1
|
van der Loo CHM, Schim van der Loeff R, Martín A, Gomez-Sal P, Borst MLG, Pouwer K, Minnaard AJ. π-Facial selectivity in the Diels-Alder reaction of glucosamine-based chiral furans and maleimides. Org Biomol Chem 2023; 21:1888-1894. [PMID: 36607338 DOI: 10.1039/d2ob02221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Furans derived from carbohydrate feedstocks are a versatile class of bio-renewable building blocks and have been used extensively to access 7-oxanorbornenes via Diels-Alder reactions. Due to their substitution patterns these furans typically have two different π-faces and therefore furnish racemates in [4 + 2]-cycloadditions. We report the use of an enantiopure glucosamine derived furan that under kinetic conditions predominantly affords the exo-product with a high π-face selectivity of 6.5 : 1. The structure of the product has been resolved unequivocally by X-ray crystallography, and a multi-gram synthesis (2.8 g, 58% yield) confirms the facile accessibility of this multifunctional enantiopure building block.
Collapse
Affiliation(s)
- Cornelis H M van der Loo
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Rutger Schim van der Loeff
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Pilar Gomez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Mark L G Borst
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Kees Pouwer
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Da Costa GV, Neto MFA, Da Silva AKP, De Sá EMF, Cancela LCF, Vega JS, Lobato CM, Zuliani JP, Espejo-Román JM, Campos JM, Leite FHA, Santos CBR. Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. Int J Mol Sci 2022; 23:8218. [PMID: 35897792 PMCID: PMC9332482 DOI: 10.3390/ijms23158218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is the main vector that transmits viral diseases such as dengue, hemorrhagic dengue, urban yellow fever, zika, and chikungunya. Worldwide, many cases of dengue have been reported in recent years, showing significant growth. The best way to manage diseases transmitted by Aedes aegypti is to control the vector with insecticides, which have already been shown to be toxic to humans; moreover, insects have developed resistance. Thus, the development of new insecticides is considered an emergency. One way to achieve this goal is to apply computational methods based on ligands and target information. In this study, sixteen compounds with acceptable insecticidal activities, with 100% larvicidal activity at low concentrations (2.0 to 0.001 mg·L−1), were selected from the literature. These compounds were used to build up and validate pharmacophore models. Pharmacophore model 6 (AUC = 0.78; BEDROC = 0.6) was used to filter 4793 compounds from the subset of lead-like compounds from the ZINC database; 4142 compounds (dG < 0 kcal/mol) were then aligned to the active site of the juvenile hormone receptor Aedes aegypti (PDB: 5V13), 2240 compounds (LE < −0.40 kcal/mol) were prioritized for molecular docking from the construction of a chitin deacetylase model of Aedes aegypti by the homology modeling of the Bombyx mori species (PDB: 5ZNT), which aligned 1959 compounds (dG < 0 kcal/mol), and 20 compounds (LE < −0.4 kcal/mol) were predicted for pharmacokinetic and toxicological prediction in silico (Preadmet, SwissADMET, and eMolTox programs). Finally, the theoretical routes of compounds M01, M02, M03, M04, and M05 were proposed. Compounds M01−M05 were selected, showing significant differences in pharmacokinetic and toxicological parameters in relation to positive controls and interaction with catalytic residues among key protein sites reported in the literature. For this reason, the molecules investigated here are dual inhibitors of the enzymes chitin synthase and juvenile hormonal protein from insects and humans, characterizing them as potential insecticides against the Aedes aegypti mosquito.
Collapse
Affiliation(s)
- Glauber V. Da Costa
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Moysés F. A. Neto
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Alicia K. P. Da Silva
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Ester M. F. De Sá
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Luanne C. F. Cancela
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Jeanina S. Vega
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Cássio M. Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Biotechnology in Natural Products, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (A.K.P.D.S.); (E.M.F.D.S.); (L.C.F.C.); (J.S.V.)
| | - Juliana P. Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 78912-000, RO, Brazil;
| | - José M. Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| | - Franco H. A. Leite
- Laboratory Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (M.F.A.N.); (F.H.A.L.)
| | - Cleydson B. R. Santos
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.)
| |
Collapse
|
3
|
Are N-phthaloyl and O-allyl protective groups orthogonal? Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Frem D, Urban D, Norsikian S, Beau JM. From Chitin to α-Glycosides of N
-Acetylglucosamine Using Catalytic Copper Triflate in a Heated Sealed-Vessel Reactor. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dany Frem
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Dominique Urban
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Jean-Marie Beau
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
5
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Miller DC, Carbain B, Beale GS, Alhasan SF, Reeves HL, Baisch U, Newell DR, Golding BT, Griffin RJ. Regioselective sulfamoylation at low temperature enables concise syntheses of putative small molecule inhibitors of sulfatases. Org Biomol Chem 2015; 13:5279-84. [PMID: 25858034 DOI: 10.1039/c5ob00211g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regioselective sulfamoylation of primary hydroxyl groups enabled a 5-step synthesis (overall yield 17%) of the first reported small molecule inhibitor of sulfatase-1 and 2, ((2S,3R,4R,5S,6R)-4,5-dihydroxy-2-methoxy-6-((sulfamoyloxy)methyl)tetrahydro-2H-pyran-3-yl)sulfamic acid, which obviated the use of hydroxyl protecting groups and is a marked improvement on the reported 9-step synthesis (overall yield 9%) employing hazardous trifluoromethylsulfonyl azide. The sulfamoylation methodology was used to prepare a range of derivatives of 1, and inhibition data was generated for Sulf-2, ARSA and ARSB.
Collapse
Affiliation(s)
- Duncan C Miller
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang J, Ponomareva LV, Marchillo K, Zhou M, Andes DR, Thorson JS. Synthesis and antibacterial activity of doxycycline neoglycosides. JOURNAL OF NATURAL PRODUCTS 2013; 76:1627-36. [PMID: 23987662 PMCID: PMC3814126 DOI: 10.1021/np4003096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A set of 37 doxycycline neoglycosides were prepared, mediated via a C-9 alkoxyamino-glycyl-based spacer reminiscent of that of tigecycline. Subsequent in vitro antibacterial assays against representative drug-resistant Gram negative and Gram positive strains revealed a sugar-dependent activity profile and one doxycycline neoglycoside, the 2'-amino-α-D-glucoside conjugate, to rival that of the parent pharmacophore. In contrast, the representative tetracycline-susceptible strain E. coli 25922 was found to be relatively responsive to a range of doxycycline neoglycosides. This study also extends the use of aminosugars in the context of neoglycosylation via a simple two-step strategy anticipated to be broadly applicable for neoglycorandomization.
Collapse
Affiliation(s)
- Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Karen Marchillo
- Department of Medicine and Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, 53705-2281, United States
| | - Maoquan Zhou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - David R. Andes
- Department of Medicine and Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, 53705-2281, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
8
|
Posakony JJ, Ferré-D'Amaré AR. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme. J Org Chem 2013; 78:4730-43. [PMID: 23578404 DOI: 10.1021/jo400192e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactors of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogues, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz), and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogues. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection.
Collapse
Affiliation(s)
- Jeffrey J Posakony
- National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, Maryland 20892-8012, USA.
| | | |
Collapse
|
9
|
Rabbani S, Compostella F, Franchini L, Wagner B, Panza L, Ernst B. Synthetic Potential of Fucosyltransferase III for the Synthesis of Fluorescent‐labeled Milk Oligosaccharides. J Carbohydr Chem 2007. [DOI: 10.1080/07328300500341965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Said Rabbani
- a Institute of Molecular Pharmacy, Pharmacenter of the University of Basel , Basel , Switzerland
| | - Federica Compostella
- b Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina , Università di Milano , Milano , Italy
| | - Laura Franchini
- b Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina , Università di Milano , Milano , Italy
| | - Beatrice Wagner
- a Institute of Molecular Pharmacy, Pharmacenter of the University of Basel , Basel , Switzerland
| | - Luigi Panza
- c Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche , Università del Piemonte Orientale , Novara , Italy
| | - Beat Ernst
- a Institute of Molecular Pharmacy, Pharmacenter of the University of Basel , Basel , Switzerland
| |
Collapse
|
10
|
Huang GL, Zhang DW, Zhao HJ, Zhang HC, Wang PG. Chemo-enzymatic synthesis of allyl penta-N-acetyl-chitopentaose. Bioorg Med Chem Lett 2006; 16:2042-3. [PMID: 16403625 DOI: 10.1016/j.bmcl.2005.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/03/2005] [Accepted: 12/14/2005] [Indexed: 11/29/2022]
Abstract
Cell density cultivation of recombinant Escherichia coli strains harboring the nodC gene (encoding chitooligosaccharide synthase) from Azorhizobium caulinodans has been previously described as a practical method for the preparation of gram-scale quantities of penta-N-acetyl-chitopentaose. We have now extended this method to the production of allylated derivative of penta-N-acetyl-chitopentaose by using allyl 2-acetamido-2-deoxy-beta-d-glucopyranoside (2) as the initial acceptor for the synthesis of target pentaoside in vivo.
Collapse
Affiliation(s)
- Gang-Liang Huang
- School of Life Science, Shandong University, Jinan City 250100, China.
| | | | | | | | | |
Collapse
|
11
|
Sasaki K, Nishida Y, Kambara M, Uzawa H, Takahashi T, Suzuki T, Suzuki Y, Kobayashi K. Design of N-acetyl-6-sulfo-β-d-glucosaminide-based inhibitors of influenza virus sialidase. Bioorg Med Chem 2004; 12:1367-75. [PMID: 15018909 DOI: 10.1016/j.bmc.2004.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/10/2004] [Accepted: 01/14/2004] [Indexed: 11/15/2022]
Abstract
Biological activity of N-acetyl-6-sulfo-beta-d-glucosaminides (6-sulfo-GlcNAc 1) having a structural homology to N-acetylneuraminic acid (Neu5Ac 2) and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en 3) was examined in terms of inhibitory activity against influenza virus sialidase (influenza, A/Memphis/1/71 H3N2). pNP 6-Sulfo-GlcNAc 1a was proved to show substantial activity to inhibit the virus sialidase (IC(50)=2.8 mM), though p-nitrophenyl (pNP) GlcNAc without 6-sulfo group and pNP 6-sulfo-GlcNH(3)(+) 1b without 2-NHAc showed little activity (IC(50) >50 mM). The activity was enhanced nearly 100-fold when the pNP group of 1a was converted to p-acetamidophenyl one 5 (IC(50)=30 microM) or replaced with 1-naphthyl 6 (IC(50)=10 microM) or n-propyl one 8 (IC(50)=11 microM).
Collapse
Affiliation(s)
- Kenji Sasaki
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Codée JDC, Litjens REJN, den Heeten R, Overkleeft HS, van Boom JH, van der Marel GA. Ph2SO/Tf2O: a powerful promotor system in chemoselective glycosylations using thioglycosides. Org Lett 2003; 5:1519-22. [PMID: 12713313 DOI: 10.1021/ol034312t] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diphenylsulfoxide in combination with triflic anhydride provides a very potent thiophilic glycosylation promotor system, capable of activating disarmed thioglycosides. The usefulness of this novel thiophilic activator is illustrated in a successful chemoselective glycosylation sequence in which the donor thioglycoside in the first condensation step may be either armed or disarmed. [reaction: see text]
Collapse
Affiliation(s)
- Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Vauzeilles B, Dausse B, Palmier S, Beau JM. A one-step β-selective glycosylation of N -acetyl glucosamine and recombinant chitooligosaccharides. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)01594-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Rhizobia are soil bacteria that can engage in a symbiosis with leguminous plants that produces nitrogen-fixing root nodules. This symbiosis is based on specific recognition of signal molecules, which are produced by both the bacterial and plant partners. In this review, recognition factors from the bacterial endosymbionts are discussed, with particular attention to secreted and cell surface glycans. Glycans that are discussed include the Nod factors, the extracellular polysaccharides, the lipopolysaccharides, the K-antigens, and the cyclic glucans. Recent advances in the understanding of the biosynthesis, secretion, and regulation of production of these glycans are reviewed, and their functions are compared with glycans produced by other bacteria, such as plant pathogens.
Collapse
Affiliation(s)
- H P Spaink
- Institute of Molecular Plant Sciences, Leiden University, 2333 AL Leiden, The Netherlands.
| |
Collapse
|