factor for the survival and maintenance of the midbrain dopaminergic (DA-ergic) neurons. Activation of the GDNF pathway in the ventral tegmental area (VTA), where the GDNF receptors are expressed, produces a long-lasting suppression of excessive alcohol consumption in rats. Previous studies conducted in the DA-ergic-like cells, SHSY5Y, revealed that GDNF positively regulates its own expression, leading to a long-lasting activation of the GDNF signaling pathway. Here we determined whether GDNF activates a positive autoregulatory feedback loop in vivo within the VTA, and if so, whether this mechanism underlies the long-lasting suppressive effects of the growth factor on excessive alcohol consumption. We found that a single infusion of recombinant GDNF (rGDNF; 10 μg) into the VTA induces a long-lasting local increase in GDNF mRNA and protein levels, which depends upon de novo transcription and translation of the polypeptide. Importantly, we report that the GDNF-mediated positive autoregulatory feedback loop accounts for the long-lasting inhibitory actions of GDNF in the VTA on excessive alcohol consumption. Specifically, the long-lasting suppressive effects of a single rGDNF infusion into the VTA on excessive alcohol consumption were prevented when protein synthesis was inhibited, as well as when the upregulation of GDNF expression was prevented using short hairpin RNA to focally knock down GDNF mRNA in the VTA. Our results could have implications for the development of long-lasting treatments for disorders in which GDNF has a beneficial role, including drug addiction, chronic stress and Parkinson's disease.
Collapse
Affiliation(s)
- S Barak
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Ahmadiantehrani
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,The Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - V Kharazia
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA
| | - D Ron
- The Ernest Gallo Research Center, University of California, San Francisco, Emeryville, CA, USA,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA,The Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA,Department of Neurology, The Ernest Gallo Research Center, University of California, San Francisco, 5858 Horton St., Suite 200, Emeryville, San Francisco, CA 94608, USA. E-mail:
| |
Collapse
|
8
|
Pruett BS, Salvatore MF. GFR α-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. J Neurochem 2010; 115:707-15. [DOI: 10.1111/j.1471-4159.2010.06963.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Lucini C, Carla L, Facello B, Bruna F, Maruccio L, Lucianna M, Langellotto F, Fernanda L, Sordino P, Paolo S, Castaldo L, Luciana C. Distribution of glial cell line-derived neurotrophic factor receptor alpha-1 in the brain of adult zebrafish. J Anat 2010; 217:174-85. [PMID: 20572899 DOI: 10.1111/j.1469-7580.2010.01254.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent trophic factor for several types of neurons in the central and peripheral nervous systems. The biological activity of GDNF is mediated by a multicomponent receptor complex that includes a common transmembrane signaling component (the rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor) as well as a GDNF family receptor alpha (GFRalpha) subunit, a high-affinity glycosyl phosphatidylinositol (GPI)-linked binding element. Among the four known GFRalpha subunits, GFRalpha1 preferentially binds to GDNF. In zebrafish (Danio rerio) embryos, the expression of the GFRalpha1a and GFRalpha1b genes has been shown in primary motor neurons, the kidney, and the enteric nervous system. To examine the activity of GFRalpha in the adult brain of a lower vertebrate, we have investigated the localization of GFRalpha1a and GFRalpha1b mRNA and the GFRalpha1 protein in zebrafish. GFRalpha1a and GFRalpha1b transcripts were observed in brain extracts by reverse transcription-polymerase chain reaction. Whole-mount in-situ hybridization experiments revealed a wide distribution of GFRalpha1a and GFRalpha1b mRNAs in various regions of the adult zebrafish brain. These included the olfactory bulbs, dorsal and ventral telencephalic area (telencephalon), preoptic area, dorsal and ventral thalamus, posterior tuberculum and hypothalamus (diencephalon), optic tectum (mesencephalon), cerebellum, and medulla oblongata (rhombencephalon). Finally, expression patterns of the GFRalpha1 protein, detected immunohistochemically, correlated well with the mRNA expression and provided further insights into translational activity at the neuroanatomical level. In conclusion, the current study demonstrated that the presence of GFRalpha1 persists beyond the embryonic development of the zebrafish brain and, together with the GDNF ligand, is probably implicated in the brain physiology of an adult teleost fish.
Collapse
Affiliation(s)
- Carla Lucini
- Department of Biological Structures, Functions and Technology, University of Naples 'Federico II', Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Facello B, Castaldo L, De Martino L, Lucini C. Glial cell line-derived neurotrophic factor in Purkinje cells of adult zebrafish: An autocrine mode of action? Neurosci Lett 2009; 465:133-7. [DOI: 10.1016/j.neulet.2009.08.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 11/28/2022]
|
11
|
Li J, Chian RJ, Ay I, Kashi BB, Celia SA, Tamrazian E, Pepinsky RB, Fishman PS, Brown RH, Francis JW. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS. Biochem Biophys Res Commun 2009; 390:947-51. [PMID: 19852934 DOI: 10.1016/j.bbrc.2009.10.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/15/2009] [Indexed: 11/16/2022]
Abstract
With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFRalpha-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.
Collapse
Affiliation(s)
- Jianhong Li
- Cecil B Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carnicella S, Ahmadiantehrani S, Janak PH, Ron D. GDNF is an endogenous negative regulator of ethanol-mediated reward and of ethanol consumption after a period of abstinence. Alcohol Clin Exp Res 2009; 33:1012-24. [PMID: 19302086 DOI: 10.1111/j.1530-0277.2009.00922.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces ethanol-drinking behaviors. In this study, we set out to assess the contribution of endogenous GDNF or its receptor GFRalpha1 to the regulation of ethanol-related behaviors. METHODS GDNF and GFRalpha1 heterozygote mice (HET) and their wild-type littermate controls (WT) were used for the studies. Ethanol-induced hyperlocomotion, sensitization, and conditioned place preference (CPP), as well as ethanol consumption before and after a period of abstinence were evaluated. Blood ethanol concentration (BEC) was also measured. RESULTS We observed no differences between the GDNF HET and WT mice in the level of locomotor activity or in sensitization to ethanol-induced hyperlocomotion after systemic injection of a nonhypnotic dose of ethanol and in BEC. However, GDNF and GFRalpha1 mice exhibited increased place preference to ethanol as compared with their WT littermates. The levels of voluntary ethanol or quinine consumption were similar in the GDNF HET and WT mice, however, a small but significant increase in saccharin intake was observed in the GDNF HET mice. No changes were detected in voluntary ethanol, saccharin or quinine consumption of GFRalpha1 HET mice as compared with their WT littermates. Interestingly, however, both the GDNF and GFRalpha1 HET mice consumed much larger quantities of ethanol after a period of abstinence from ethanol as compared with their WT littermates. Furthermore, the increase in ethanol consumption after abstinence was found to be specific for ethanol as similar levels of saccharin intake were measured in the GDNF and GFRalpha1 HET and WT mice after abstinence. CONCLUSIONS Our results suggest that endogenous GDNF negatively regulates the rewarding effect of ethanol and ethanol-drinking behaviors after a period of abstinence.
Collapse
Affiliation(s)
- Sebastien Carnicella
- The Ernest Gallo Research Center, University of California-San Francisco, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
13
|
Carnicella S, Amamoto R, Ron D. Excessive alcohol consumption is blocked by glial cell line-derived neurotrophic factor. Alcohol 2009; 43:35-43. [PMID: 19185208 DOI: 10.1016/j.alcohol.2008.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 12/30/2022]
Abstract
We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces moderate alcohol (ethanol) intake in a rat operant self-administration paradigm. Here, we set out to assess the effect of GDNF in the VTA on excessive voluntary consumption of ethanol. Long-Evans rats were trained to drink large quantities of a 20% ethanol solution in an intermittent-access two-bottle choice drinking paradigm. The rats were given three 24-h sessions per week, and GDNF's actions were measured when rats achieved a baseline of ethanol consumption of 5.5g/kg/24h. We found that microinjection of GDNF into the VTA 10min before the beginning of an ethanol-drinking session significantly reduced ethanol intake and preference, but did not affect total fluid intake. We further show that GDNF greatly decreased both the first bout of excessive ethanol intake at the beginning of the session, and the later consummatory activity occurring during the dark cycle. These data suggest that GDNF is a rapid and long-lasting inhibitor of "binge-like" ethanol consumption.
Collapse
|
14
|
Zaman V, Boger HA, Granholm AC, Rohrer B, Moore A, Buhusi M, Gerhardt GA, Hoffer BJ, Middaugh LD. The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur J Neurosci 2009; 28:1557-68. [PMID: 18973577 DOI: 10.1111/j.1460-9568.2008.06456.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)alpha-1 (GFRalpha-1(+/-)), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRalpha-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRalpha-1(+/-) mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRalpha-1(+/-) mice. DA in the striatum was reduced in the GFRalpha-1(+/-) mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRalpha-1(+/-) mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRalpha-1(+/-) mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRalpha-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRalpha-1 can contribute to the degenerative changes observed in this system during the aging process.
Collapse
Affiliation(s)
- Vandana Zaman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|
16
|
Sakai A, Asada M, Seno N, Suzuki H. Involvement of neural cell adhesion molecule signaling in glial cell line-derived neurotrophic factor-induced analgesia in a rat model of neuropathic pain. Pain 2008; 137:378-388. [PMID: 17967506 DOI: 10.1016/j.pain.2007.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 08/20/2007] [Accepted: 09/24/2007] [Indexed: 11/16/2022]
Abstract
Since neuropathic pain is resistant to conventional analgesics such as opiates and non-steroidal anti-inflammatory drugs, the development of new types of drugs for its treatment has been awaited. Several key molecules associated with nociception have been suggested as potential targets for new analgesics. Glial cell line-derived neurotrophic factor (GDNF) has a variety of functions affecting the survival and development of specified neural cell populations, mediated via transmission of intracellular signals through binding to its high-affinity receptor, GFR*1, and subsequent activation of a tyrosine receptor kinase, RET, neural cell adhesion molecule (NCAM), or other signaling molecules. GDNF also exhibits analgesic effects in rodent models of neuropathic pain, although the underlying mechanisms are still largely unknown, including the intracellular signal transduction involved. We report here that NCAM signaling plays a role in mediating the analgesic effect of GDNF in rats with chronic constrictive injury (CCI). We found that NCAM was expressed in intrinsic neurons in the spinal dorsal horn and in dorsal root ganglion neurons with small cell bodies. Reduction of NCAM expression by NCAM antisense oligodeoxynucleotide administration to CCI rats abolished the analgesic effect of GDNF without affecting RET signaling activation. An NCAM mimetic peptide, C3d, partially reduced the chronic pain induced by CCI. These findings suggest that NCAM signaling plays a critical role in the analgesic effect of GDNF and that development of new drugs activating GDNF-NCAM signaling may represent a new strategy for the relief of intractable pain.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Shizuoka 411-8731, Japan
| | | | | | | |
Collapse
|
17
|
Quartu M, Serra MP, Boi M, Ferretti MT, Lai ML, Del Fiacco M. Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1173:36-52. [PMID: 17825269 DOI: 10.1016/j.brainres.2007.07.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Occurrence and localization of receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and the GDNF family receptor (GFR) alpha-1 to -3, were examined by immunohistochemistry in the normal human brainstem at fetal, neonatal, and adult age. Immunoreactive elements were detectable at all examined ages with uneven distribution and consistent pattern for each receptor. As a rule, the GFRalpha-1 and GFRalpha-2 antisera produced the most abundant and diffuse tissue labelling. Immunoreactive perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, facial, trigeminal, vestibular and oculomotor nerves, solitary tract, medial longitudinal fasciculus, medial lemniscus, and inferior and superior cerebellar peduncles. Occasionally, glial cells were stained. Age changes were appreciable in the distribution pattern of each receptor. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a plexiform arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results obtained suggest the involvement of Ret and GFRalpha receptors signalling in processes subserving both the organization of discrete brainstem neuronal systems during development and their functional activity and maintenance in adult life.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Quartu M, Serra MP, Boi M, Sestu N, Lai ML, Del Fiacco M. Tissue distribution of neurturin, persephin and artemin in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1143:102-15. [PMID: 17316574 DOI: 10.1016/j.brainres.2007.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 11/19/2022]
Abstract
The occurrence of the glial cell line-derived neurotrophic factor (GDNF) family ligands neurturin (NTN), persephin (PSP), and artemin (ART) was examined by immunohistochemistry in the normal human brainstem at pre-, perinatal and adult age. Immunolabelled neurons were unevenly distributed and each trophin had a consistent distribution pattern. As a rule, the NTN antiserum produced the most abundant and diffuse tissue labelling, whereas the lowest density of positive elements was observed after ART immunostaining. Labelling for NTN, PSP, and ART occurred at all examined ages. For each trophin, neuronal perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, oculomotor and facial nerves, solitary tract, vestibular nerve, medial longitudinal fasciculus, medial and lateral lemnisci, and inferior and superior cerebellar peduncles. Age changes were detected in the distribution pattern for each trophin. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a definite arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results support the concept of a trophic involvement of NTN, PSP, and ART in the development, functional activity and maintenance of a variety of human brainstem neuronal systems.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Jongen JLM, Jaarsma D, Hossaini M, Natarajan D, Haasdijk ED, Holstege JC. Distribution of RET immunoreactivity in the rodent spinal cord and changes after nerve injury. J Comp Neurol 2007; 500:1136-53. [PMID: 17183535 DOI: 10.1002/cne.21234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RET (for "rearranged during transfection") is a transmembrane tyrosine kinase signaling receptor for members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands. We used RET immunohistochemistry (IHC), double-labeling immunofluorescence (IF), and in situ hybridization (ISH) in adult naïve and nerve-injured rats to study the distribution of RET in the spinal cord. In the dorsal horn, strong RET-immunoreactive (-ir) fibers were abundant in lamina II-inner (II(i)), although this labeling was preferentially observed after an antigen-unmasking procedure. After dorsal rhizotomy, RET-ir fibers in lamina II(i) completely disappeared from the dorsal horn, indicating that they were all primary afferents. After peripheral axotomy, RET-ir in primary afferents decreased in lamina II(i) and appeared to increase slightly in laminae III and IV. RET-ir was also observed in neurons and dendrites throughout the dorsal horn. Some RET-ir neurons in lamina I had the morphological appearance of nociceptive projection neurons, which was confirmed by the finding that 53% of RET-ir neurons in lamina I colocalized with neurokinin-1. GDNF-ir terminals were in close proximity to RET-ir neurons in the superficial dorsal horn. In the ventral horn, RET-ir was strongly expressed by motoneurons, with the strongest staining in small, presumably gamma-motoneurons. Increased RET expression following peripheral axotomy was most pronounced in alpha-motoneurons. The expression and regulation pattern of RET in the spinal cord are in line with its involvement in regenerative processes following nerve injury. The presence of RET in dorsal horn neurons, including nociceptive projection neurons, suggests that RET also has a role in signal transduction at the spinal level. This role may include mediating the effects of GDNF released from nociceptive afferent fibers.
Collapse
Affiliation(s)
- Joost L M Jongen
- Department of Neuroscience, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Larsen KE, Benn SC, Ay I, Chian RJ, Celia SA, Remington MP, Bejarano M, Liu M, Ross J, Carmillo P, Sah D, Phillips KA, Sulzer D, Pepinsky RB, Fishman PS, Brown RH, Francis JW. A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 2006; 1120:1-12. [PMID: 17020749 DOI: 10.1016/j.brainres.2006.08.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/07/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.
Collapse
Affiliation(s)
- Kristin E Larsen
- Columbia University, Department of Neurology, New York, NY 10032, and Cecil B. Day Laboratory for Neuromuscular Research, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maroldt H, Kaplinovsky T, Cunningham AM. Immunohistochemical expression of two members of the GDNF family of growth factors and their receptors in the olfactory system. ACTA ACUST UNITED AC 2006; 34:241-55. [PMID: 16841166 DOI: 10.1007/s11068-005-8356-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 12/24/2022]
Abstract
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRalpha1, GFRalpha2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRalpha1, whereas progenitors and immature neurons more avidly expressed GFRalpha2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRalpha2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.
Collapse
Affiliation(s)
- Heike Maroldt
- Developmental Neurosciences Program, School of Women's and Children's Health, Faculty of Medicine, Sydney Children's Hospital, University of New South Wales, High St, Randwick, NSW, 2031, Australia
| | | | | |
Collapse
|
22
|
Jongen JLM, Haasdijk ED, Sabel-Goedknegt H, van der Burg J, Vecht CJ, Holstege JC. Intrathecal injection of GDNF and BDNF induces immediate early gene expression in rat spinal dorsal horn. Exp Neurol 2005; 194:255-66. [PMID: 15899262 DOI: 10.1016/j.expneurol.2005.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 01/24/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) are potent trophic factors for dorsal root ganglion cells. In addition, these factors are produced in subsets of dorsal root ganglion cells and transported anterogradely to their terminals in the superficial dorsal horn of the spinal cord, where they constitute the only source of GDNF and BDNF. We investigated the effect of 10 mug GDNF and BDNF injected by lumbar puncture on the expression of the immediate early gene (IEG) products c-Fos, c-Jun, and Krox-24 in the adult rat dorsal horn. In the dorsal horn of S1 spinal segments, GDNF and BDNF induced a strong increase in IEG expression, which was most pronounced in laminae I and II (2.9- to 4.5-fold). More distal from the injection site, in the dorsal horn of L1/L2 spinal segments, the increase in IEG expression was less pronounced, suggesting a concentration-dependent effect. In order to explain the effects of intrathecally injected GDNF, we investigated whether lumbo-sacral dorsal horn neurons expressed RET protein, the signal-transducing element of the receptor complex for GDNF. It was found that several of these neurons contained RET immunoreactivity and that some of the RET-labeled neurons had the appearance of nociceptive-specific cells, confirming their presumed role in pain transmission. Additionally, using double-labeling immunofluorescence combined with confocal microscopy, it was found that after intrathecal GDNF injection 35% of c-Fos-labeled cells were also labeled for RET. These results demonstrate that intrathecally administered GDNF and BDNF induce IEG expression in dorsal horn neurons in the adult rat, supposedly by way of their cognate receptors, which are present on these neurons. We further suggest that the endogenous release of GDNF and BDNF, triggered by nociceptive stimuli, is involved in the induction of changes in spinal nociceptive transmission as in various pain states.
Collapse
Affiliation(s)
- J L M Jongen
- Department of Neuroscience, Erasmus MC-University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Serra MP, Quartu M, Mascia F, Manca A, Boi M, Pisu MG, Lai ML, Del Fiacco M. Ret, GFRalpha‐1, GFRalpha‐2 and GFRalpha‐3 receptors in the human hippocampus and fascia dentata. Int J Dev Neurosci 2005; 23:425-38. [PMID: 16002253 DOI: 10.1016/j.ijdevneu.2005.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/24/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022] Open
Abstract
The immunohistochemical occurrence and localization of the receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and GDNF family receptor (GFR) alpha-1 to -3, is described in the human post-mortem hippocampal formation at pre- and full-term newborn, and adult age. Two different antibodies for each of the four-receptor molecules were used. Western blot analysis indicates that the availability of GFRalpha receptor proteins may vary with age and post-mortem delay. The immunohistochemical detectability of GFRalpha-1, GFRalpha-2, GFRalpha-3 and Ret receptor molecules is shown in the rat up to 72 h post-mortem. In the human specimens, labelled neuronal perikarya were detectable for each receptor protein at all examined ages, with prevalent localization in the pyramidal layer of the Ammon's horn and hilus and granular layer of the fascia dentata. In the adult subjects, abundant punctate-like structures were also present. Labelled glial elements were identifiable. Comparison of the pattern of immunoreactive elements among young and adult subjects suggests that the intracellular distribution of the GDNF family ligands may vary between pre- and perinatal life and adult age. The results obtained suggest the involvement of the Ret and GFRalpha receptors signalling in processes subserving both the organization of this cortical region during development and the functional activity and maintenance of the mature hippocampal neurons.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wood TK, McDermott KW, Sullivan AM. Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 2005; 80:759-66. [PMID: 15880784 DOI: 10.1002/jnr.20507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease is characterized by the progressive degeneration of midbrain dopaminergic neurons. Several studies have examined the effects of the dopaminergic neurotrophins growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) on these neurons in vitro. However, there is little information regarding their effects on astroglial cells. Here, the effects of GDF5 and GDNF on dopaminergic neuronal and astroglial survival and differentiation in embryonic rat midbrain cultures were examined. Both GDF5 and GDNF enhanced the survival and differentiation of dopaminergic neurons. GDF5 significantly increased the survival of astroglial cells, whereas GDNF had no significant effect on these cells. The possible involvement of astroglia in the dopaminergic neurotrophic effect induced by GDF5 was investigated by examining the effect of GDF5 on the survival of dopaminergic neurons in glia-depleted midbrain cultures. There was no significant difference between the survival of dopaminergic neurons in glia-depleted cultures treated with GDF5 and that in mixed cell cultures treated with GDF5, suggesting that GDF5 acts directly on dopaminergic neurons in exerting its neurotrophic effect. GDF5 and GDNF have been established as potent neurotrophic factors for dopaminergic neurons. However, the effects of adding a combination of these neurotrophins to midbrain cultures have not been previously examined. The present study found that combined treatment with GDF5 and GDNF significantly increased the survival of dopaminergic neurons in cultures compared with that in cultures treated with either neurotrophin alone. This was an additive effect, indicating that these neurotrophins act on separate subpopulations of dopaminergic neurons.
Collapse
Affiliation(s)
- Terri K Wood
- Department of Anatomy/Neuroscience, Biosciences Research Institute, National University of Ireland Cork (NUIC)
| | | | | |
Collapse
|
25
|
Lo Bianco C, Déglon N, Pralong W, Aebischer P. Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson's disease. Neurobiol Dis 2004; 17:283-9. [PMID: 15474365 DOI: 10.1016/j.nbd.2004.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/06/2004] [Accepted: 06/16/2004] [Indexed: 11/23/2022] Open
Abstract
Viral delivery of glial cell line-derived neurotrophic factor (GDNF) currently represents one of the most promising neuroprotective strategies for Parkinson's Disease (PD). However, the effect of this neurotrophic factor has never been tested in the newly available genetic models of PD based on the viral expression of mutated alpha-synuclein. In this study, we evaluated the ability of lentiviral vectors coding for GDNF (lenti-GDNF) to prevent nigral dopaminergic degeneration associated with the lentiviral mediated expression of the A30P mutant human alpha-synuclein (lenti-A30P). This virally based rat model develops a progressive and selective loss of dopamine neurons associated with the appearance of alpha-synuclein containing inclusions, thus recapitulating the major hallmarks of PD. Lenti-GDNF was injected in the substantia nigra 2 weeks before nigral administration of lenti-A30P. Although a robust expression of GDNF was observed in the whole nigrostriatal pathway due to retrograde and/or anterograde transport, lenti-GDNF did not prevent the alpha-synuclein-induced dopaminergic neurodegeneration in the lentiviral-based genetic rat model of PD. These results suggest that sustained GDNF treatment cannot modulate the cellular toxicity related to abnormal folded protein accumulation as mutated human alpha-synuclein.
Collapse
Affiliation(s)
- C Lo Bianco
- Institute of Neuroscience, Swiss Federal Institute of Technology Lausanne, EPFL, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
26
|
Kozlowski DA, Miljan EA, Bremer EG, Harrod CG, Gerin C, Connor B, George D, Larson B, Bohn MC. Quantitative analyses of GFRα-1 and GFRα-2 mRNAs and tyrosine hydroxylase protein in the nigrostriatal system reveal bilateral compensatory changes following unilateral 6-OHDA lesions in the rat. Brain Res 2004; 1016:170-81. [PMID: 15246853 DOI: 10.1016/j.brainres.2004.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 11/22/2022]
Abstract
Copy numbers of mRNAs for GFRalpha-1 and GFRalpha-2, the preferred receptors for glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) were determined by real-time quantitative RT-PCR (QRT-PCR). Receptor expression was assessed in striatum (ST) and substantia nigra (SN) of normal rats and rats acutely or progressively lesioned by 6-OHDA injected into the medial forebrain bundle or ST, respectively. GFRalpha-1 mRNA was clearly detected in normal ST. In normal SN, significantly higher expression of both receptors was observed. At 4 weeks after acute lesion, GFRalpha-2 mRNA was markedly decreased in SN bilaterally, whereas GFRalpha-1 mRNA in SN and ST was not affected. A progressive lesion resulted in a progressive decrease of GFRalpha1 mRNA in ST bilaterally. In SN, levels of GFRalpha-1 mRNA were not significantly affected by a progressive lesion, whereas GFRalpha-2 mRNA was markedly decreased bilaterally. Quantitative western blotting standardized against tyrosine hydroxylase (TH) protein from PC12 cells revealed the expected decrease in TH protein in lesioned SN, but also significant increases in TH protein in contralateral, unlesioned SNs at 4 weeks after both acute and progressive lesions. These data suggest that previously unrecognized compensatory changes in the nigrostriatal system occur in response to unilateral dopamine depletion. Since the changes observed in receptor expression did not always parallel loss of dopamine neurons, cells in addition to the nigral dopamine neurons appear to be affected by a 6-OHDA insult and are potential targets for the neurotrophic factors, GDNF and NTN.
Collapse
Affiliation(s)
- D A Kozlowski
- Children's Memorial Institute for Education and Research, 2300 Children's Plaza, Box 209 Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hess BH, Krewet JA, Tolbert DL. Olivocerebellar projections are necessary for exogenous trophic factors to delay heredo-Purkinje cell degeneration. Brain Res 2003; 986:54-62. [PMID: 12965229 DOI: 10.1016/s0006-8993(03)03169-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The temporally protracted heredodegeneration of cerebellar Purkinje cells in shaker mutant rats can be modified: ablation of the inferior olive accelerates their degeneration whereas chronic intraventricular infusion of trophic factors extends their survival. The present study sought to determine if chronic trophic factor infusion could block the accelerated degeneration of Purkinje cells due to inferior olivary chemoablation thereby focusing on possible mechanisms for the amelioration of heredo-Purkinje cell death. When the inferior olive was chemically ablated with 3-acetylpyridine at the midpoint of 2 weeks of conjoint intraventricular infusion of glial cell line-derived trophic factor (GDNF) and insulin like growth factor type I (IGF-1) Purkinje cells were not protected by the exogenous trophic factors, but rather degenerated prematurely consistent with chemoablation alone. These findings support the conclusion that when the inferior olive is ablated, Purkinje cell heredodegeneration progresses through a mechanism not significantly affected by the action of these trophic factors.
Collapse
Affiliation(s)
- Brian H Hess
- Francis Doris Murphy Neuroanatomy Research Laboratory, Department of Anatomy and Neurobiology, School of Medicine, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
28
|
Lara J, Kusano K, House S, Gainer H. Interactions of cyclic adenosine monophosphate, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor treatment on the survival and growth of postnatal mesencephalic dopamine neurons in vitro. Exp Neurol 2003; 180:32-45. [PMID: 12668147 DOI: 10.1016/s0014-4886(02)00028-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survival of rat postnatal mesencephalic dopamine (DA) neurons in dissociated cell cultures was studied by examining the combinatorial effects of dibutyryl cyclic adenosine monophosphate (db-cAMP), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), as well as selective inhibitors of protein kinase A (PKA), and mitogen-activated protein kinase (MAPK). Postnatal DA neurons were maintained for 14 days in vitro, and were identified by immunohistochemistry using tyrosine hydroxylase antibody. The survival and growth of DA neurons was significantly increased by the inclusion of either >100 microM db-cAMP or 10 microM Forskolin plus 100 microM IBMX in the culture medium. Neither 10-50 ng/ml GDNF nor 50 ng/ml BDNF alone significantly increased DA neuron survival in vitro. However, the combined use of GDNF and BDNF did increase DA neuron survival, and the addition of either db-cAMP or IBMX/Forskolin to media containing these neurotrophins markedly increased DA neuron survival and growth. The cAMP inhibitor Rp-cAMP, the cAMP-dependent protein kinase A inhibitor H89, and the MAP kinase (MAPK) pathway inhibitor PD98059 significantly reduced the survival of DA neurons when applied alone in the absence of added growth factors. Application of GDNF plus BDNF, or db-cAMP significantly protected the DA neurons from the deleterious effects on survival of either 20 microM H89 or 20 microM PD 98059. The results suggest that BDNF, GDNF, and cAMP produce convergent signals to activate PKA and MAPK pathways which are involved in the survival of postnatal mesencephalic DA neurons in vitro.
Collapse
Affiliation(s)
- Jesus Lara
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4120, USA
| | | | | | | |
Collapse
|
29
|
Chun HS, Yoo MS, DeGiorgio LA, Volpe BT, Peng D, Baker H, Peng C, Son JH. Marked dopaminergic cell loss subsequent to developmental, intranigral expression of glial cell line-derived neurotrophic factor. Exp Neurol 2002; 173:235-44. [PMID: 11822887 DOI: 10.1006/exnr.2001.7842] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) shows potent neuroprotective as well as neurorestorative actions on the adult neurons impacted in animal models of Parkinson's disease (PD). Long-term pharmaco-physiological effects of GDNF on developing dopaminergic (DA) neurons have not yet been explored because of technical difficulties in producing prolonged cell type-specific delivery of this neurotrophic factor in mammalian embryonic brain. The current studies used our previously characterized 9.0-kb tyrosine hydroxylase promoter to produce transgenic mice with neuronal cell type-specific expression of GDNF in substantia nigra pars compacta (SNc) and locus coeruleus (LC). These mice were used to test the parsimonious hypothesis that increased developmental expression of GDNF in SNc and LC would significantly enhance the number of postmitotic adult neurons. To our surprise, adult transgenic mice carrying the TH9.0kb-GDNF hybrid gene showed dramatic reductions in both the numbers and the volumes of SNc-DA and LC-noradrenergic (NA) neurons by quantitative morphometric analysis. The decrease in the number of DA neurons was apparent as early as postnatal day 2, the period before the major naturally occurring apoptotic cell death in midbrain. Aged transgenic mice exhibited no further significant deficits in motor behaviors. These data suggest that continuous, early developmental GDNF expression exerts physiological effects on newly differentiated, immature dopamine neurons that differ from those observed on more mature and adult DA neurons. Further elucidation of the mechanisms underlying differential GDNF actions will greatly improve the pharmacological efficacy of GDNF in fetal neural transplantation as well as adult neuronal gene therapy in PD patients.
Collapse
Affiliation(s)
- Hong S Chun
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at the W. M. Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Weis C, Marksteiner J, Humpel C. Nerve growth factor and glial cell line-derived neurotrophic factor restore the cholinergic neuronal phenotype in organotypic brain slices of the basal nucleus of Meynert. Neuroscience 2001; 102:129-38. [PMID: 11226676 DOI: 10.1016/s0306-4522(00)00452-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Loss of cholinergic neurons is found in the medial septum and nucleus basalis of Meynert in Alzheimer's disease. Recent observations suggest that cholinergic neurons down-regulate their phenotype and that growth factors may rescue cholinergic neurons. The aim of this study was to investigate whether cholinergic neurons of the basal nucleus of Meynert can be cultured in rat organotypic slices, and if nerve growth factor and glial cell line-derived neurotrophic factor can rescue the cholinergic phenotype. In the organotypic slices, glial cells, GABAergic and cholinergic neurons were visualized using immunohistochemistry. The number of cholinergic neurons was found to be very low in slices cultured without exogenous nerve growth factor. Analysis of nerve growth factor tissue levels by enzyme-linked immunosorbent assay revealed very low endogenous tissue levels. When slices were incubated with 100ng/ml nerve growth factor during the initial phase of culturing, a stable expression of choline acetyltransferase was found for up to several weeks. After eight weeks in culture with nerve growth factor or two to three weeks after nerve growth factor withdrawal, numbers of detected cholinergic neurons decreased. Neurons incubated with nerve growth factor displayed a significantly enlarged cell soma compared to neurons without growth factors. In cultures incubated for up to nine weeks, it was also found that glial cell line-derived neurotrophic factor was capable of restoring the cholinergic phenotype. The low-affinity p75 and high-affinity trkA receptors, as well as the glial cell line-derived neurotrophic factor receptor GFRalpha-1, could be visualized in slices using immunohistochemistry. In conclusion, it is shown that, in the axotomized organotypic slice model, the number of cholinergic neurons is decreased, but can be partly restored by nerve growth factor and glial cell line-derived neurotrophic factor.
Collapse
Affiliation(s)
- C Weis
- Department of Psychiatry, University Hospital Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | | | | |
Collapse
|
31
|
Kushikata T, Kubota T, Fang J, Krueger JM. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1001-6. [PMID: 11247820 DOI: 10.1152/ajpregu.2001.280.4.r1001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various growth factors (e.g., growth hormone-releasing hormone, acidic fibroblast growth factor, nerve growth factor, brain-derived neurotrophic factor, and interleukin-1) are implicated in sleep regulation. It is hypothesized that neuronal activity enhances the production of such growth factors, and they in turn form part of the sleep regulatory mechanism. Glial cell line-derived neurotrophic factor (GDNF) promotes development, differentiation, maintenance, and regeneration of neurons, and its production is induced by well-characterized sleep regulatory substances such as interleukin-1 and tumor necrosis factor. Therefore, we investigated whether GDNF would promote sleep. Twenty-six male Sprague-Dawley rats and 30 male New Zealand White rabbits were surgically implanted with electroencephalogram (EEG) and electromyogram (EMG; rats only) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and on a separate day with one of the following doses of GDNF: 5, 50, and 500 ng in rabbits and 50 and 500 ng in rats. The EEG, brain temperature, EMG (in rats), and motor activity (in rabbits) were recorded for 23 h after the intracerebroventricular injection. GDNF (500-ng dose) increased the time spent in nonrapid eye movement sleep in both rats and rabbits. Rapid eye movement sleep was not affected by the lower doses of GDNF but was inhibited in rabbits after the high dose. EEG slow-wave activity was not affected by GDNF. The current results provide further evidence that various growth factors are involved in sleep regulation.
Collapse
Affiliation(s)
- T Kushikata
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|